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In previous research (Hu & Bentler, 1998, 1999), 2 conclusions were drawn: stan-
dardized root mean squared residual (SRMR) was the most sensitive to misspecified
factor covariances, and a group of other fit indexes were most sensitive to mis-
specified factor loadings. Based on these findings, a 2-index strategy—that is, SRMR
coupled with another index—was proposed in model fit assessment to detect poten-
tial misspecification in both the structural and measurement model parameters.
Based on our reasoning and empirical work presented in this article, we conclude that
SRMR is not necessarily most sensitive to misspecified factor covariances (structural
model misspecification), the group of indexes (TLI, BL89, RNI, CFI, Gamma hat,
Mc, or RMSEA) are not necessarily more sensitive to misspecified factor loadings
(measurement model misspecification), and the rationale for the 2-index presenta-
tion strategy appears to have questionable validity.

The assessment of model fit in structural equation modeling (SEM) has long been
a thorny issue in SEM application. As a result, the issues related to model fit as-
sessment in SEM analysis have been at the forefront of theoretical and empirical
research over the years. Research in this area has focused on different issues con-
cerning the use and interpretation of model fit indexes. Studies typically examined
the performance characteristics of different fit indexes under different data condi-
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tions; for example, sample size, estimation methods, and model misspecification
(e.g., Fan, Thompson, & Wang, 1999; Fan & Wang, 1998; Gerbing & Anderson,
1993; Marsh, Balla, & Hau, 1996). More recently, research shifted to the search for
empirically based cutoff criteria for model fit indexes, with the intention of provid-
ing more definitive guidelines for evaluating model fit (Enders & Finney, 2003; Hu
& Bentler, 1998, 1999; Yu & Muthén, 2002).

TYPES OF MISSPECIFICATION
AND TWO-INDEX STRATEGY

As of now, the most influential studies in this line of research are those by Hu and
Bentler (1998, 1999). Their studies concluded that different fit indexes are differ-
entially sensitive to either measurement model misspecification (e.g., a mis-
specified factor loading) or structural model misspecification (e.g., a misspecified
covariance between two factors; Hu & Bentler, 1998). More specifically, two con-
clusions were drawn: (a) standardized root mean squared residual (SRMR) was the
most sensitive to the misspecified factor covariances (misspecified structural
model components), and (b) a group of other fit indexes (Tucker–Lewis Index
[TLI], Bollen’s delta [BL89], Relative Centrality Index [RNI], Comparative Fit In-
dex [CFI], Gamma hat [Gamma], McDonald’s Centrality Index [Mc], and Root
Mean Squared Error of Approximation [RMSEA]) were most sensitive to
misspecified factor loadings (misspecified measurement model components).

These conclusions naturally led to the proposal (Hu & Bentler, 1998) of a
two-index strategy for model fit assessment: SRMR is always needed because of
its sensitivity to misspecified structural model components, and another fit index
(TLI, BL89, RNI, CFI, Gamma, Mc, or RMSEA) is also needed because of its sen-
sitivity to misspecified measurement model components. Subsequently, some em-
pirically based cutoff criteria for fit indexes were proposed (Hu & Bentler, 1999) in
model fit assessment. The two-index strategy and the proposed cutoff criteria for
fit indexes in model fit assessment have been gaining popularity in SEM applica-
tions (e.g., Corten et al., 2002; DiStefano, 2002; Glaser, 2001, 2002; Moulder &
Algina, 2002; Pomplun & Omar, 2001).

These new developments on SEM model fit assessment have broken new
ground. However, a close examination of these pioneering studies reveals that two
important issues stand out: (a) The severity of model misspecification has not been
quantified nor adequately controlled, making the internal validity of the conclu-
sions from these studies questionable; and (b) there is an obvious lack of diversity
in terms of the models and model parameters examined, raising the concern about
the external validity (generalizability) of these conclusions.

To extend this line of research, Yu and Muthén (2002) incorporated categorical
variables in their SEM models. Enders and Finney (2003) considered some impor-
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tant issues such as model complexity, choice of population parameter values, and
the issue of differential power for misspecified SEM models. The findings from
Enders and Finney suggest that the proposed cutoff criteria had limited generaliza-
bility, and did not fare well under different model and data conditions. More re-
cently, Marsh, Hau, and Wen (2004) provided more detailed comments and analy-
ses on the utility of using the proposed cutoff criteria in model fit assessment.
Based on both theoretical and empirical grounds, Marsh, Hau, and Wen high-
lighted some important issues and problems in the practice of using the proposed
cutoff criteria in model fit assessment within the framework of hypothesis testing.

SEVERITY OF MODEL MISSPECIFICATION

One critical issue that has not been adequately addressed in this area of research is
severity (degree) of model misspecification. As discussed in Fan et al. (1999) and
Fan and Wang (1998), model misspecification is a difficult issue, both because of
the ambiguity and lack of efforts in quantifying the severity of misspecification,
and because of the variety of forms in which model misspecification can occur. It is
typically not very useful to just explain what has been misspecified in a model
(e.g., a factor loading is fixed to zero). It is much more important and informative
to specify the severity of misspecification. In other words, misspecification condi-
tions should be quantified so that different misspecified models (e.g., a model with
factor loadings misspecified, and a model with factor covariance misspecified) can
be compared in terms of severity of misspecification. Unfortunately, this issue is
not typically addressed, except in Enders and Finney’s (2003) study in which the
statistical power for rejecting the misspecified models was considered. This issue
has important implications that are discussed later.

When we evaluate the sensitivity of fit indexes to different types of mis-
specification, it is logical that severity of misspecification should be considered. It
appears that the most sensible approach is to use the noncentrality parameter (i.e.,
noncentral χ2), and its associated statistical power for rejecting the misspecified
model, to describe the severity of misspecification. The noncentrality parameter
describes the amount of shift from central to noncentral χ2 distributions due to
model misspecification, regardless of the types of misspecification (e.g., mis-
specification in measurement vs. in structural components in a model).

The noncentrality parameter, together with its associated degrees of freedom,
determines the statistical power for statistically rejecting the misspecified model.
As a result, the statistical power for rejecting the misspecified model is blind to the
types of model misspecification. It is thus reasonable to say that, if the power for
rejecting two different misspecified models is comparable, the severity of mis-
specification for the two misspecified models should be considered comparable.
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RATIONALE OF THE TWO-INDEX STRATEGY

Hu and Bentler (1998) considered two confirmatory factor analysis (CFA) models
with different types of misspecifications, as shown in Figure 1. These two models
were named simple (Figure 1a) and complex (Figure 1b) models, respectively.

