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Summary

1. To generate realistic predictions, species distribution models require the accurate coregistration of occurrence

data with environmental variables. There is a common assumption that species occurrence data are accurately

georeferenced; however, this is often not the case. This study investigates whether locational uncertainty and

sample size affect the performance and interpretation of fine-scale species distributionmodels.

2. This study evaluated the effects of locational uncertainty across multiple sample sizes by subsampling and

spatially degrading occurrence data. Distribution models were constructed for kelp (Ecklonia radiata), across a

large study site (680 km2) off the coast of southeastern Australia. Generalized additive models were used to pre-

dict distributions based on fine-resolution (2�5 m cell size) seafloor variables, generated from multibeam echo-

sounder data sets, and occurrence data from underwater towed video. The effects of different levels of locational

uncertainty in combination with sample size were evaluated by comparing model performance and predicted

distributions.

3. While locational uncertainty was observed to influence some measures of model performance, in general this

was small and varied based on the accuracy metric used. However, simulated locational uncertainty caused

changes in variable importance and predicted distributions at fine scales, potentially influencing model interpre-

tation. This wasmost evident with small sample sizes.

4. Results suggested that seemingly high-performing, fine-scale models can be generated from data containing

locational uncertainty, although interpreting their predictions can bemisleading if the predictions are interpreted

at scales similar to the spatial errors. This study demonstrated the need to consider predictions across geographic

space rather than performance alone. The findings are important for conservationmanagers as they highlight the

inherent variation in predictions between equally performing distributionmodels, and the subsequent restrictions

on ecological interpretations.

Key-words: georeferencing error, habitat suitability, model performance, occurrence data

accuracy, spatial error

Introduction

Species distribution models (SDMs) have been used widely in

biogeography to characterize the ecological niche of species

and to predict the geographic distribution of their habitat

(Elith et al. 2006; Ara�ujo & Peterson 2012). Despite their

increasing use, SDMs pose many conceptual problems

(Jim�enez-Valverde, Lobo & Hortal 2008; Sober�on & Naka-

mura 2009) and encompass many methodological uncertain-

ties (Barry & Elith 2006; Heikkinen et al. 2006; Rocchini et al.

2011).

A fundamental challenge in using SDMs is the uncertainty

around where an observation is located, and is known as

locational or positional uncertainty. Past studies into the

effects of locational uncertainty have primarily focussed on

simulating the errors occurring in existing data sets held in

museums and herbaria, which are increasingly accessible

through Internet portals (e.g. Global Biodiversity Information

Facility; Chapman 2005). These studies have been motivated

by the fact that the majority of existing observation data sets

were collected before the popularization of GPS technology.

When these records were digitized, geographic coordinates

were often inferred from textual descriptions and may be sub-

stantially incorrect (Wieczorek, Guo & Hijmans 2004; Feeley

& Silman 2010). Similarly, contemporary marine samples may

have been positioned using outdated technology, such as the

Decca navigation system, and may have positional errors on

the order of hundreds of metres (Last 1992; Kubicki &Diesing

2006). This problem becomes important when the observation*Correspondence author. E-mail: peter.mitchell@cefas.co.uk
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data are used to develop SDMs, as coordinates are used to

extract the colocated environmental variables. Accordingly,

locational uncertainty will transfer to inaccurate characteriza-

tions of the species–environment relationship (Feeley& Silman

2010).

Although not widely recognized, observation data col-

lected using modern positioning systems invariably contain

locational uncertainty. For example, the current locational

accuracy of most standard GPS units can be ~30 m (Frair

et al. 2010). While this is small compared to those con-

tained in digitized records, when these data sets are incor-

porated into a fine-scale SDM framework, this minor

locational error affects the accuracy of model predictions

(Guisan et al. 2007). With technological advances in the

collection of environmental data sets, SDMs are being built

at increasingly finer resolutions, not more so than in the

marine environment, where multibeam echosounders

(MBESs), along with other techniques, are now capable of

providing seafloor structure information at resolutions of

<2 m (Brown et al. 2011). Consequently, locational uncer-

tainty continues to be problematic despite the development

of improved positioning systems (Rigby, Pizarro & Wil-

liams 2006). In a recent study, Rattray et al. (2014) quanti-

fied the propagated error associated with each component

of underwater camera positioning (a technique commonly

used to collect observation data in marine ecosystems).

