
Publisher: NPG; Journal: Nature: Nature; Article Type: Biology letter 
 DOI: 10.1038/nature16986 

Page 1 of 25 

Sensitivity of global terrestrial ecosystems to climate variability 

Alistair W. R. Seddon1*, Marc Macias-Fauria2*, Peter R. Long3, David Benz3 & Kathy J. Willis1,3,4 

1Department of Biology, University of Bergen, Allégaten 41, N-500  Bergen, Norway. 

2School of Geography and the Environment, South Parks Road, University of Oxford, Oxford OX1 3QY, UK. 

3Long-term Ecology Laboratory, Biodiversity Institute, Oxford Martin School, Department of Zoology, South 

Parks Road, University of Oxford, Oxford OX1 3PS, UK. 

4Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK. 

*These authors contributed equally to this work. 

The identification of properties that contribute to the persistence and resilience of 

ecosystems despite climate change constitutes a research priority of global relevance1. 

Here we present a novel, empirical approach to assess the relative sensitivity of 

ecosystems to climate variability, one property of resilience that builds on theoretical 

modelling work recognizing that systems closer to critical thresholds respond more 

sensitively to external perturbations2. We develop a new metric, the vegetation sensitivity 

index (VSI) which identifies areas sensitive to climate variability over the past 14 years. 

The metric uses time series data of MODIS-derived enhanced vegetation index (EVI)3 

and three climatic variables that drive vegetation productivity4 (air temperature, water 

availability and cloud cover). Underlying the analysis is an autoregressive modelling 

approach used to identify climate drivers of vegetation productivity on monthly 

timescales, in addition to regions with memory effects and reduced response rates to 

external forcing5. We find ecologically sensitive regions with amplified responses to 

climate variability in the arctic tundra, parts of the boreal forest belt, the tropical 

rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and 

North and South America, the Caatinga deciduous forest in eastern South America, and 

eastern areas of Australia. Our study provides a quantitative methodology for assessing 

the relative response rate of ecosystems—be they natural or with a strong anthropogenic 

signature—to environmental variability, which is the first step toward addressing why 

some regions appear to be more sensitive than others and what impact this has upon the 

resilience of ecosystem service provision and human well-being. 

The rate and scale of projected climate changes in the 21st century are likely to have 

profound impacts on the functioning of Earth’s ecosystems6. Much current understanding of 

how biodiversity will respond to climate change is based on responses to changes in mean 
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climate state7. However, climate variability, and the related increases in extreme events in a 

warmer world8, has a strong influence on both the structuring and functioning of ecosystems9–

11. Given the importance of identifying ecologically sensitive areas for ecosystem service 

provision and poverty alleviation1, a key knowledge gap exists in how to identify and then 

prioritize those regions that are most sensitive to climatic variability. 

Ecosystem response to variability in external forcing is a key component of resilience. 

Theory indicates that systems with lower resilience (that is, those with a high probability of 

crossing a threshold to an alternative state12) experience amplified responses to disturbance 

and are more sensitive to environmental perturbations2. In addition, slower responses 

(identified through increased autocorrelation) may be evidence of reduced recovery rates in 

systems approaching critical transitions13. Therefore, identification of areas with high 

ecological sensitivity or reduced recovery rates is an important step in recognizing regions of 

pending ecological change. In the past decade there has been an increase in the availability of 

satellite data measuring climate and other ecologically relevant variables14. These data offer 

opportunities to characterize ecosystem sensitivity, potentially a key component of resilience, 

at a global scale and at high spatial resolution. 

We present a novel method to identify ecosystem sensitivity to short-term climate 

variability and regions of amplified vegetation response (see Methods and Extended Data Fig. 

1). We develop a new metric, the vegetation sensitivity index (VSI), which independently 

compares the relative variance of vegetation productivity (EVI)3 with that of three ecologically 

important MODIS-derived climate variables4 (air temperature15, water availability16 and cloud-

cover) 7 for each 5 km grid square for the months in which EVI and climate are found to be 

related. Climate–vegetation-productivity relationships are determined using an AR1 multiple 

linear regression approach, which uses the three climate variables and one-month-lagged 

vegetation anomalies (see Methods) to identify areas with strong vegetation coupling to 

climate anomalies (Extended Data Fig. 2). The coefficient from the one-month-lagged 

vegetation-productivity anomalies can be used to identify regions with memory effects, 

highlighting the importance of past ecosystem conditions in these regions5 (Extended Data Fig. 