In the simple model, misspecification occurred when the covariance(s) among
the latent factors were misspecified to be zeros. There were two levels of mis-
specified simple model: In the first, one factor covariance was misspecified to be 0
(s12 = 0 in Figure 1a); in the second, two covariances were misspecified to be 0
(both s12 = 0 and s13 = 0 in Figure 1a). In the complex model, the factor loadings
(measurement model components) were misspecified. Again, there were two lev-
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FIGURE 1 Simple and complex models.



els of misspecified complex model: In the first, one pattern coefficient was
misspecified to be 0 (λ13 = 0 in Figure 1b); in the second, two coefficients were
misspecified to be 0 (both λ13 = 0 and λ42 = 0 in Figure 1b).

Based on Monte Carlo simulation work that involved multiple design factors
(e.g., model misspecification, sample size, estimation method, data distribution
shape), two observations were made. First, the correlations among 15 different fit
indexes (Hu & Bentler, 1998, Table 3) suggested two main clusters of fit indexes,
with Normed Fit Index (NFI), Fit Index by Bollen (BL86; 1986), Goodness-of-Fit
Index (GFI), Adjusted Goodness-of-Fit Index (AGFI), Rescaled Akaike’s Infor-
mation Criterion (CAK), and a Cross-validation Index (CK) being in one group,
and TLI, BL89, RNI, CFI, Mc, and RMSEA forming another group. SRMR, how-
ever, was the least similar to either of these two clusters of fit indexes. This obser-
vation suggested a multifactor view for the fit indexes.

Second, the sensitivity of fit indexes to the two types of misspecification
(misspecified factor covariances vs. misspecified factor loadings) was compared.
The sensitivity of a fit index to model misspecification was quantified as the per-
centage of the total variation of a fit index attributable to the design factor of model
misspecification. Quantitatively, percentage of variation attributable to a design
factor is the η2 (η2 =Sum of Squares source / Sum of Squares total) derived from an
analysis of variance (ANOVA) model. For a fit index, a large η2 attributable to the
design factor of model misspecification suggests high sensitivity of the index to
model misspecification conditions. This approach is sensible, and it has been used
by other researchers studying similar issues (e.g., Fan & Wang, 1998).

Hu and Bentler (1998) concluded that (a) SRMR was the most sensitive to the
condition of misspecified factor covariances (simple model), and (b) a group of
other fit indexes (TLI, BL89, RNI, CFI, Gamma, Mc, and RMSEA) were most
sensitive to the condition of misspecified factor loadings (complex model). Table 1
reproduces a small portion of a table in Hu and Bentler (1998, Table 3, on p. 439) to
illustrate these findings.

Table 1 shows that, for the simple model (misspecified factor covariances), the η2

for SRMR (.914) is substantially larger than that (.653) for the complex model
(misspecified factor loadings). On the other hand, for a group of other fit indexes
(TLI, BL89, RNI, CFI, Gamma, Mc, and RMSEA), the η2s for the complex model
(misspecified factor loadings) are much larger than those for the simple model
(misspecified factor covariance). These findings led to the conclusions that (a)
SRMR is the most sensitive to misspecified factor covariances (structural model
misspecification), (b) a group of other fit indexes are most sensitive to misspecified
factor loadings (measurement model misspecification), and (c) to detect
misspecification in both the structural and measurement model components, a
two-index strategy should be used: SRMR coupled with another index (TLI, BL89,
RNI, CFI, Gamma, Mc, or RMSEA). Subsequently, based on simulation work in-
volving the same models and model misspecification conditions (see Figure 1), cut-
off criteria for these indexes were proposed (Hu & Bentler, 1999).
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UNRESOLVED ISSUES FOR
THE TWO-INDEX STRATEGY

In the studies already reviewed, the severity of model misspecification was not
controlled. As a result, the types of misspecification implemented for the simple
and complex models (i.e., a misspecified factor loading vs. a misspecified factor
covariance) might be confounded with the severity of model misspecification, and
such confounding could have compromised the validity of the conclusions already
discussed. To explore this issue, we examined the severity of misspecification for
the simple and complex models as implemented in Hu and Bentler (1998), by fit-
ting the misspecified models to the respective population covariance matrices.
Population covariance matrices were derived from the model parameters (Σ = ΛX

ΦΛX' + θδ). Figure 2 presents the original model parameters (Hu & Bentler, 1998),
and the information about the severity of misspecification for the two types of
misspecified models (the simple and complex models).
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TABLE 1
Partially Reproduced Hu and Bentler (1998, Table 3, p. 439) Data: η2

Attributable to Model Misspecification for Simple and Complex Models

Misspecification

(Other Factors) Simple Complex (Interactions)

NFI … .151 .548 …
BL86 (Rho1) … .143 .534 …
TLIa … .315 .748 …
BL89 (Delta)a … .330 .763 …
RNIa … .326 .759 …
CFIa … .321 .759 …
GFI … .101 .471 …
AGFI … .094 .454 …
Gamma hata … .309 .743 …
CAK … .061 .301 …
CK … .057 .286 …
Mc (Centrality)a … .339 .766 …
CN … .221 .256 …
SRMRb … .914 .653 …
RMSEAa … .466 .763 …

Note. NFI = Normed Fit Index; BL86 = Bollen’s Fit Index; TLI = Tucker–Lewis Index; BL89 =
Bollen’s delta; RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; GFI = Good-
ness-of-Fit Index; AGFI = Adjusted Goodness-of-Fit Index; CAK = Rescaled Akaike’s Information
Criterion; CK = Cross-validation Index; Mc = McDonald’s Centrality Index; CN = Hoelter’s Critical N;
SRMR = Standardized Root Mean Squared Residual; RMSEA = Root Mean Squared Error of Approxi-
mation.

aMost sensitive to misspecified factor loadings (complex model). bMost sensitive to misspecified
factor covariances (“simple” model).
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“Simple” Model Parameters:

“Complex” Model Parameters:

Non-comparable Severity of Misspecification for Simple and Complex Models
(N = 100)

χ2 df Powera

Simple model (factor covariances misspecified)
One misspecified factor covariance 20.83 88 0.43
Two misspecified factor covariances 28.33 89 0.61
Complex model (factor pattern coefficients misspecified)
One misspecified factor loading 40.68 85 0.84
Two misspecified factor loadings 75.11 86 0.99

aPower estimation is based on Satorra-Saris method (Satorra & Saris, 1993; Saris & Satorra,
1983).