They found a linear increase in location error with camera

depth, equating to a 1�5 m horizontal error near the surface

and 5�7 m error at a depth of 100 m. This suggests that the

maximum error in location of a species observation may

often exceed the resolution of the predictor data sets, and,

thus, locational uncertainty remains an issue with data sets

collected using modern positioning systems.

Statistical techniques have been developed to estimate the

locational uncertainty in occurrence data and remove highly

uncertain observations prior to analysis (Wieczorek, Guo &

Hijmans 2004; Guo, Liu & Wieczorek 2008). Taking such an

approach, however, ultimately reduces the sample size, which

in turn decreases model accuracy (Hernandez et al. 2006).

Accordingly, having locational uncertainty in observation data

should not automatically be a reason to discard the data

(Chapman 2005). In this case, it is important to know whether

and where this locational uncertainty is problematic. For

example, Graham et al. (2008) compared different SDMs to

see whether they were affected by an introduced random error

(up to 5 km) to the location of their observation data.

Although they concluded that SDMs are, in general, robust to

locational uncertainty at broad scales, recent studies argue that

this is not consistent. For example, Hefley et al. (2014)

observed that locational errors could bias their models and rec-

ommended correcting for locational errors where possible.

Consequently, there is a clear need for further investigation

into locational uncertainty, especially using finer resolution

data sets.

The sample sizes used to generate models vary enor-

mously between studies. While a larger data set is always

preferred, the difficulty of sampling rare or cryptic species

means samples are inherently limited. It is also widely

regarded that predictive performance of models improves,

and variation between predictive accuracy decreases, with

larger data sets (e.g. Pearce & Ferrier 2000; Hernandez

et al. 2006; Wisz et al. 2008). When sample size is small,

outliers have a stronger influence on the fit of a model

(Wisz et al. 2008). Considering locational error is antici-

pated to create outliers in the data, it is logical to expect

that locational error will affect model performance more

when coefficients are derived from smaller sample sizes.

However, no study has compared how model performance

is influenced by varying sample size with data containing

locational errors.

The objectives of this study are to evaluate the extent to

which locational uncertainty within observation data influ-

ences the performance and interpretation of fine-scale SDMs.

This is examined across multiple sample sizes to determine

whether these effects vary as a result of the number of observa-

tions used to generate the model. As SDMs are increasingly

being applied to finer scale data sets, this paper provides a

timely investigation into the potential effects of locational

uncertainty on fine-scale SDMs.

Materials andmethods

STUDY SITE

The study site consisted of c. 135 km of coastline around Cape Otway,

in southeastern Australia. The site extended from the western bound-

ary of the Twelve ApostlesMarineNational Park, to the coastal waters

south of Anglesea (Fig. 1). A total of 680 km2 of seafloor were sur-

veyed with depth ranging from 6 to 79 m. The site consists of sandy

sediment with a number of high relief reef systems increasing in sand

inundation with depth. Species assemblages are complex and highly

diverse (Phillips 2001), with kelp Phyllospora comosa (C. Agardh) and

Ecklonia radiata (C. Agardh) dominant in shallower waters.

SEAFLOOR INFORMATION ACQUIS IT ION AND

PROCESSING

Seafloor structure variables were derived from MBES data sets. The

MBES data were acquired using a hull-mounted Reson Seabat 8101

(240 kHz) MBES over a series of field campaigns between November

2005 and December 2007 (Ierodiaconou et al. 2007b). Positioning was

achieved using a real-time differential GPS (�0�30 m horizontal accu-

racy) with an integrated Positioning andOrientation system forMarine

Vessels, to correct for heave, pitch, roll and yaw (�0�02° accuracy)

(Monk et al. 2011). Survey lines were spaced to ensure a 50% overlap

of sonar coverage, allowing erroneous data points to be cleaned. Data

were corrected to lowest astronomical tide datum, and a bathymetric

grid at 1-m cell resolution (�12�5 mm vertical accuracy) was generated

(a detailed description of theMBES data processing is provided in Rat-

tray et al. 2009). TheMBESbathymetry and backscatter data sets were

resampled to a 2�5-m cell resolution for analysis.

