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Abstract—Global navigation satellite systems-reflectometry
(GNSS-R) is an emerging remote sensing technique that makes
use of navigation signals as signals of opportunity in a multistatic
radar configuration, with as many transmitters as navigation satel-
lites are in view. GNSS-R sensitivity to soil moisture has already
been proven from ground-based and airborne experiments, but
studies using space-borne data are still preliminary due to the
limited amount of data, collocation, footprint heterogeneity, etc.
This study presents a sensitivity study of TechDemoSat-1 GNSS-R
data to soil moisture over different types of surfaces (i.e., vegeta-
tion covers) and for a wide range of soil moisture and normalized
difference vegetation index (NDVI) values. Despite the scattering
in the data, which can be largely attributed to the delay-Doppler
maps peak variance, the temporal and spatial (footprint size) collo-
cation mismatch with the SMOS soil moisture, and MODIS NDVI
vegetation data, and land use data, experimental results for low
NDVI values show a large sensitivity to soil moisture and a rela-
tively good Pearson correlation coefficient. As the vegetation cover
increases (NDVI increases) the reflectivity, the sensitivity to soil
moisture and the Pearson correlation coefficient decreases, but it
is still significant.

Index Terms—Global navigation satellite systems-reflectometry
(GNSS-R), land use, MODIS, normalized difference vegetation in-
dex (NDVI), SMOS, soil moisture (SM), TechDemoSat-1 (TDS-1).

I. INTRODUCTION

T
HE use of global positioning system (GPS) signals as sig-

nals of opportunity to perform scatterometry was first pro-

posed in 1988 [1]. Three years later, in 1991, there was the first

evidence that GPS navigation signals could be collected and

tracked after being scattered on the sea surface, when a French

aircraft was testing a GPS receiver [2]. In 1993, the concept of in-

terferometric GNSS-R, in which the direct and scattered signals

are cross-correlated to take advantage of the large bandwidth

signals, was proposed by ESA for mesoscale ocean altimetry

[3]. In 1996, an analysis of the properties of the scattered signal
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when cross-correlated with a replica of the direct signal was per-

formed [4], a technique known today as conventional GNSS-R,

and in 1997, the first GPS reflected signals were collected from

an aircraft using NASA’s delay mapping receiver [5]. The first

GPS-R data from space were found in fragments of SIR-C data

without radar returns [6]. The first dedicated space-borne GPS

reflectometer was a secondary payload on board the UK-DMC

satellite (launched in September 2003 [7]) consisting of a L1

C/A data logger with an 11.8-dB antenna gain. The UK-DMC

GPS-R experiment demonstrated the feasibility of GPS reflec-

tometry from ocean, ice, and land surfaces. More recently, in

July 2014, the UK TechDemoSat-1 mission (TDS-1) was suc-

cessfully launched [8] carrying an improved secondary L1 C/A

Code GNSS-R payload (SGR-ReSI), with options for Galileo

E1, GPS L2C, Glonass L1, GPS L5, Galileo E5, and on-board

data processing [9].

Today, with the advent of other satellite navigation systems ei-

ther global (GNSS such as GPS, Glonass, Galileo, and Beidou),

regional (RNSS such as IRNSS and QZSS), or satellite-based

augmentation systems (SBAS such as EGNOS, WAAS, MSAS),

the number of transmitting satellites is rapidly increasing,

providing a large number of simultaneous observations.

From the originally proposed applications (wind speed [1]

and altimetry [3]), many others have been developed includ-

ing wind speed and direction measurements, ice altimetry, soil

moisture, vegetation height and biomass, snow depth (see,

for example, [10] for an in depth review, and in particular

[11]–[13] for previous studies on the dependence with soil

moisture (SM) of different GNSS-R observables, namely the

interference pattern technique and scatterometry observations).

This study explores the sensitivity of TDS-1 GNSS-R data to

soil moisture, taking into account different vegetation covers,

and their condition, parameterized as a function of the nor-

malized difference vegetation index (NDVI). It is organized

as follows: Section II describes the methodology, the data ac-

quired, the data processing, and collocation, and compares

them with the ones used in a recently published work [14].