FIGURE 2 Original model parameters in Hu and Bentler (1998) and severity of misspeci-
fication.
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The χ2s in the table embedded in Figure 2 are actually noncentrality parameters
for the misspecified models. For a misspecified model fitted to the population
covariance matrix, the nonzero χ2 value represents the shift from central χ2 to
noncentral χ2; that is, the noncentrality parameter. Figure 2 shows that the severity
of model misspecification is different for the simple and complex models. Based
on the estimated statistical power (Saris & Satorra, 1993; Satorra & Saris, 1983)
for rejecting the misspecified models, misspecification is less severe for the
misspecified simple models (for α = .05, power = .43 and .61, respectively, for re-
jecting the two misspecified simple models) than for the misspecified complex
models (for α = .05, power = .84 and .99, respectively, for rejecting the two
misspecified complex models). This indicates that severity of misspecification is
confounded with types of misspecification. Here and elsewhere in the article, we
use the estimated noncentrality and its associated statistical power to operationally
define severity of misspecification. This approach was used primarily because we
are not aware of a better approach for this purpose. We are, however, open to other
suggestions or alternative approaches.

The information in Figure 2 indicates that it may not be the types of mis-
specification (misspecified factor covariances vs. factor loadings) that contributed
to the results observed by Hu and Bentler (1998; see Table 1), but rather, the sever-
ity of misspecification. The confounding between types of misspecification and
severity of misspecification may have undermined the validity of the previous con-
clusion that some indexes (TLI, BL89, RNI, CFI, Gamma, Mc, and RMSEA) were
more sensitive to misspecified factor loadings, whereas SRMR was more sensitive
to misspecified factor covariances.

PURPOSE AND SCOPE OF THE STUDY

This study intended to evaluate the validity of the two-index strategy by partially
replicating the study by Hu and Bentler (1998). The critical issue in this replication
design was to control the severity of model misspecification. The findings from the
previous studies (Hu & Bentler, 1998, 1999) were not based on appropriate study
design; consequently, the confounding of severity of misspecification and types of
misspecification might have led to incorrect conclusions. Before the proposed
two-index strategy and the related cutoff criterion of fit indexes can be embraced
by SEM researchers in general, the issues raised in this article should be addressed.

It is important to point out that this study was limited to the evaluation of the ra-
tionale of the two-index strategy, but there was no attempt to study the implemen-
tation of the two-index strategy in the form of using cutoff values of fit indexes in
model fit assessment. In this regard, Marsh et al. (2004) recently provided detailed
comments and analyses on the utility of using the proposed cutoff criteria in SEM
model fit assessment, and they highlighted some issues and problems in such prac-
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tice. Although the article by Marsh et al. may appear to be similar to this article, the
issues discussed here are actually different from those in Marsh et al. Because the
scope of this study is much narrower compared with those by Hu and Bentler
(1998, 1999), and many issues addressed by Hu and Bentler were not studied in
this article, this study should not be considered a full replication of the Hu and
Bentler studies.

METHODS

Models and Model Misspecification

A Monte Carlo simulation experiment was conducted to study the issues previ-
ously discussed. The same two CFA models (simple and complex models; see Fig-
ure 1) as those in Hu and Bentler (1998, 1999) were used in this study, and the
misspecified components in the simple and the complex models were identical to
those in Hu and Bentler (1998, 1999). The purpose of this study requires that the
severity of misspecification for the simple and complex models be comparable. To
accomplish this, population model parameters were adjusted in such a way that the
misspecified simple (misspecified factor covariances) and the complex (mis-
specified factor loadings) models had comparable severity of misspecification. For
the purpose of providing a broader context for model misspecification, we created
two conditions of misspecifications: slight misspecification (Condition I) and
moderate misspecification (Condition II). Under each condition, there were two
levels of misspecification for the simple and the complex models, in the same man-
ner as shown in Figure 1, and the two levels of misspecification for the simple and
the complex models represented comparable degrees of misspecification.

The slight misspecification condition (Condition I) mirrors the degree of
misspecification for the original simple model in Hu and Bentler (1998), as shown
in Figure 2 . This condition was created by adjusting the complex model parameter
values in the �X matrix (factor pattern coefficients) such that the severity of
misspecification for the two misspecified complex models would be comparable to
the original misspecified simple models in Hu and Bentler (1998). The adjusted
complex model �X matrix is shown here (two underlined parameters, adjusted
down from the original parameter of 0.70; see original complex model in Figure 2
for comparison):
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Except for the parameter adjustments just shown, all other parameters are ex-
actly the same as those in Figure 2. The upper panel of Table 2 shows that, after
these adjustments in the �X matrix, the statistical power for rejecting the
misspecified simple and complex models is comparable.

Under the moderate misspecification condition (Condition II), the severity of
misspecification mirrors that of the original complex models in Hu and Bentler
(1998) in Figure 2. This condition was created by adjusting the simple model pa-
rameters in the � matrix (factor covariance matrix) such that the severity of
misspecification for the two misspecified simple models would be comparable to
the original misspecified complex models in Hu and Bentler (1998). The adjusted
simple model parameters in the � matrix are shown here (three underlined param-
eters, adjusted up from the original parameters of .50, .40, and .30, respectively;
see the original simple model parameters in Figure 2 for comparison):

Except for these parameter adjustments in the � matrix, all other parameters
are exactly the same as those in Figure 2. The lower panel of Table 2 shows that, af-
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TABLE 2
Two Misspecification Conditions With Comparable Severity

of Misspecification for Simple and Complex Models

χ2 df Powera

Misspecification condition I (slight misspecification)
Simple model (factor covariances misspecified)

One misspecified factor covariance 20.83 88 0.43
Two misspecified factor covariances 28.33 89 0.61

Complex model (pattern coefficients misspecified)
One misspecified factor loading 20.47 85 0.43
Two misspecified factor loadings 27.82 86 0.61

Misspecification condition II (moderate
misspecification)
Simple model (factor covariances misspecified)

One misspecified factor covariance 41.24 88 0.84
Two misspecified factor covariances 75.75 89 0.99

Complex model (pattern coefficients misspecified)
One misspecified factor loading 40.68 85 0.84
Two misspecified factor loadings 75.11 86 0.99

aPower estimation is based on Satorra–Saris method (Satorra & Saris, 1993; Saris & Satorra, 1983)
for N = 100.
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ter these adjustments made in the � matrix, the statistical power for rejecting the
misspecified simple and complex models is comparable.

Monte Carlo Simulation Design and Data Conditions

This study considered multivariate normal data only. Although other studies in this
area typically involved nonnormal data conditions, not enough is known about the
issues under study even when the data conditions are ideal. The decision was made
to evaluate these issues under ideal data conditions without the potential complica-
tion of nonnormal data conditions.