3). Our global VSI then results from aggregating the EVI sensitivities to each climate variable, 

weighted by the coefficients from the linear regression modelling (see Methods and Extended 

Data Fig. 2). 

Our analysis provides three key insights into the patterns and drivers of ecological 

sensitivity and response to climate forcing at a global scale. First, we identify areas exhibiting 
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amplified responses to climate variability (Fig. 1). The Arctic tundra, parts of the boreal forest 

belt, the wet tropical forests of South America, western Africa, and southeast Asia/ New 

Guinea, alpine regions worldwide, steppe and prairie regions of central Asia and North and 

South America, the Caatinga deciduous forest in eastern South America, and eastern areas of 

Australia displayed high VSI values, indicating a high sensitivity to climate variability over the 

past 14 years. The relative contribution of each climate variable to vegetation sensitivity can 

also be assessed (Fig. 2). Whereas the Caatinga biome in Brazil and the prairie and grassland 

regions of North America and Asia are most sensitive to variations in water availability, alpine 

regions (for example, the Andes) demonstrate strong sensitivity to temperature, and high-

latitude tundra areas exhibit strong responses to both temperature and cloud cover variability. 

The high sensitivity to monthly changes in cloudiness and temperature in tropical forests is 

also noteworthy. 

 

Figure 1 Vegetation sensitivity index. Sensitivity of vegetation productivity (defined as EVI) to 

climate variability (based on temperature, water availability and cloudiness). The index ranges from 0 

(low sensitivity, green) to 100 (high sensitivity, red). Areas with dominant barren land (mean EVI < 0.1 

for all months) and permanent ice are shown grey. Wetland areas, as identified by the Global Lakes and 

Wetlands Database30, are mapped in blue. Pixel resolution, 5 km; period, 2000–2013. Continental 

outlines were modified from a shapefile using ArcGIS 10.2 software 

(http://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d). ArcGIS and 

ArcMap are the intellectual property of Esri and are used herein under license.  
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Second, we present an empirical approach to quantify climate drivers of vegetation 

productivity (that is, the weights related to the three climate variables derived from the AR1 

linear regression, Extended Data Fig. 2, hereafter climate weights, see Methods). This 

represents a major advancement from previous studies which have used hypothesized 

ecological tolerance limits to determine the relative importance of different variables driving 

productivity4. The overall picture from our empirical analysis is remarkably similar to this 

previous conceptual modelling exercise4: prairies in mid-northern hemisphere latitudes are 

water limited, the high-latitudes are driven by a combination of temperature and cloudiness, 

and tropical forests show strong responses to cloudiness. Nevertheless, a number of key 

differences with this previous study are also observed. For example, central and western 

continental Europe exhibit stronger water limitation compared to the modelling study (as 

compared to temperature and radiation – a variable linked to cloudiness), while water 

limitation was also found to be an important driver in central Africa (as compared to 

radiation4). A key question remains as to whether these differences result from modelling 

 

Figure 2 RGB composite of vegetation sensitivity index. Global contribution of three climate 

variables to the vegetation sensitivity index (temperature, red; water availability, blue; and cloudiness, 

green). Pixel resolution, 5 km; period, 2000–2013. Areas with dominant barren land (mean EVI < 0.1 for 

all months) and permanent ice are shown grey. 
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assumptions, or whether changing climate in the last 14 years has resulted in diverging 

vegetation responses in these regions. 

Third are the areas with high variance explained by the t−1 variable in the AR1 model, 

indicating systems where memory effects play a more important role than contemporary 

climate conditions in determining vegetation productivity5 (Extended Data Fig. 3). Overall, 

areas with low VSI values showed the largest memory effects (that is, high t−1 coefficients in 

our AR1 model), including the drylands of the Sahel, Australian outback, southwest USA, and 

the Middle East. Assessment of time series in these regions indicates that the apparent lack of 

response to the other climate variables occurs in two main ways: constant and largely stable 

low productivity conditions despite large climate variability (that is, high ecological resilience 

to climatic (mostly precipitation) variability, for example, Australian outback), or strong 

cyclical variability with periods of very low and stable EVI (for example, Sahel; Extended 

Data Fig. 4). This contrasts to water-limited areas with higher mean EVI (for example, 

prairies), where strong seasonal variability is observed (Extended Data Fig. 4). Since the 

importance of 12-month-lagged responses in dryland regions has been previously identified18, 

we also tested whether model performance improved using lags of up to one year (not shown). 