Section III presents the results obtained as a function of the

land use, the SM and the NDVI, and discusses them. Finally,

Section IV summarizes the main conclusions.

II. METHODOLOGY

TDS-1 GNSS-R payload measures the reflected GNSS sig-

nals only. Since no reference (direct signal) is measured, GNSS-

R data are uncalibrated. Therefore, in this study, following the

same procedure as in [15] and [16], the data processing is per-

formed using the variations of the signal-to-noise ratio (SNR)
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Fig. 1. TDS-1 GNSS-R SNR map [dB] over land (scale truncated to 5 dB,
antenna gain �10 dB).

Fig. 2. Available SMOS L3 SM data [17] collocated with TDS-1 GNSS-R
data.

of the delay-Doppler maps (DDMs) computed using 1-ms co-

herent integration time, followed by 1000 incoherent averages

(total integration time = 1 s), as the ratio of:

1) the uncalibrated signal power computed as the average

power over a 1.5 kHz × 1 chip window centered around

the peak position of the DDM, and

2) the uncalibrated noise power computed as the average

power over a 10 kHz × 1 chip window in the signal-free

area of the DDM, before the leading edge of the waveform

after compensation of the antenna gain versus the gain in the

boresight direction, as in [16].1

Fig. 1 shows the collected available data from September

1st, 2014 to February 5th, 2015, filtered for antenna gains

larger than 10 dB, which correspond to near-nadir (θi< 15◦)

reflections collected through the antenna half-power beamwidth

(∆θ−3dB= 30◦), and, therefore, the variation of the reflection

coefficient due to variations of the incidence angle is neg-

ligible. The dataset analyzed consists of a total of 515540

GNSS-R observations.

In order to analyze the TDS-1 dataset, the following datasets

have been collocated:

1) SM data from SMOS level 3 [17] (see Fig. 2),2

2) NDVI data from MODIS [18] (see Fig. 3), and

for proper data interpretation, data have also been separated us-

ing the most recently available (2011) global land cover map

1In [11], the reflected power is computed as subtracting an average noise floor,
the antenna pattern gain is also compensated, and the different range variations
are accounted for to be able to account for a larger range of incidence angles,
resulting in a normalized observable similar to the one used in this paper.

2The SMOS level 2 v620 operational processor was used in the
generation of the level 3 products [https://earth.esa.int/documents/10174/
1854503/SMOS_L2SMv620_release_note].

Fig. 3. MODIS NDVI [18] collocated with TDS-1 GNSS-R data.

Fig. 4. MODIS land cover map [19] collocated with TDS-1 GNSS-R data.
Classes are described in the text.

Fig. 5. Regions (marked in blue) where SM accuracy requirements
(0.04 m3/m3) cannot be met.

derived from MODIS [19] (see Fig. 4), including the follow-

ing classes: 0) water, 1) evergreen needleleaf forest, 2) ev-

ergreen broadleaf forest, 3) deciduous needleleaf forest, 4)

deciduous broadleaf forest, 5) mixed forest, 6) closed shrub land,

7) open shrubland, 8) woody savanna, 9) savanna, 10) grassland,

11) permanent wetlands, 12) croplands, 13) urban and built up,

14) cropland/natural vegetation, 15) permanent snow and ice,

and 16) barren or sparsely vegetated.

It is important to note that the SM accuracy threshold

(0.04 m3/m3) can only be met over the land areas marked in blue

in Fig. 5, which exclude frozen global land regions, regions with

high topography (standard deviation of elevation larger than

300 m), open water (fraction larger than 10%), urban areas

(larger than 50%), densely vegetated regions with average veg-

etation water content (VWC) larger than 5 kg/m2, where the sen-

sitivity of the microwave signal to SM decreases significantly,

or areas contaminated by radio-frequency interference. In all

these areas, SMOS SM retrievals fail or are not even attempted,



Fig. 6. Sample DDM over ice, ocean and land, as measured by TDS-1
[http://www.merrbys.co.uk/]. Over ice there is and almost perfect specular re-
flection, showing a strong coherent component. Over the ocean the scattering
comes from a large area, the coherent component has almost vanished, and
the incoherent component dominates. Over land the scattering comes from a
reduced area around the specular reflection point, there is a non-negligible
coherent component, but the incoherent component is also present.