Both maximum likelihood (ML) and generalized least squares (GLS) estima-
tion methods were used, and these two estimation methods were implemented sep-
arately. Under each of the two misspecification conditions (slight vs. moderate),
there were two models (the simple model and the complex model), with each
model having three levels of misspecification (true model with no misspecifi-
cation, a model with one parameter misspecified, and a model with two parameters
misspecified). Ten sample size conditions were implemented, ranging from 150 to
1,500 at an interval of 150. Under each sample size condition, 500 random samples
(i.e., replications) were generated based on the population covariance matrices for
the simple and complex models, respectively. This Monte Carlo simulation design
called for the generation of 40,000 samples (2 × 2 × 2 × 10 × 500). Because each
sample dataset was fitted to each of three levels of misspecified model (simple and
complex models, respectively)—the true model, the model with one misspecified
parameter, and the model with two misspecified parameters (see Figure 1)—the to-
tal number of model fittings was 120,000 (40,000 × 3). Relevant model fit indexes
from each model fitting were saved for later analyses.

Data Source and Analyses

Based on the matrix decomposition procedures (Fan, Felsovalyi, Sivo, & Keenan,
2002; Kaiser & Dickman, 1962), data were simulated using a combination of SAS
macro, SAS BASE, and SAS PROC IML (Interactive Matrix Language). Model
fitting and estimation were implemented through SAS/PROC CALIS. For each
random sample fitted to the three levels of misspecified models, the appropriate fit
indexes were saved and accumulated for later analyses.

ANOVA was conducted for each fit index, with the fit index value as the de-
pendent variable, and sample size (10 levels) and model misspecification (three
levels: true model, one misspecified parameter, two misspecified parameters), and
the interaction between the two, as the independent variables. ANOVA was con-
ducted separately for the simple and complex models, separately for ML and GLS
estimation conditions, and separately for Condition I and Condition II of mis-
specification. The same 15 fit indexes used in Hu and Bentler (1998) were evalu-
ated. For each index, the Type III sum of squares attributable to each factor
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( )SSsource
III and the total sum of squares (SStotal) were used to compute

η η2 2: .source
source
III

total

SS

SS
� The η2 represents the percentage of variation in a fit index

attributable to a factor in the ANOVA model (e.g., sample size, model mis-
specification). As discussed previously, because a fit index is designed to detect
model misspecification, ideally a large proportion of variation in a fit index would
be attributable to misspecification conditions. In other words, the η2 value for a fit
index represents the sensitivity of the fit index to misspecified model conditions.

RESULTS AND DISCUSSION

The upper panel of Table 3 presents the correlations among the fit indexes for the
design conditions previously discussed. Hu and Bentler (1998) discussed that the
correlation pattern of the fit indexes suggested multiple clusters of fit indexes: NFI,
BL86, GFI, AGFI, CAK, and CK appeared to form a cluster, whereas TLI, BL89,
RNI, CFI, Mc, and RMSEA grouped into another cluster. SRMR was the least sim-
ilar to either of the two groups.

Examination of the upper panel of Table 3 shows that, after controlling for the se-
verity of model misspecification in this study, correlation patterns similar to those in
Hu and Bentler (1998) were also observed. SRMR showed lower correlations with
other fit indexes in general, although not nearly as low as those shown in Hu and
Bentler (1998, Table 3). This suggests the possible multifactor view for the fit in-
dexes. To evaluate this proposition, an exploratory factor analysis was conducted for
the fit indexes. Because CAK, CK, and CN are qualitatively different from other fit
indexes, and typically, they are not used as stand-alone indexes for evaluating model
fit, these three indexes were excluded in the exploratory factor analysis.

The results of the exploratory factor analysis indicated that a single factor ade-
quately explains the correlation pattern among the fit indexes (the upper panel of
Table 3). For the 12 fit indexes included in the analysis, the first three eigenvalues
(principal component extraction) were 10.64, 0.79, and 0.46, respectively, indicat-
ing that a single dominant factor was sufficient in accounting for the correlation
pattern among the fit indexes (89% of variance accounted for by this single factor).
Another extraction method (e.g., principal factor extraction) led to the same con-
clusion. So for the design conditions implemented in this study, it appears that
there is insufficient evidence to conclude that a multifactor view of the fit indexes
should be adopted. The transposed vector of the pattern coefficients (based on
principal component extraction) on this single factor is shown here:
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.95 .95 .98 .98 .98 .98 .91 .90 .98 .98 .72 .95
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TABLE 3
Correlations Among Fit Indexes (Maximum Likelihood Estimation)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Complex and Original Simple Models (Comparable Misspecification Severity)
1. NFI
2. BL86 (Rho1) 0.999
3. TLI 0.881 0.879
4. BL89 (Delta) 0.880 0.877 0.999
5. RNI 0.882 0.879 0.999 0.999
6. CFI 0.886 0.883 0.998 0.999 0.999
7. GFI 0.960 0.968 0.822 0.814 0.817 0.820
8. AGFI 0.952 0.960 0.813 0.804 0.807 0.810 0.999
9. Gamma hat 0.871 0.871 0.995 0.993 0.993 0.992 0.833 0.826

10. CAK –0.942 –0.947 –0.705 –0.700 –0.703 –0.709 –0.962 –0.960 –0.708
11. CK –0.934 –0.939 –0.685 –0.680 –0.684 –0.690 –0.956 –0.954 –0.689 0.999
12. Mc Centrality 0.870 0.869 0.994 0.992 0.992 0.990 0.833 0.826 0.999 –0.705 –0.685
13. CN 0.735 0.740 0.651 0.648 0.648 0.650 0.754 0.753 0.653 –0.688 –0.680 0.665
14. SRMR –0.682 –0.662 –0.708 –0.724 –0.723 –0.724 –0.504 –0.478 –0.667 0.496 0.484 –0.672 –0.540
15. RMSEA –0.850 –0.851 –0.958 –0.955 –0.955 –0.951 –0.829 –0.823 –0.963 0.691 0.673 –0.971 –0.761 0.677

(continued)
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TABLE 3 (Continued)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Complex and Original Simple Models (Comparable Misspecification Severity)
1. NFI
2. BL86 (Rho1) 0.999
3. TLI 0.920 0.918
4. BL89 (Delta) 0.919 0.916 0.999
5. RNI 0.921 0.918 0.999 0.999
6. CFI 0.923 0.920 0.998 0.999 0.999
7. GFI 0.962 0.952 0.898 0.906 0.907 0.910
8. AGFI 0.970 0.961 0.904 0.911 0.912 0.914 0.999
9. Gamma hat 0.913 0.912 0.996 0.995 0.995 0.994 0.899 0.905

10. CAK –0.947 –0.951 –0.763 –0.759 –0.762 –0.766 –0.892 –0.904 –0.763
11. CK –0.938 –0.943 –0.745 –0.741 –0.744 –0.749 –0.883 –0.895 –0.746 0.999
12. Mc Centrality 0.910 0.909 0.995 0.994 0.994 0.992 0.898 0.904 0.999 –0.760 –0.742
13. CN 0.777 0.782 0.719 0.715 0.715 0.718 0.766 0.778 0.727 –0.739 –0.731 0.736
14. SRMR –0.844 –0.863 –0.846 –0.828 –0.829 –0.830 –0.725 –0.749 –0.849 0.793 0.783 –0.853 –0.786
15. RMSEA –0.896 –0.897 –0.971 –0.968 –0.968 –0.966 –0.884 –0.892 –0.978 0.756 0.739 –0.983 –0.796 0.877

Note. NFI = Normed Fit Index; BL86 = Bollen’s Fit Index; TLI = Tucker–Lewis Index; BL89 = Bollen’s delta; RNI = Relative Noncentrality Index; CFI =
Comparative Fit Index; GFI = Goodness-of-Fit Index; AGFI = Adjusted Goodness-of-Fit Index; CAK = Rescaled Akaike’s Information Criterion; CK =
Cross-Validation Index; Mc = McDonald’s Centrality Index; CN = Hoelter’s Critical N; SRMR = Standardized Root Mean Squared Residual; RMSEA = Root
Mean Squared Error of Approximation.