However, we found that a one-month lag provided the best explanatory power for vegetation 

responses to variability on these timescales. We also found that the strength of the t−1 

coefficient increases with decreasing levels of total annual precipitation, while there was a 

small positive effect on the magnitude of the climate weight related to water availability as 

total annual precipitation increased (Extended Data Fig. 5). These results probably indicate the 

importance of lagged responses to precipitation input as a result of processes related to soil-

water recharge in arid regions19. 

These empirically determined patterns agree with the results of multiple studies with 

regards to understanding current vegetation responses to climate change. Arctic and boreal 

regions have experienced the most rapid rates of warming in the past 30 years20 and there is 

ample evidence on enhanced shrub growth in the tundra as a response to warming 

temperatures21,22. We also observe similar patterns in alpine and mountainous ecosystems, 

adding to the increasing evidence that such areas are responding rapidly to climate change6. 

Our analysis also reveals high sensitivity to a combination of cloudiness and temperature 

variability in the tropical rainforest regions, particularly in the Amazon and southeast Asia 

(Fig. 2). Although the extent to which tropical ecosystems are currently operating at their 

thermal limits remains uncertain, a number of studies have found decreases in tropical forest 
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growth rates and productivity in response to warming23, potentially the result of reductions of 

leaf gas exchange under warmer temperatures24. Such findings may have implications for the 

future of tropical forests since they are projected to experience temperature ranges beyond any 

current analogues25. The high sensitivity to monthly changes in cloud cover and temperature in 

tropical forests observed in this study may be operating at different timescales to potential 

precipitation thresholds that have been identified in tropical forests26. By contrast, the 

enhanced sensitivity to water availability in the Caatinga region of northeast Brazil agrees with 

studies which indicate strong coupling of vegetation cover and phenology to ENSO-related 

precipitation change27. One potential explanation is that the high phenotypic plasticity of leaf 

senescence and green-up results in large amplitudes in the EVI response to drought variability. 

Understanding the traits that result in sensitivity differences worldwide is a key research 

priority. 

We identified regions with high rates of response to climate variability globally and at 

high spatial and temporal resolutions. These properties have been linked to systems 

approaching ecological tipping points2. However, whereas the existence of critical ecological 

thresholds has been suggested for a number of regions with high VSI values, such as the Arctic 

tundra, the boreal forest, and the wet tropical forests26, some high VSI areas (for example, the 

steppe and prairies or the Caatinga) have not been reported to exhibit threshold-type responses 

at global scales26. As presented, VSI is an empirically calculated state variable of ecological 

sensitivity for the last 14 years. As longer records of remotely sensed global vegetation and 

climate become available in the future, VSI offers the opportunity to identify areas showing 

increasing or decreasing trends in ecological sensitivity, with possible implications for 

identifying critical thresholds. Finally, since there is little overlap between areas demonstrating 

strong memory effects and those with high VSI, a question remains as to what fundamental 

properties underlie the difference behind fast-responding and slow-responding systems. 

Identification of large-scale metrics to quantify ecological responses to climate change 

remains a vital strategy for global ecosystem assessment. This work builds on previous studies 

identifying properties that represent components of ecological resilience using satellite 

data5,28,29. Our novel approach provides empirical baseline measurements on a key component 

of ecosystem resilience, that is, the relative response of vegetation in comparison to 

environmental perturbations over time, as well as the climatic drivers of change across 

landscapes globally. The next challenge is to understand the underlying causes and ecological 

processes that lead to these patterns. It is also critical to determine whether these patterns 
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represent long-lasting characteristics of the ecosystems/habitats, apparent over decades to 

millennia, or else more transient responses able to change spatially over short time scales, and 

to develop tools and technologies for modelling and predicting future trends. 

Received 19 June 2015; accepted 12 January 2016. 
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METHODS 

Satellite data 

We derived monthly time series of four key ecosystem and climate variables from the MODIS 

sensor for the period February 2000 to December 2013. To obtain estimates of changes in 

ecosystem productivity, we used the MOD13C2 version 5 product which comprises monthly, 

global enhanced vegetation index (EVI) at 0.05° resolution3. EVI is a normalized ratio of 

reflectance bands with a practical range of 0 to 1. Higher values result from absorption in the 

visible red band of the electromagnetic spectrum. The index correlates strongly with 

chlorophyll content and photosynthetic activity31. In some cases where no clear-sky 

observations are available, the MOD13C2 version 5 product replaces no-data values with 

climatological monthly means, so we removed these values where appropriate. 