Fig. 7. Selected target areas over Australia.

Fig. 8. Selected target areas over South America.

and, therefore, the lack of SM data automatically excludes these

data points in this study.

It is important to note also that, despite the collocation efforts,

the temporal and spatial resolutions of the different data are quite

different, and this is probably one of the largest contributors to

the scattering of the results presented in Section III, together

with the footprint heterogeneity, surface topography, and surface

roughness effects.

1) On one side, since the scattering of the GNSS signals

over land is dominated by the coherent component [20]

(see Fig. 6), the spatial resolution of the GNSS-R observa-

tions is given by the size of the first Fresnel zone (∼1 km,

[10]), but blurred in the along-track direction due to

the “long” incoherent averaging (∼ vground−track · Ti ≈

6.5 km/s · 1 s = 6.5 km). Scattering over ice is even more

coherent, and scattering over the ocean is mostly diffuse.

2) On the other side, the native resolution of SMOS SM data

is ∼40–50 km, although for convenience, level 3 data are

regridded at 25 km. The nominal SMOS temporal res-

olution is three days at the equator, but decreases with

increasing latitude. In this study, both ascending and de-

scending passes have been processed, but no noticeable

differences have been found when using both datasets,

therefore only the ascending passes are presented.

3) The different vegetation indices derived from MODIS

are NDVI at 250 m at 16 day, and NDVI and enhanced



Fig. 9. Selected target areas over North America.

vegetation index at 1 and 25 km every 16 day or monthly.

The ones available at [18] are regridded at an intermedi-

ate resolution of 0.1° (∼10 km at the equator), and are

produced every 16 days or monthly. The former ones (16

days) have been used.

4) Finally, the global land cover maps [19] derived from

MODIS are the most recent ones, corresponding to 2011

and are regridded at a resolution of 0.1° (∼10 km at

the equator).

III. UNDERSTANDING GNSS-R SPACEBORNE DATA

In the following paragraphs, selected areas are presented to

discuss different effects that are affecting the GNSS-R ob-

servations from space. In each target area, selected pixels

are indicated showing the latitude, longitude, SNR, and

date (year, month, day, UTC hour, minute, and second) of

acquisition, and:

1) Over land: land use (according to classification in Fig. 4),

SM value [m3/m3] if retrieved, and NDVI [-], and

2) over water: 10-m height ASCAT wind speed [m·s−1], if

retrieved (not too close to the coast).

Color scale (not shown) goes from 0 (red) to 20 dB (dark

blue) and it is the same for all figures.

A. Examples Over Australia

Fig. 7 shows the whole map of Australia [see Fig. 7(a)],

and two selected areas in Queensland, North of Brisbane

[see Fig. 7(b)], and lakes Gairdner and Torrens, North of

Adelaide [see Fig. 7(c)].

In Fig. 7(b), the two pixels on the East show quite

high SM and NVDI values, and, therefore, high SNRs



Fig. 10. Selected target areas over Europe.

(reflectivities). With decreasing SM and increasing NDVI, re-

flectivity decreases. However, the two pixels on the West show

for the same land use (open shrubland) and very low SM values

(< 0.05), very different SNRs (> 11 dB), which is difficult to

explain just because of the different NDVI values 0.21 and 0.37

(see Section IV-B).

Fig. 11. Selected target areas over Africa.

The two pixels on the East in Fig. 7(c) are located in the

shoreline of Island Lagoon, mostly a salt lake. The pixels en-

compass some land showing a low NDVI (∼0.15) and low SM.

The large difference in reflectivity here (>13 dB) can be due to

the geometry since in the Easternmost pixels is in a mountainous

region, while the central pixel is in a flat region, leading to a

more specular reflection. The Western most pixel over Gairdner

lake exhibits an intermediate value of SNR, the salty lake is

nearly flat, and the SM value could not be derived from SMOS,

most likely because the algorithm did not converge due to the

salty nature of the terrain.