Table 4 presents the η2 values for the 15 fit indexes under two conditions of
model misspecification (light and moderate misspecifications) obtained with ML
estimation for model fitting. These are the same 15 fit indexes evaluated in Hu and
Bentler (1998). As explained previously, Condition I (slight misspecification) and
Condition II (moderate misspecification) represent different levels of severity of
misspecification (see Methods section for details).

The findings in Table 4 should be interpreted and discussed in relation to Table
1. As shown in Table 1, for model misspecification, a group of fit indexes (TLI,
BL89, RNI, CFI, Gamma, Mc, RMSEA) have much higher η2 values (~.75) under
the complex model than those under the simple model (~.35), suggesting that these
indexes are more sensitive to misspecified factor loadings (complex model) than to
misspecified factor covariances (simple model). On the other hand, SRMR has a
much higher η2 value (.91) under the simple model than under the complex model
(.65), suggesting that SRMR is more sensitive to misspecified factor covariances.

As argued previously, the validity of Hu and Bentler’s (1998) results and con-
clusions might have been compromised by the confounding between types of
model misspecification and severity of model misspecification. This argument is
largely supported by the results in Table 4, obtained while holding the severity of
model misspecification comparable between the simple and complex models. It is
obvious that the group of fit indexes (TLI, BL89, RNI, CFI, Gamma, Mc,
RMSEA) had very comparable η2 values for the simple and complex models. For
Condition I (slight misspecifications), the η2 values (in the range of .85–.90) were
all comparable across the two types of models. For Condition II (moderate
misspecifications), the findings under Condition I were replicated, and the η2 val-
ues were again quite comparable across the two types of misspecified models. Be-
cause Condition II represented more severely misspecified models, it makes sense
that the η2 values were higher (generally above .95) than those under Condition I,
because a fit index should be more sensitive to more severely misspecified models.
These findings suggest that, when severity of model misspecification is controlled,
these indexes are not differentially sensitive to different types of model mis-
specification (misspecified factor covariance vs. misspecified factor loadings) as
concluded in Hu and Bentler (1998). Very similar results were obtained with the
GLS estimation method for model fitting, as shown in Table 5.

Considerations for SRMR

The fit index SRMR was advocated (Hu & Bentler, 1998) as the most sensitive to
structural model misspecification (i.e., misspecified factor covariances). It still ap-
pears to show more sensitivity to misspecified factor covariances (Table 4 for Con-
dition I, η2 = .965 vs. .771 for simple and complex models, respectively; for Condi-
tion II, η2 = .988 vs. .902 for simple and complex models, respectively), even when
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TABLE 4
Percentage of Variance (η2) Attributable to Sample Size

and Model Misspecification for Simple and Complex Models—
Maximum Likelihood Estimation

Sample Size Misspecification Interaction

Simple Complexa Simple Complex Simple Complex

Condition Ib (slight misspecifications)
NFI .554 .551 .393 .382 .000 .000
BL86 (Rho1) .563 .560 .382 .372 .000 .000
TLIc .002 .002 .861 .843 .000 .000
BL89 (Delta)c .002 .002 .864 .846 .000 .000
RNIc .002 .003 .862 .844 .000 .000
CFIc .005 .005 .867 .846 .001 .001
GFI .624 .567 .327 .377 .000 .001
AGFI .634 .577 .317 .366 .001 .001
Gamma hatc .003 .003 .853 .847 .000 .000
CAK .818 .829 .154 .144 .000 .000
CK .833 .844 .141 .131 .000 .000
Mc Centralityc .002 .002 .859 .853 .000 .000
CN .216 .214 .522 .523 .214 .214
SRMRd .006 .147 .965 .771 .003 .017
RMSEAc .004 .004 .892 .889 .005 .006

Condition II (moderate misspecifications)
NFI .169 .159 .810 .807 .000 .000
BL86 (Rho1) .173 .164 .805 .801 .001 .001
TLIc .001 .000 .973 .959 .000 .000
BL89 (Delta)c .000 .000 .974 .960 .000 .000
RNIc .001 .000 .974 .959 .000 .000
CFIc .001 .001 .975 .960 .000 .000
GFI .297 .182 .679 .790 .002 .002
AGFI .305 .187 .671 .784 .002 .002
Gamma hatc .001 .000 .968 .961 .000 .000
CAK .432 .442 .548 .534 .000 .000
CK .458 .470 .523 .507 .000 .000
Mc Centralityc .000 .000 .970 .964 .000 .000
CN .137 .136 .611 .608 .212 .214
SRMRd .001 .050 .988 .902 .001 .011
RMSEAc .002 .001 .965 .963 .002 .002

Note. NFI = Normed Fit Index; BL86 = Bollen’s Fit Index; TLI = Tucker–Lewis Index; BL89 =
Bollen’s delta; RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; GFI = Good-
ness-of-Fit Index; AGFI = Adjusted Goodness-of-Fit Index; CAK = Rescaled Akaike’s Information
Criterion; CK = Cross-validation Index; Mc = McDonald’s Centrality Index; CN = Hoelter’s Critical N;
SRMR = Standardized Root Mean Squared Residual; RMSEA = Root Mean Squared Error of Approxi-
mation.

aSimple model: factor covariances misspecified (structural model misspecification); complex
model: factor pattern coefficients misspecified (measurement model misspecification).The severity of
misspecification is comparable across the two models. bUnder Condition I, misspecification is slight
(see Table 2 and related discussion for details).Under Condition II, misspecification is moderate (see
Table 2 and related discussion for details). cIn Hu and Bentler (1998), these were characterized as the
most sensitive to misspecified factor loadings (complex model). dIn Hu and Bentler (1998), these were
characterized as the most sensitive to misspecified factor covariances (simple model).
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TABLE 5
Percentage of Variance (η2) Attributable to Sample Size

and Model Misspecification for Simple and Complex Models—
Generalized Least Squares Estimation