We used the MOD07_L2 Atmospheric Profile product as a measure of air temperature 

at the same spatial resolution15. Five-minute swaths of retrieved temperature profile were 

projected to geographic coordinates. Pixels from the highest available pressure level, 

corresponding to the temperature nearest the Earth’s surface, were selected in each swath. 

Swaths were then mean-mosaicked into global daily images, and daily images were mean-

composited to monthly images to provide global time series of temperature at 0.05° resolution. 

No direct estimates of incoming radiation are available from the MODIS sensor. 

Therefore, we developed an insolation proxy based on the MOD35_L2 Cloud Mask product17. 

This product provides daily records on the presence of cloudy versus cloudless skies, and we 

used this to make an index of the proportion of cloudy to clear-sky days in a given pixel. After 

conversion to geographic coordinates, five-minute swaths at 1 km resolution were re-classed as 
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clear sky or cloudy, and these daily swaths were mean-mosaicked to global coverage, mean-

composited from daily to monthly, and mean aggregated from 1 km to 0.05°. An example 

output from June 2005 is provided in Extended Data Fig. 6. Note that we observed a sampling 

bias in the MODIS insolation data at approximately 60° N in northern Eurasia, but this bias 

tends to occur in low insolation months between November and January and so does not 

influence the overall results. 

The ratio of actual evapotranspiration to potential evapotranspiration (AET/PET) was 

used as an indicator of water availability. A value close to 1 indicates sufficient water supply 

to the plant, since all incoming photosynthetically active solar radiation is being used for 

photosynthesis. Monthly, 0.05° AET/PET was calculated from the MOD16 Global 

Evapotranspiration product, which estimates AET and PET through the Penman–Monteith 

equation16,32. 

Climatic drivers of vegetation productivity 

To estimate the relative importance of the three climate variables driving monthly changes in 

productivity, all time series were transformed to z-score anomalies using monthly climatology 

means and standard deviations. Any month with a mean EVI below 0.1 was removed from the 

analysis to reduce the potential impact of noisy data at low EVI values, which are attributed to 

areas with extremely sparse or inexistent vegetation cover. We also removed months with a 

mean monthly temperature of less than 0 °C. We then used a multiple regression approach to 

test for linear relationships with climate. We included the one-month-lagged EVI monthly 

anomalies as a fourth variable in this regression to investigate the potential influence of 

memory effects driving vegetation productivity (Extended Data Figs 1–3). To remove any 

impact of co-linearity between the three climate predictor variables33, we used a principal 

components regression (PCR) to identify the relative importance of each variable driving 

monthly variations of EVI in each pixel. For those principal components found to have 

significant relationships with climate (P < 0.1, Extended Data Fig. 7), we multiplied the 

loading scores of each variable by the PCR coefficients and summed these scores. This 

enabled us to estimate the relative importance of each variable in driving monthly changes in 

productivity. Finally, we found the mean, absolute value of the variable-transformed PCR 

coefficients providing an empirical approach to map the relative importance of climate on 

productivity globally (hereafter, climate weights). The climate weights from each variable 

were rescaled between 0 and 1 (using the minimum and maximum value of any of the climate 

coefficient values) to be used for our calculations of ecological sensitivity. 
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Vegetation sensitivity index 

To estimate ecosystem sensitivity globally, we created seasonally de-trended time series (mean 

monthly values subtracted) of each variable for each pixel and for periods found to have an 

relationship with climate and the t−1 variable in our monthly principal components 

regressions. We estimated the variance of both the climatic variables and EVI on these time 

series. Because we found a relationship between the variance and the mean of the different 

months, the residuals of a quadratic linear model fitted to the mean–variance relationship of 

both EVI and the climate variables for each pixel were used (Extended Data Fig. 8). We 

standardized these residuals to between 0 and 100 for each variable. Our sensitivity metrics are 

the log10-transformed ratios of EVI variability and each of the climate variables. Each ratio 

was then weighted according to the importance of the climate variable to EVI variability by 

multiplying it by the value of the regression coefficient (climate weights). Finally, we summed 

the sensitivity scores for each of our variables to identify areas of enhanced variability for the 

period of study (Fig. 1). All data analyses were carried out using the R project for statistical 

computing34, using the raster35, nlme36, gstat37, rgdal38 and gtools39 packages. Image 

processing was also carried out using Python 2.7, ArcGIS 10.2, Idrisi Selva, and the HDF-EOS 

to GeoTIFF Conversion Tool. 