B. Examples Over South America

Fig. 8 shows the map of South America [see Fig. 8(a)], and a

selected area East of Asunción, Paraguay encompassing woody

savanna (class 8), and savanna (class 9). The three Northern most

pixels exhibit very high NDVI values (>0.68), but anomalous

low SM values (<0.13). A possible reason is that due to the

dense vegetation cover, the accuracy of the SMOS retrieval

algorithm degrades, and due to the large vegetation attenuation,

the soil emission does not pass through it, and the estimated SM

is lower than it should be. In any case, it is clear from these

three pixels, that increasing NDVI (0.68 and 0.75) leads to a

reduction of the SNR (8.97 and 4.15 dB, respectively), and that



Fig. 12. Scatter plot and robust fit of TDS-1 GNSS-R data versus SMOS SM data for: (a) evergreen needleleaf forests, (b) evergreen broadleaf forests, (c)
deciduous broadleaf forest, and (d) mixed forest.

decreasing SM (0.12 and 0.08) leads to a reduction of the SNR

as well (4.15 and 2.2 dB, respectively).

The Easternmost pixel corresponds to permanent wetlands

(class 11), which leads to a high soil reflectivity, and despite the

high vegetation cover (NDVI = 0.64) and attenuation, a high

SNR (16.6 dB).

C. Examples Over North America

Fig. 9 shows the map of the US [see Fig. 9(a)], and four se-

lected areas: the Florida peninsula [see Fig. 9(b)], San Francisco

[see Fig. 9(c)], Salt Lake city [see Fig. 9(d)], and the Pamlico

Sound [see Fig. 9(e)], in the North Carolina coast.

The Florida peninsula is a clear example of a flat terrain.

The two Westernmost pixels correspond to “woody savanna,”

but the NDVI values are very high (0.65 and 0.75), and despite

this, there is a significant sensitivity to SM changes ∼8 dB for

a 0.16 m3/m3 SM increase, which is significant, and clearly

detectable with the TDS-1 antenna gain. The Easternmost pixel

corresponds to cropland/natural vegetation, and it has also a very

high NDVI value (0.62). The SM value has not been retrieved

by SMOS, because the pixel is just about ∼25 km away from

the Okeechobee Lake. However, in this case, due to the better

spatial resolution (smaller footprint size), the signature on the

GNSS-R observable is somewhere in between the other two

pixels, which suggests that the SM can be retrieved at a better

scale than with passive microwaves.

The San Francisco area has been selected because the satellite

ground track passes through a mountainous region with land

covers grassland for the Southernmost pixel, croplands for the

Northernmost, and the third Northernmost pixels, and urban and

built up for the second Northernmost pixel. Although the three

rural pixels have a similar SM value (0.19 to 0.25 m3/m3), the

reflectivity does not follow a particular pattern. It does for the

two cropland pixels, where the higher SM value is associated

with a higher reflectivity, but it does not for the grassland pixel

which exhibits a lower SNR (reflectivity), despite the lower

NDVI, and a similar SM value. It is also surprising, because the

terrain is nearly flat, so the GNSS reflection should be nearly

specular, leading to a stronger return.



Fig. 13. Scatter plot and robust fit of TDS-1 GNSS-R data versus SMOS SM data for: (a) open shrublands, (b) savanna, (c) woody savanna, and (d) grasslands.

Six pixels in the Salt lake city region have been selected: the

reflection in the North East pixel is the strongest one, since it

corresponds to a reflection over calm water (SM is available, and

NVDI is slightly negative). The next two pixels in the Eastern

track correspond to open shrubland, and grassland, with increas-

ing values of NDVI. However, in the second one, the SMOS SM

value is not available because it is a mountainous region, which

may also explain the lower (∼2 dB less) reflection coefficient.

The three pixels on the Western most tracks correspond basi-

cally to flat areas with low vegetation. The first two in the North

correspond to barren or sparsely vegetated areas (NDVI < 0.1),

with a relatively high SM (0.32 and 0.35), while the one in the

South corresponds to open shrubland, it is drier, and it has a

lower vegetation content. As expected, the SNR (reflectivity)

for the first two pixels is therefore much higher (∼7.5–9 dB).