Sample Size Misspecification Interaction

Simple Complexa Simple Complex Simple Complex

Condition Ib (slight misspecifications)
NFI .545 .532 .410 .422 .007 .006
BL86 (Rho1) .556 .544 .397 .408 .009 .008
TLIc .012 .007 .816 .807 .000 .000
BL89 (Delta)c .019 .014 .826 .821 .002 .001
RNIc .012 .007 .818 .810 .000 .000
CFIc .003 .001 .847 .842 .008 .006
GFI .721 .705 .235 .244 .001 .000
AGFI .730 .715 .225 .233 .001 .001
Gamma hatc .021 .014 .819 .810 .004 .002
CAK .898 .900 .084 .081 .001 .000
CK .908 .911 .076 .073 .001 .000
Mc centralityc .022 .015 .819 .811 .004 .002
CN .270 .272 .470 .465 .207 .205
SRMRd .013 .178 .949 .734 .003 .006
RMSEAc .007 .004 .856 .850 .014 .012

Condition II (moderate misspecifications)
NFI .216 .197 .748 .775 .016 .012
BL86 (Rho1) .223 .204 .739 .767 .018 .013
TLIc .005 .002 .938 .949 .000 .000
BL89 (Delta)c .011 .007 .938 .950 .002 .001
RNIc .005 .002 .939 .951 .000 .000
CFIc .001 .000 .954 .964 .003 .002
GFI .482 .398 .488 .571 .001 .001
AGFI .491 .407 .477 .560 .002 .001
Gamma hatc .014 .009 .926 .938 .003 .002
CAK .761 .716 .223 .268 .001 .001
CK .782 .740 .204 .245 .001 .001
Mc centralityc .014 .010 .926 .938 .003 .002
CN .186 .184 .550 .553 .220 .216
SRMRd .002 .070 .984 .875 .001 .004
RMSEAc .003 .002 .936 .940 .008 .006

Note. NFI = Normed Fit Index; BL86 = Bollen’s Fit Index; TLI = Tucker–Lewis Index; BL89 =
Bollen’s delta; RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; GFI = Good-
ness-of-Fit Index; AGFI = Adjusted Goodness-of-Fit Index; CAK = Rescaled Akaike’s Information
Criterion; CK = Cross-validation Index; Mc = McDonald’s Centrality Index; CN = Hoelter’s Critical N;
SRMR = Standardized Root Mean Squared Residual; RMSEA = Root Mean Squared Error of Approxi-
mation.

aSimple model: factor covariances misspecified (structural model misspecification); complex
model: factor pattern coefficients misspecified (measurement model misspecification). The severity of
misspecification is comparable across the two models. bUnder Condition I, misspecification is slight
(see Table 2 and related discussion for details). Under Condition II, misspecification is moderate (see
Table 2 and related discussion for details). cIn Hu and Bentler (1998), these were characterized as the
most sensitive to misspecified factor loadings (complex model). dIn Hu and Bentler (1998), these were
characterized as the most sensitive to misspecified factor covariances (simple model).



the severity of model misspecification was held comparable. This finding contra-
dicted our expectation, and made us wonder why this should be the case.

Closer examination of the two levels of misspecified simple model (see Figure
1a) led to the realization that the misspecified simple models represented a some-
what unusual situation: A single misspecified parameter (s12 = 0 in Figure 1a) re-
sulted in a large number of covariances being zeros in the model-implied
covariance matrix ( � )Σmodel . The additional misspecified parameter (s13 = 0 in Fig-
ure 1a) doubled the number of covariances being zeros in the model-implied
covariance matrix. More specifically, when the first factor covariance was mis-

specified to be zero (s12 = 0), it resulted in of the

covariances being zeros in the model-implied covariance matrix. When the second
factor covariance was misspecified to be zero (s12 = 0, and s13 = 0), this resulted in

of the covariances being zeros in the model-implied

covariance matrix.
Substantively, the misspecified simple models represent the situation in which

correlated factors are misspecified as orthogonal factors. The observation that one
or two misspecified parameters result in such a large number of zero covariances in
the model-implied covariance matrix was alarming. Furthermore, SRMR most
directly reflects the condition of having numerous zero elements in the
model-implied covariance matrix, because SRMR is directly influenced by the dis-
crepancy between the corresponding elements in the sample and the
model-implied covariance matrices. SRMR is obtained from the following
(Bentler, 1995; Hu & Bentler, 1998; Jöreskog & Sörbom, 1981):

where sij is a sample covariance between variables i and j, �σ ij is the model-implied
covariance between the two, sii and sjj are sample standard deviations for variables
i and j, and p is the number of variables in the model analysis.

Regardless of how a model is misspecified, sij, sii, sjj, and p will not be affected,
and only �σ ij is affected by model misspecification. If model misspecification re-
sults in many zero �σ ij (model-implied covariances being zeros) whereas their
counterparts (sij) are not, the impact will be directly reflected as large values of (sij

– �σ ij ), because now (sij – �σ ij ) = sij .
Although many other fit indexes are also based on the discrepancy between

sample covariance matrix and model-based covariance matrix, the computation of
root mean squared residual (RMSR) and its standardized version (SRMR) lead to
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the expectation that the large number of zero covariances caused by the mis-
specified model parameters will make this index especially sensitive to this kind of
model misspecification. As a result, the finding that SRMR is more sensitive to
structural model misspecification (e.g., misspecified factor covariances) may not
be generalizable beyond this condition.

To evaluate this hypothesis, a different type of misspecified factor covariance
was considered in the simple model. Instead of factor covariances being mis-
specified to be zeros (s12 = 0, s13 = 0 in Figure 1a), the correlation between two fac-
tors was misspecified to be 1.00 (i.e., in Figure 1a, correlation between ξ1 and ξ2,
and that between ξ1 and ξ3 were misspecified to be r = 1.00). Substantively, this
misspecification represents the situation where two (highly) correlated factors are
misspecified to be the same factor. For this purpose, we created a new simple
model with parameters in the � matrix (factor covariance matrix) being such that,
when the factor correlations were misspecified to be 1.00, the severity of mis-
specification for the misspecified new simple models would be comparable to
those of the original misspecified complex models in Hu and Bentler (1998). The
new simple model’s � matrix parameters are shown here (three underlined param-
eters; see the original simple model parameters in Figure 2 for comparison):

Except for these parameter adjustments in the � matrix, all other parameters
were exactly the same as those in Figure 2. Table 6 shows that the estimated statis-
tical power was comparable for rejecting the misspecified new simple and com-
plex models.