Uncertainty layers 

We provide a series of maps assessing uncertainty both in the EVI measurements and in the 

algorithm used. In order to assess whether noise resulting from cloudy observations may be a 

concern to interpretations in tropical forest locations, we computed a map of the average 

standard error of the mean EVI score calculated for each month, which is a useful metric for 

identifying areas of high uncertainty in the vegetation time series (Extended Data Fig. 9). This 

is based on the standard deviation and number of valid EVI observations, both of which can be 

obtained within the metadata of the MODIS product. The highest standard errors are observed 

in areas with periodic presence of water on the surface (for example, Amazon river, wetlands), 

which is interpreted as large differences within the EVI observations and within a given month 

as a function of rapid, intra-month changes in the presence of surface water. Moderately high 

standard errors are observed in areas with more cloud cover, including parts of the wet tropical 

forests, the northwest coasts of Europe and North America, and some mountain ranges such as 

the Alps, the Pyrenees, or the Canadian Rocky Mountains. The absolute values of standard 

errors are not high and do not compromise the interpretation of results and their robustness: 

monthly EVI means for all pixels were computed from at least 25 observations on average 
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(except for small areas in western Ecuador and Colombia, Borneo and Papua, which were 

based on at least 15 observations per month on average), and the monthly mean EVI standard 

deviation for over 90% of Earth was smaller than 0.08 (for EVI values ranging from 0 to 1). 

In order to assess uncertainty in our results further, we also computed confidence 

interval maps for every variable implemented in the regression between EVI and climate 

(Extended Data Fig. 10a–d). These maps were calculated by finding the upper and lower 

confidence intervals in the PCA regression, before transforming them back to the scale of the 

original climate variables using the PCA weights. We then scaled these confidence intervals by 

the original variables to determine uncertainty in the regression coefficients as compared to the 

size of the coefficients (resulting in normalized confidence interval amplitudes (NCIA)). Here, 

a value of 2 corresponds to a total uncertainty twice as big as the coefficient value. This 

analysis indicates that for all variables, NCIA is lowest where the coefficients are highest, and 

that the absolute NCIA values are well within acceptable levels. 

Code availability 

All R and MATLAB code is available for download alongside the raw data files in the ORA 

repository. http://www.bodleian.ox.ac.uk/ora, DOI:10.5287/bodleian:VY2PeyGX4.  
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Extended Data Figure 1 Study Design. Flow chart of the algorithm used to estimate the vegetation 

sensitivity index. 
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Extended Data Figure 2 RGB composite of climate weights. RGB composite global map of the mean 

climate coefficient weights from monthly multiple regressions between vegetation productivity (defined 

as EVI), vegetation productivity at t−1 and three climate variables (temperature, red; water availability, 

blue; and cloudiness, green). Areas with dominant barren land (mean EVI < 0.1 for all months) and 

permanent ice are shown grey. Pixel resolution, 5 km; period, 2000–2013. 
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Extended Data Figure 3 Global map of the t−1 coefficient. Global map of t−1 (AR1) coefficient 

weight from a monthly multiple regressions between vegetation productivity (defined as EVI), 

vegetation productivity at t−1 and the three climate variables. Areas with dominant barren land (mean 

EVI <0.1 for all months) and permanent ice are shown grey. Wetland areas, as identified by the Global 

Lakes and Wetlands Database30, are mapped in blue. Pixel resolution, 5 km; period, 2000–2013. 

Continental outlines were modified from a shapefile using ArcGIS 10.2 software 

(http://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d). ArcGIS and 

ArcMap are the intellectual property of Esri and are used herein under license. 
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Extended Data Figure 4 EVI variability in areas of low total annual precipitation. Time series plots 

of the mean EVI (green) and mean EVI monthly anomalies (blue) for six different dryland/water-limited 

regions across the world. Time series are calculated by finding the mean monthly value for all 5-km 

pixels with a 1° grid cell (total pixels = 400). The light green shading in the mean EVI plots represents 

the upper and lower two standard deviations. A. North American temperate grassland (pixel centre 

99.5° W, 47.5° N). B. Eurasian temperate grassland (30.5° E, 48.5° N). C. Eurasian temperate grassland 

(115.5 °E, 44.5 °N). D. Caatinga forests, woodlands and scrub (37.5° W, 8.5° S). E. Sahel subtropical 

savanna and shrubland (10.5° E, 13.5° N). F. Australian desert (127.5° E, 27.5° N). The map in the main 

panel insert represents areas with t−1 and water limitation linear regression coefficients within the upper 

quartile (see Methods). Red, t−1; dark blue, water limitation; light blue, both). 
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Extended Data Figure 5 t−1 and water limitation against total annual precipitation. Plots of the t−1 