A range of variables were generated from the bathymetry to further

characterize local seafloor structure variation (Table 1). Each of the

variables selected was expected to influence kelp distribution, as studies

have shown they can accurately delineate suitable habitat in coastal

marine ecosystems (Ierodiaconou et al. 2007a, 2011; Rattray et al.
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2009, 2013). Variables were calculated in ARCGIS 10.1 (ESRI) using an

analysis window of 3 9 3 cells. Backscatter and slope were removed

following the test for correlated variables (Spearman’s q > 0�7,

Appendix S1, Supporting information), and the remaining variables

were included in all models (Table 1).

In addition to the seafloor structure variables, spatial variables of

longitude and latitude were included as predictor variables to account

for regional trends in spatial variation (Borcard, Legendre & Drapeau

1992; Legendre 1993; Guisan&Thuiller 2005) (Appendix S1).

OBSERVATION DATA

The kelp species E. radiatawas selected for modelling as it is dominant

in the study area. It is known to exhibit a strong relationship with sea-

floor characteristics (Rattray et al. 2009; Ierodiaconou et al. 2011) and

was readily discernible in the video data, thus reducing potential effects

of imperfect detection (Monk et al. 2012; Monk 2014). E. radiata was

surveyed using towed video transects. Following a visual inspection of

the bathymetry, 45 towed video transects covering 176 km of seafloor

were performed, predominantly perpendicular to the coast, to

encompass themain physical gradients.

Video data were collected using a remotely operated vehicle

(VideoRay Pro 3, VideoRay LLC, Phoenixville, PA, USA.) towed at

0�5–1 ms�1 (1–2 km). Through the use of a winch system and real-time

video, the camera was maintained ~2 m from seafloor, providing con-

tinuous coverage in a field of view of ~3–5 m along each transect. An

ultra-short baseline transponder was attached to the video unit to allow

three-dimensional positioning of the unit relative to the vessel-mounted

differential GPS (for further details seeRattray et al. 2014).

Video data were collected across three survey periods between Jan-

uary 2006 andMarch 2007. Video samples were classified to the Victo-

rian Towed Video Classification Program (Ierodiaconou et al. 2007b).

This scored video data were cleaned to remove invalid frames due to

Fig. 1. Study site location.

Table 1. Derivative products from MBES, retained after correlation

test

Variable Description Software

Aspect

(eastness and

northness)

Depicts the steepest down-slope

direction from each cell relative

to the neighbouring cells. A

trigonometric transformation

(Roberts 1986) was applied to

overcome the inherent

circularity. A proxy for

exposure

Spatial

Analyst tool–

ARCGIS 10.1

Bathymetry Provides ameasure of depth. A

proxy for exposure and light

penetration

Fugro Starfix

suite

Maximum

Curvature

Provides the greatest curve of

either the profile or plan

convexity relative to the

neighbouring cells. Ameasure

of structural complexity and

surface area

Spatial Analyst

tool– ARCGIS

10.1

Rugosity Provides the ratio of surface area

to planar areawithin the

analysis window. Ameasure of

structural complexity and

surface area

Benthic Terrain

Modeller–

ARCGIS 10.1

Latitude A spatial component included as

a proxy for correlated yet

unmeasured variables

(Legendre 1993)

ARCGIS 10.1

Longitude A spatial component included as

a proxy for correlated yet

unmeasured variables

(Legendre 1993)

ARCGIS 10.1

MBES,multibeam echosounder.
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poor visibility, and then, the presence/absence of E. radiata was

extracted.

Autocorrelation was anticipated due to the use of continuous video

data. To determine at what distance autocorrelation was influencing

model fit, generalized additive models (GAMs) were produced using

the full data set and autocorrelation in the residuals was interrogated

(Dormann et al. 2007). Following assessment of autocorrelation of

model residuals (Appendix S2), ground truth samples were thinned by

applying a minimum distance of 150 m between samples to reduce this

effect. While statistical methods are available to control for autocorre-

lation rather than delete valuable data (Dormann et al. 2007), in this

case data thinning was selected so as to allow a more commonly used

modelling approach to be applied. Further, after thinning, our data still

contained a total observation data set of 896 points.