The first misspecified new simple model (r12 = 1.0) represents the situation
where two correlated factors (ξ1 and ξ2) were misspecified to be the same factor,
and a three-factor model was misspecified to be a two-factor model. The second
misspecified new simple model (r12 = 1.0 and r13 = 1.0) represented the situation
where a three-factor model was misspecified to be a one-factor model. Although
the misspecification was still related to factor covariances, unlike the original sim-
ple model (Figure 1a), this type of misspecification for factor covariances did not
force the model-implied covariances to be zeros. In addition, the severity of model
misspecification between the new simple model and the original complex model
was comparable, as shown in Table 6 by the estimated power for rejecting the
misspecified new simple and complex models.

The lower panel of Table 3 presents the correlations among the fit indexes under
these new conditions. The correlation pattern indicated that, in general, SRMR had
slightly lower correlations with other fit indexes, although to the same degree as
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shown previously (Hu & Bentler, 1998, Table 3). An exploratory factor analysis
was conducted for the fit indexes (with CAK, CK, and CN excluded). The results
of the exploratory factor analysis suggested that a single factor explained the corre-
lations among the fit indexes well. For the 12 fit indexes included in the analysis,
the first three eigenvalues (principal component extraction) were 11.21, 0.41, and
0.30, respectively, indicating again that a single dominant factor was sufficient in
explaining the correlations among the fit indexes (93% of variance accounted for
by this single factor). The findings here suggest that, for the design conditions im-
plemented in this study, there is insufficient evidence to support a multifactor view
for the fit indexes. The transposed vector of the pattern coefficients (based on prin-
cipal component extraction) on this single factor was:

Table 7 presents the percentage of variation (η2) in sample fit indexes attribut-
able to the factors of sample size and model misspecification for the new simple
and the original complex models. The findings in Table 7 confirmed suspicions.
Under ML estimation, the η2 for SRMR is .834 and .902 for the new simple and
complex models, respectively. Under GLS estimation, the η2 for SRMR is .730
and .875 for the new simple and complex models. So contrary to the previous ob-
servation (Hu & Bentler, 1998), SRMR did not appear to be more sensitive to the
misspecified factor covariances (simple model) than to the misspecified measure-
ment factor loadings (complex model).

The findings in Table 7 provide support for our hypothesis: The previous con-
clusion concerning SRMR (i.e., SRMR was most sensitive to misspecified factor
covariances) was very likely the result of a special type of misspecification that
caused a large number of covariances to become zeros in the model-implied
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TABLE 6
Comparable Severity of Misspecification for New Simple

and Complex Models

χ2 df Powera

New simple model (factor covariances misspecified)
One misspecified factor covariance 42.26 89 0.85
Two misspecified factor covariances 75.67 90 1.00

Complex model (pattern coefficients misspecified)
One misspecified factor loading 40.68 85 0.84
Two misspecified factor loadings 75.11 86 0.99

aPower estimation is based on Satorra–Saris method (Satorra & Saris, 1993; Saris & Satorra, 1983)
for N = 100.

NFI BL86 TLI BL89 RNI CFI GFI AGFI GAMMA Mc SRMR RMSEA

.96 .96 .98 .98 .98 .98 .94 .95 .98 .98 .87 .97
P 
 �

� �

� �
� �
� �� �
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TABLE 7
Percentage of Variance (η2) Attributable to Sample Size
and Model Misspecification for the New Simple Modela

and the Original Complex Model

Sample Size Misspecification Interaction

Simple Complexa Simple Complex Simple Complex

Maximum likelihood estimation
NFI .169 .159 .779 .807 .000 .000
BL86 (Rho1) .175 .164 .772 .801 .000 .001
TLIb .001 .000 .940 .959 .000 .000
BL89 (Delta)b .001 .000 .942 .960 .000 .000
RNIb .001 .000 .941 .959 .000 .000
CFIb .001 .001 .941 .960 .000 .000
GFI .092 .182 .861 .790 .001 .002
AGFI .096 .187 .856 .784 .002 .002
Gamma hatb .001 .000 .950 .961 .000 .000
CAK .426 .442 .542 .534 .000 .000
CK .452 .470 .518 .507 .000 .000
Mc centralityb .000 .000 .955 .964 .000 .000
CN .138 .136 .611 .608 .213 .214
SRMRc .106 .050 .834 .902 .016 .011
RMSEAb .002 .001 .958 .963 .002 .002

Generalized least squares estimation
NFI .249 .197 .721 .775 .016 .012
BL86 (Rho1) .261 .204 .706 .767 .018 .013
TLIb .003 .002 .920 .949 .000 .000
BL89 (Delta)b .008 .007 .928 .950 .001 .001
RNIb .003 .002 .923 .951 .000 .000
CFIb .000 .000 .949 .964 .002 .002
GFI .542 .398 .419 .571 .000 .001
AGFI .557 .407 .402 .560 .001 .001
Gamma hatb .008 .009 .904 .938 .002 .002
CAK .797 .716 .184 .268 .001 .001
CK .815 .740 .167 .245 .001 .001
Mc centralityb .008 .010 .904 .938 .002 .002
CN .222 .184 .519 .553 .211 .216
SRMRc .207 .070 .730 .875 .014 .004
RMSEAb .002 .002 .911 .940 .008 .006

Note. NFI = Normed Fit Index; BL86 = Bollen’s Fit Index; TLI = Tucker–Lewis Index; BL89 =
Bollen’s delta; RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; GFI = Good-
ness-of-Fit Index; AGFI = Adjusted Goodness-of-Fit Index; CAK = Rescaled Akaike’s Information
Criterion; CK = Cross-validation Index; Mc = McDonald’s Centrality Index; CN = Hoelter’s Critical N;
SRMR = Standardized Root Mean Squared Residual; RMSEA = Root Mean Squared Error of Approxi-
mation.

aIn this new simple model, factor correlations were misspecified to be 1.0 (instead of fixed to be ze-
ros as before; structural model misspecification). The severity of misspecification is comparable for the
new simple and complex models, as shown in Table 6. bIn Hu and Bentler (1998), these were character-
ized as the most sensitive to misspecified factor loadings (complex model). cIn Hu and Bentler (1998),
these were characterized as the most sensitive to misspecified factor covariances (simple model).



covariance matrix. As a result, that conclusion does not appear to be generalizable
beyond that specific condition. Consequently, SRMR should not be considered the
most sensitive to misspecified structural parameters in general.

CONCLUSIONS

Previously, Hu and Bentler (1998, 1999) concluded that (a) the correlation pattern
of the fit indexes suggests a multifactor view for the fit indexes; (b) SRMR was the
most sensitive to misspecified factor covariances (i.e., misspecified structural
model parameters); (c) a group of other fit indexes (e.g., TLI, BL89, RNI, CFI,
Gamma, Mc, or RMSEA) were the most sensitive to misspecified factor loadings
(i.e., misspecified measurement model parameters); and (d) a two-index strategy is
recommended for model fit assessment: SRMR is needed (for detecting mis-
specified structural model components), and it should be supplemented by another
index (e.g., TLI, BL89, RNI, CFI, Gamma, Mc, or RMSEA) that is sensitive to
misspecified measurement model components.