(A) and water limitation coefficients (B) from the AR1 linear regression model (see Methods) plotted 

against total annual precipitation (mm) calculated as the sum of the WorldClim monthly precipitation 

data40. A random subsample of 1,000 points were taken from dryland areas, defined here as having total 

annual precipitation between 100 – 800 mm, and between 50° N and 50° S. After removing no-data 

values from the random subset (that is, unresponsive pixels from the VSI calculation), the total number 

of samples was 795. A linear model was fit to both data sets independently using generalized least 

squares in the ‘nlme’36 package in R34. An exponential spatial error term using geographic distance was 

used to account for spatial autocorrelation in the residuals in the model41. There was a negative 

significant effect on the size of the t−1 coefficient with increasing total annual precipitation 

(−0.0003 ± 0.00003, significant at P < 0.01), with a smaller, positive effect of total annual precipitation 

on water availability (0.0001 ± 0.00003, significant at P < 0.01). 
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Extended Data Figure 6 Cloudiness index. Example output of the cloudiness index derived from the 

MOD35_L2 Cloud Mask product for June 2005. High values indicate more cloud-free days. Note the 

large number of cloud-free days in dryland regions, and the large number of cloudy days in southeast 

Asia as a result of the seasonal monsoon. Pixel resolution, 5 km. 
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Extended Data Figure 7 Number of months with a significant (P < 0.1) coefficient in the principal 

components regression. Number of months with a significant (P < 0.1) coefficient in the principal 

components regression between vegetation productivity (EVI), and climate (temperature, water 

availability, and cloud cover), and a t−1 vegetation variable. Areas with dominant barren land (mean 

EVI < 0.1 for all months) and permanent ice are shown grey. Wetland areas, as identified by the Global 

Lakes and Wetlands Database30, are mapped in blue. Pixel resolution, 5 km; period, 2000–2013. 

Continental outlines were modified from a shapefile using ArcGIS 10.2 software 

(http://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d). ArcGIS and 

ArcMap are the intellectual property of Esri and are used herein under license.  
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Extended Data Figure 8 Mean–variance relationships. a–d, Plots of the mean–variance relationships 

for EVI (a) and the three climate variables derived from MODIS data (ground temperature (b), water 

availability (c) and cloud cover (d)). Owing to the large number of pixels (7,200 × 3,000), these plots are 

made using 1,000 randomly sampled points from across the Earth surface for clarity. 

 



Publisher: NPG; Journal: Nature: Nature; Article Type: Biology letter 
 DOI: 10.1038/nature16986 

Page 23 of 25 

 

  

  

Extended Data Figure 9 Mean standard error of the MODIS EVI observations. Mean standard 

error of the MODIS EVI observations, calculated on a monthly basis over the period 2000–2013 as the 

standard deviation of all EVI observations per 5 km pixel divided by the square root of the number of 

observations. Areas with dominant barren land (mean EVI < 0.1 for all months) and permanent ice are 

shown grey. Wetland areas, as identified by the Global Lakes and Wetlands Database30, are mapped in 

blue. Continental outlines were modified from a shapefile using ArcGIS 10.2 software 

(http://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d). ArcGIS and 

ArcMap are the intellectual property of Esri and are used herein under license. 
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Extended Data Figure 10 Normalized confidence interval amplitudes. Normalized confidence 

interval amplitudes (NCIA) for the regression coefficients in the EVI versus external forcings 

(temperature, AET/PET, cloudiness) and memory effects (EVI t−1) regression. Larger NCIA values 

correspond to larger uncertainty in the coefficient estimates. Amplitudes were normalized by the mean 

coefficient value in each 5 km pixel (that is, a value of 2 corresponds to a total uncertainty twice as big 
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as the coefficient value). Only significant coefficients in the original PCA regression were accounted 

for, and hence no coefficient crosses zero in any pixel. Areas with dominant barren land (mean EVI 

< 0.1 for all months) and permanent ice are shown grey. Wetland areas, as identified by the Global 

Lakes and Wetlands Database30, are mapped in blue. a, Water availability; b, temperature; c, 

cloudiness; d, EVI t−1. Continental outlines were modified from a shapefile using ArcGIS 10.2 

software (http://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d). ArcGIS 

and ArcMap are the intellectual property of Esri and are used herein under license. 

 