DATA TREATMENT

Sample size

Bootstrap sampling with replacement was performed to provide

multiple smaller replicate data sets from the original complete data

set of 896 points. For each replicate, a random sample of 200

points was set aside as a testing sample. A training sample (points

used to build the prediction model) was then randomly selected

from the remaining points. This division of sample data was

repeated to create ten replicates for each sample size. Training sam-

ple sizes were made up of 100, 200 and 400 points, with all models

tested against a sample size of 200 points.

Simulated locational uncertainty

Six levels of locational uncertainty were simulated in the occurrence

data by moving points randomly from their original location. Loca-

tional uncertainty was simulated by creating a buffer around each

point location representing the simulated error, then randomly gen-

erating a point within that circle. Where sample points occurred

near the study region’s boundaries, the locational uncertainty buffer

was clipped to this boundary to restrict sample movement to within

the study site. This meant that each point was individually moved

in a random direction, by a random distance up to the potential

propagated error. The assumption of a circular radius of uncer-

tainty is generally reasonable (Visscher 2006; Graham et al. 2008).

In addition to control data sets, where point locations were unper-

turbed, the error treatments were 5, 25, 50, 200 and 400 m. The

magnitude of error simulated in this study reflects the possible

range of error that may be occurring during various sample tech-

niques. While the smallest error margins are comparable to what

might occur using modern positioning systems (Rattray et al. 2014),

locational uncertainty up to 400 m has been reported in historical

data sets, such as where the Decca navigation system was used for

positioning (Last 1992; Kubicki & Diesing 2006).

MODELLING APPROACH

Generalized additive models were used to fit presence/absence data to

the seafloor variables for each treatment and replicate. GAMs are like-

lihood-based regression models, fitting nonparametric, data-defined

smoothers to create nonlinear functions (Hastie & Tibshirani 1986).

GAMs have been used for SDMs and have been shown to perform rea-

sonably well compared with other presence–absence methods (Elith

et al. 2006). The GAMs were implemented in R using the package

‘mgcv’ (Wood & Augustin 2002) using default settings with smoothing

parameters selected using restricted maximum likelihood (Venables &

Ripley 2002). A log-transformation was applied to rugosity. To main-

tain the aim of parsimonious model building, no interaction terms

between variables were included in the models (Mellert et al. 2011).

Models were then output as continuous suitability maps and also

reclassified into Boolean (presence/absence) predictions using the

average probability/suitability approach (Liu et al. 2005).

MODEL EVALUATION

A comprehensive evaluation of how locational uncertainty and sample

size affect habitat suitability models requires the comparison of model

interpretation as well as model performance (e.g. Barry & Elith 2006).

Therefore, models were compared in terms of performance and model

prediction.

Model performance

Models were assessed using the corresponding evaluation data with-

held for each replicate. Since no single method fully summarizes

model performance, models were evaluated with six recommended

methods (Fielding & Bell 1997; Lobo, Jim�enez-valverde & Real

2008). Metrics included the following: percentage correctly classified

(PCC), correctly predicted positive fraction (sensitivity), correctly

predicted negative fraction (specificity), area under curve (AUC) of

the receiver operating characteristic (Fielding & Bell 1997) and

kappa (Cohen 1960). AUC was calculated from the continuous

suitability map while the threshold-dependent performance metrics

(PCC, sensitivity, specificity and kappa) were calculated from the

Boolean prediction. Explained deviance (d2) of each model was also

compared as a measure of the training data closeness of fit, taking

into account the number of degrees of freedom (Engler, Guisan &

Rechsteiner 2004).

As this was a simulation study, it was deemed inappropriate to per-

form hypothesis tests to examine statistical significance. In simulation

studies where models are known to be different, a frequentist approach

using P-values merely indicates whether a sufficient number of simula-

tions were run to detect an effect (White et al. 2014). Rather, the focus

is on themagnitude of variation between simulations.