Based on our reasoning and the empirical findings presented here, we conclude:
(a) there is insufficient evidence to support the multifactor view for the fit indexes;
(b) SRMR is not generally most sensitive to misspecified factor covariances (struc-
tural model misspecification), and (b) the group of indexes (TLI, BL89, RNI, CFI,
Gamma, Mc, or RMSEA) are not more sensitive to misspecified factor loadings.
Consequently, the validity of the rationale for the proposed two-index strategy is in
question.

We argued in this article that the design problems in the previous studies (Hu &
Bentler, 1998, 1999) compromised the validity of the rationale that led to the
two-index strategy proposal. First, types of model misspecification (misspecified
factor covariance vs. misspecified factor loadings) and the severity of model
misspecification were confounded, and this confounding led to the incorrect con-
clusion that some indexes were differentially sensitive to different types of model
misspecification.

Second, the misspecified factor covariances in the simple model represented a
somewhat unusual type of misspecification: A large number of covariances in the
model-based covariance matrix were forced to be zeros by one or two misspecified
factor covariances. SRMR appears to be sensitive to this condition, thus leading to
the conclusion that it was the most sensitive to misspecified factor covariances in
general. This type of misspecification might not be representative of models with
misspecified structural parameter(s), and as a result, the conclusion would not gen-
eralize to other kinds of structural parameter misspecification.

We partially replicated the study by Hu and Bentler (1998) to reevaluate the
validity of the rationale of the proposed two-index strategy. In the study design,
there were two important changes: (a) Two types of model misspecifications
(misspecified factor covariances vs. misspecified factor loadings) had compara-
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ble severity of misspecification, and (b) misspecified factor covariances did not
result in a large number of zeros in the model-based covariance matrix. Empiri-
cal findings showed that the previous conclusions concerning the proposed
two-index strategy were not supported. Consequently, SEM researchers should
reconsider the applicability of the two-index strategy in model fit assessment in
SEM applications.

It should be emphasized that this study examined the rationale for the two-index
strategy as proposed in Hu and Bentler (1998). Hu and Bentler (1999) later ex-
tended the line of research by specifying cutoff values of different indexes, and ex-
amined the optimal use of the two-index strategy in making model rejection deci-
sions. This study did not evaluate the actual application of the two-index strategy
with regard to using specific cutoff values in making model rejection decisions (Hu
& Bentler, 1999).

It is also important to point out that, although the two-index strategy and the
later proposed fit index cutoff values have become extremely popular (see more
detailed discussion on this issue in Marsh et al., 2004), Hu and Bentler (1998) were
cautious about potential overgeneralization of their findings, as they discussed that
“the performance of fit indices is complex and that additional research with a wider
class of models and conditions is needed, to provide final answers on the relative
merits of many of these indices” (p. 446). The findings of this study indicate that
this caution is warranted. As suggested by Marsh et al. (2004), many SEM practi-
tioners have disregarded Hu and Bentler’s (1998) caution, and overgeneralized Hu
and Bentler’s findings and tentative conclusions.

The reasoning and findings in this article questioned the rationale of the
two-index strategy as advocated in Hu and Bentler (1998, 1999), but some similar-
ities were observed with regard to the performance of some indexes across the two
studies. Hu and Bentler (1998) showed that a group of fit indexes (e.g., NFI, BL86,
GFI, AGFI) were more sensitive to sample size condition (i.e., larger η2 values at-
tributable to sample size variation), an undesirable feature of a model fit index.
This finding was largely replicated in this study, as shown by the relatively larger
η2 values associated with these indexes in Tables 4, 5, and 7.

Although tempting to conclude that these fit indexes were less useful because of
this undesirable characteristic, we refrain from drawing such a definite conclusion
based on these findings. As discussed in Marsh et al. (2004), the majority of the
misspecified models considered in Hu and Bentler (1998, 1999) were actually ac-
ceptable models with very minor degrees of misspecification (acceptable mis-
specified models). The η2 value is a relative term. It is possible that an index is not
sensitive to very minor model misspecifications, and as a result, it may appear that
factors other than model misspecification contribute to its sampling variation.
However, when model misspecification becomes more unacceptable, the situation
may change. Before we discount this group of indexes as being less useful, the per-
formance of these indexes should be further evaluated by involving more severe
model misspecification conditions (unacceptable misspecified models).
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Limitations

This study has some obvious limitations. First, although the confounding between
severity of model misspecification and types of model misspecification was tack-
led, research was limited to replicating previously used models; as a result, we did
not study a wider class of models. This means that the generalizability of the find-
ings in this study can be potentially limited. Future research may extend to differ-
ent and more complex types of models (e.g., from CFA models to full structural
equation models with latent exogenous and endogenous variables).

Second, we concluded that SRMR may be sensitive to a large number of zero
covariances in the model-based covariance matrix. This finding, however, is not
analytically based, but empirically based. It is possible that this finding and its re-
lated conclusion may not be able to stand the test of further scrutiny as future re-
search involves a wider class of models and model misspecification conditions.
Future research in this area may examine this issue more closely.

Third, in this study, a narrow focus on the issue of differential sensitivity of fit
indexes to different types of model misspecification was chosen. As such, this
study did not address many other issues studied by Hu and Bentler (1998, 1999),
such as those related to data distribution (e.g., nonnormality), alternative estima-
tion methods (e.g., asymptotic distribution-free method [ADF]), different combi-
nation rules involving fit indexes in model fit assessment, and so on.

This conclusion about the questionable validity of the rationale of the two-index
strategy does not mean that we advocate the use of a single fit index in model fit as-
sessment, instead of looking for convergence of multiple indexes. It simply means
that the validity of the specific two-index strategy as proposed by Hu and Bentler
(1998) is questionable. Because SEM researchers do not fully understand the
strengths and weaknesses of the individual fit indexes, the reliance on a single index
is more likely to lead to incorrect conclusions about model fit than relying on the tri-
angulation of several fit indexes. For this reason, the use of multiple fit indexes in
model fit assessment makes good sense. However, to use multiple fit indexes suc-
cessfully in model fit assessment, we need to demonstrate that the information pro-
vided by different indexes is complementary rather than redundant. The work by Hu
andBentler (1998,Table3)has laidsomegroundworkfor research in thisdirection.

Model fit assessment in SEM is a complicated issue that does not appear to have
clear-cut solutions at this time. The validity and generalizability of the findings
from any particular study, including the one presented in this article, should be
evaluated in broader contexts, such as using different models with varying model
complexity, with different parameter values, and under different data conditions.
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