Model prediction

Each Boolean prediction was compared with the Boolean prediction

from a model derived from the complete data set of 896 points. Here,

we assume that the model based on the complete data set is closest to

the true distribution given the limitations of the available data and

method (Hernandez et al. 2006). From this, a confusion matrix com-

paring the treatment and complete models’ predicted presence/absence

was calculated. Two measures of similarity of distribution were calcu-

lated from this confusion matrix based on the Pontius Jr, Shusas &

McEachern (2004) matrix for detecting changes in land use. The area

predicted as suitable by both models was calculated as a percentage of

the total suitable area predicted from the complete data set model

(hereafter termed ‘presence agreement’). This measure shows the simi-

larity between predictions when locational uncertainty is included. The

net change in total suitable area (as%) was also calculated, to measure

any systematic gain or loss in predicted area resulting from including

locational uncertainty in the data set.
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Results

INFLUENCE OF LOCATIONAL UNCERTAINTY AND

SAMPLE SIZE ON MODEL PERFORMANCE

Locational uncertainty had limited effect on model perfor-

mance (Fig. 2). Boxplots forAUC, PCC, sensitivity, specificity

and kappa show that models of the same sample size derived

from data containing locational error performed as well as

those containing no error. While there is some variation in

measuredmodel performance as a result of incorporating loca-

tional error, there does not appear to be a general trend, and

even at 400 m, the effect was minimal. The exception was

explained deviance which decreased relative to the control

when simulated error was ≥200 m.

The effects of sample size on model performance were more

pronounced, with larger sample sizes producing more accurate

models (Fig. 2). In addition, there was less variation in model

performance within treatment observed when sample size was

large. This trend was observed for AUC, kappa, PCC and sen-

sitivity. Nevertheless, the effect was small and boxplots show

overlap in measured accuracy between sample sizes. Explained

deviance and specificity were the exceptions, with little or no

discernible change observedwith increasing sample size.

INFLUENCE OF LOCATIONAL UNCERTAINTY AND

SAMPLE SIZE ON MODEL INTERPRETATION

Although locational uncertainty had a limited effect on mea-

sured performance, the relative influence of the predictor vari-

ables differed between models. Generally, the major predictor

variables for all models were bathymetry, rugosity, longitude

and latitude (Appendix S3). However, the response curves of

fitted coefficients varied as a result of incorporating locational

uncertainty into the data (Fig. 3). For some variables, only the

magnitude of the relationship changed as a result of locational

uncertainty (Fig. 3aii, bii). Other variables showed more note-

worthy differences with the relationship along the environmen-

tal gradient changing altogether (Fig. 3ai, bi). This was

supported by analysis of rank importance of predictor vari-

ables, which observed changes in variable importance as a

result of uncertainty treatments, particularly when sample size

was small (Appendices S3 and S4).

INFLUENCE OF LOCATIONAL UNCERTAINTY AND

SAMPLE SIZE ON MODEL PREDICTIONS

Despite similar model performance, differences in model pre-

dictions were observed between simulated uncertainty

Fig. 2. Model performance measured by (a) area under curve (AUC), (b) percentage correctly classified (PCC), (c) sensitivity, (d) specificity (e)

kappa and (f) explained deviance for all simulated error treatments and sample sizes. Boxplots indicate variation for the 10 replicates for each treat-

ment, grouped by sample size.Model performancewas evaluatedwith the same sample size of evaluation data for each subset, allowing comparisons

between subsets. Circles indicate outliers.
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treatments and models containing no simulated locational

error (Fig. 4). Models generated from spatially degraded data

200 m or greater were observed to predict a larger area of suit-

able habitat compared with predictions from models contain-

ing no simulated locational error (Fig. 5b). However, when

locational error was ≤50 m, there was little or no effect. In

addition, there was no discernible effect of uncertainty treat-

ments on presence agreement (Fig. 5a). Generally, locational

uncertainty resulted in subtle differences in predictions for

large sample sizes, such as the interface between reef and sedi-

ment (Fig. 4a,b). Predictions developed from smaller training

samples showed a greater degree of variation as a result of

locational uncertainty with differences visible at both local and

regional scales (Fig. 4c,d).

The effects of sample size on model predictions were more

noticeable. As sample size decreased, increased variation

between replicates was observed in the presence agreement and

extent of suitable habitat predicted (Fig. 5a,b). Generally, the

area of presence agreement decreased with decreasing sample

sizes (Fig. 5a). Similarly, differences in the total area predicted

as suitable were also observed between sample sizes (Fig. 5b),

with a greater area predicted as suitable when sample sizes were

smaller.

Discussion

The precision in the spatial locality of occurrence data is

thought to be of critical importance for the development of

SDMs (Naimi et al. 2011). The occurrence data used to fit

such models are known to lead to differences in SDM pre-

dictions, thus expected to affect their performance (Guisan

et al. 2007; Osborne & Leit~ao 2009). However, as shown

here, the importance of locational uncertainty is often

dwarfed when compared with other factors affecting SDM

predictions (i.e. sample size). Indeed, variation in locational

uncertainty had relatively small effects on the performance

and the ecological interpretations based on SDMs, particu-

larly at uncertainty scales ≤50 m. This may in part be

explained by spatial autocorrelation. Original assessments

characterized spatial autocorrelation in the presence/absence

of E. radiata to be present up to a distance of 150 m. Spa-

tial dependence implies a higher similarity for any two data

points which are <150 m apart. It follows logically that

moving one data point any distance less than this from the

true location will effectively remain in the same sample and

have limited effect on the model.

Model performance consistently increased with sample size

for all data sets. However, the effects of locational uncertainty

on model performance were less evident, with boxplots only

indicating that certain measures were affected (PCC, speci-

ficity, kappa and explained deviance), but not others (AUC

and sensitivity). Further, when locational uncertainty was on

the scales expected with current positioning systems (Rattray

et al. 2014), no discernible effect of model performance was

observed. These findings therefore support those of Graham

et al. (2008) and Osborne & Leit~ao (2009), that occurrence

data containing locational uncertainty can provide high-per-

forming models. However, it may be worth considering the

effects of locational uncertainty when errors are expected to be

in the range of 200–400 m, such as in historical data sets posi-

tioned using outdated technologies. While model performance

was generally robust to locational error of this magnitude, sug-

gesting the suitability of using data sets known to contain

error, explained deviance was observed to decrease andmodels

containing error tended to overestimate the distribution of

suitable habitat.

Fig. 3. Example of fitted coefficients for

bathymetry and rugosity for the same repli-

cate, from the 200 sample size, with and with-

out locational uncertainty incorporated into

the data. (ai and aii) Control data. (bi and bii)

Data incorporating 400 m error.
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An important distinction between the current and most pre-

vious studies is the finding that locational uncertainty has the

potential to affect the relative influence of predictor variables

and the predictions from these models, which was pronounced

when sample sizes were small. This has implications for model

inference, as distributions generated from data sets containing

fine-scale locational uncertainty may differ as a result of the

errors. These results are supported by Osborne & Leit~ao

(2009), suggesting that while useful predictions may be gener-

ated from data containing locational uncertainty, ecological

interpretations must consider the uncertainty introduced

through that error. This is particularly evident when the scale

of concern is small, such as when areas within the study site are

of particular importance, or when interpreting factors that

may influence distribution.

This study found that with increasing sample size, model

performance increased and variation in predictive accuracy

decreased. Larger sample sizes performed better across all per-

formance metrics except specificity and explained deviance,

which showed no noticeable change. This link between sample

size and model performance is well established in the existing

literature (Pearce & Ferrier 2000; Hernandez et al. 2006; Wisz

et al. 2008). However, with the exception of Hernandez et al.

(2006), these studies have not compared how sample size

affects the spatial prediction from the models. Similar to Her-

nandez et al. (2006), spatial predictions compared between

sample sizes found that as sample size increased, there was

greater spatial similarity to the complete data set model. The

results also highlighted that smaller sample sizes tend to predict

larger regions of suitable habitat. However, variation in spatial

predictions is also increased with smaller sample sizes. This

supports the expectation that a greater number of samples pro-

vide a more representative sample of the environmental space

and are therefore likely to more accurately define the parame-

ters (Carroll & Pearson 1998). While model performance has

typically been investigated relative to sample sizes <100 (Her-

nandez et al. 2006; Wisz et al. 2008), this study found that

samples sizes as large as 400 points differed in model perfor-

mance, if only marginally. Despite the observed decrease in

model performance, none of the models would be rejected on

this basis (according to thresholds for satisfactory models

based on AUC – Swets 1988; Pearce & Ferrier 2000; Graham

et al. 2008).

This study demonstrates the need to not only consider

model performance but also the spatial predictions when com-

paring different models. Numerous studies have compared

Fig. 4. Examples of the predicted distributions for different simulated errors and sample sizes overlayed on the complete data set model. Differences

are exemplified by close-upmaps (in top left corner). Absent indicates unsuitable from bothmodels, present; suitable habitat from bothmodels, loss;

complete data set model predicts suitable but subsampled and/or simulated error predicts unsuitable, gain; complete data set model predicts unsuit-

able but subsampled and/or simulated error predicts suitable, grey; coastline. Percentage value indicates the change in presence area (net change) pre-

dicted as suitable for each treatment relative to the complete data set model. A 1% change in total presence area equates to c. 1�4 km2 of E. radiata

suitable habitat not predicted using degraded data.
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modelling approaches based only on performance metrics

(Segurado & Ara�ujo 2004; Elith et al. 2006; Tsoar et al. 2007;

Graham et al. 2008), yet models of similar performance can

produce very different geographic predictions (Hernandez

et al. 2006; Monk et al. 2012). Here, models classified the

majority of habitat accurately regardless of sample size or

uncertainty treatment (AUC > 0�8). Despite high perfor-

mance, variationwas observed between geographic predictions

particularly at the fringe of optimal habitat (i.e. for E. radiata

the transition from reef to sediment). For example, an increase

in predicted suitable habitat of 15�0% (Fig. 4b) may be reliable

from a modelling perspective; however, in real terms for this

study area, this equates to an over prediction of c. 21 km2 of

suitable habitat due to the use of degraded data. The rank

importance of predictor variables and fitted coefficients tell a

similar story. Variation in the relative importance of predictor

variables and fitted coefficients is present between sample sizes

and uncertainty treatment groups. Thus, while predictive suc-

cess may be retained, the ecological interpretation of the fac-

tors determining a species distribution would differ depending

on sample size and uncertainty treatment. The value of these

models is therefore dependent on their desired purpose. While

they may provide useful information across the site as a whole,

interpretation of ecological processes or localized distributions,

such as areas of fringe habitat, can be misleading (Graham

et al. 2008; Johnson & Gillingham 2008; Osborne & Leit~ao

2009).

The results of this study have a number of implications

for future species distribution modelling at fine scales. The

most obvious recommendation is the value of increasing

sample size where available, to better inform models. This

must be balanced by data availability and the time-consum-

ing process of its accurate classification (Rattray et al. 2014).

In some cases, the benefit of increasing spatial accuracy may

be outweighed by the costs and requirements of an improved

positioning system (Rattray et al. 2014). However, this study

suggests it may be more beneficial to focus on increasing

survey effort rather than further reducing locational uncer-

tainty when building fine-scale SDMs. Researchers must

determine the acceptable level of locational uncertainty

within their data based on the aims of their study and tools

available, allowing them to address these during the plan-

ning stage (Rattray et al. 2014). Understanding how loca-

tional uncertainty can affect the interpretation of predicted

distributions may determine the necessary scale for mod-

elling a particular species (Guisan et al. 2007; Osborne &

Leit~ao 2009).

In summary, this study has explored how locational error in

occurrence data influences model performance and spatial pre-

dictions in fine-scale SDMs. By subsampling and spatially

degrading occurrence data beyond what is reasonable, this

study evaluated the effects of locational error across multiple

sample sizes. The results indicated that while sample size affects

model performance, the effects of fine-scale locational error

were generally minimal regardless of sample size. This is

encouraging as it indicates that accurate fine-scale models can

be generated from data positioned using imprecise methods,

such as historical data sets. However, while the effects of loca-

tional error on measures of model performance were small,

there was variation in variable importance use and spatial pre-

dictions from the models. This highlights the need to consider

predictions across geographic space rather than model perfor-

mance alone. These findings are important for conservation

managers as they highlight the inherent variation between

equally high performing distribution models, and the subse-

quent restrictions on ecological interpretations.

Fig. 5. (a) Boxplot of the presence agreement

between subsampled and simulated error

treatments compared with the complete data

set model. Columns indicate the variation

within each treatment, grouped by sample

size. A 1% decrease in presence agreement

equates to c. 1�4 km2 of E. radiata habitat not

predicted using degraded data. (b) Boxplot

showing interquartile ranges of net change in

total presence area for subsampling and error

simulation relative to the complete data set

model. Circles indicate outliers.
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