For the sake of completeness, the last region in the US in the

North Carolina coast shows some results over the ocean: from a

nearly specular reflection in calm waters of the Pamlico sound,

with a strong coherent component (SNR = 13.06 dB), to an

incoherent reflection over open waters, with decreasing SNRs

down to 1.01 dB for the Easternmost pixel with moderate high

winds 14.18 m/s. Note that wind speed values close to the coast

cannot be retrieved.

D. Examples Over Europe

Three selected target areas over Europe have been selected

(see Fig. 9): The Netherlands/West Germany [see Fig. 9(a)], the

French Alps [see Fig. 9(b)], and Catalonia [see Fig. 9(c)] in the

North East of Spain.

In The Netherlands/West Germany, the pixel in the North

West is categorized as grassland, but a careful study shows that

it corresponds to an inland water body (Sneekermeer), which

explains the large reflectivity value. Despite this, since the sur-

face fraction cover by water is relatively small, SMOS was able

to infer a (high) SM value, and the NDVI also indicates the

presence of dense vegetation. The two pixels in the South cor-

respond to mixed forest, in a mountainous region (SM is not



Fig. 14. Scatter plot and robust fit of TDS-1 GNSS-R data versus SMOS
SM data for: (a) croplands, (b) croplands/natural vegetation, and (c) barren or
sparsely vegetated regions.

available), and with dense vegetation (NDVI from 0.48 to 0.62).

Again, differences in the reflectivities here can only be attributed

to differences in the SM values (not available) and on surface

topography effects. The pixel in the North-East is categorized as

cropland/natural vegetation, but a more detailed analysis reveals

it is a flat cropland area with a high NDVI = 0.5. In this pixel,

the estimated SM value is lower than the others (SM = 0.15),

but the reflectivity is significantly lower ∼0.5 dB, without an

apparent explanation.

In the French Alps region, two pixels with very low vegetation

(NDVI < 0.07) have been selected to illustrate the effect of

the topography slopes in the reflectivity. While in the Northern

pixel the SNR is as high as 9.23 dB, in the Sourthern one, it

is just 0.96 dB, because the different slopes, as compared to

the satellite view. In the Northern pixel, the slope is looking in

the North-West direction, while in the second case, the slope is

looking South. SM is not available in both cases because of the

topography effects, but it is not believed to be the main source

of difference.

In the Catalonia region, five pixels in a ground track have been

selected: from South to North, the first one is in the Mediter-

ranean sea, but less than 10 km away from the coastline, so

the ASCAT wind speed is not available. In this case, the SNR

is 5.2 dB, significantly lower than for the next pixel, which

lies in the Alfacs bay at the South of the Ebro river mouth

[see Fig. 10(d) lower right panel], where the water is very calm,

and the reflection is nearly specular. In this case, the SNR is as

high as 16.53 dB, the highest one that has been found in the

whole dataset. The next two pixels correspond to “woody sa-

vanna” and exhibit a decreasing SNRs because of the increasing

topography effects, and the decreasing SM (SMOS SM is not

available, but inspection of the land use shows olive trees in the

first case and a variety of cereals in the second one). Finally,

the Northernmost pixel has been selected because, despite the

area is classified as croplands, the SNR is dominated by a spec-

ular reflection in the Ivars water reservoir [see Fig. 10(d) upper

right panel]. Since this water reservoir is much smaller in size

than other water bodies for which a high SNR is observed, it

can be used to estimate the geolocalization errors, which are

∼2 km, much smaller than the pixel size of the SMOS SM, and

the MODIS land cover and NDVI maps used (0.1° resolution).

E. Examples Over Africa

Over Africa [see Fig. 11(a)], two selected pixels in the Ly-

bia’s desert are shown [see Fig. 11(b)]. Both pixels belong to

ground tracks correctly classified as barren or sparsely veg-

etated, with nearly zero SM, and very small NDVI (<0.12),

even though a smaller value would be expected. What is sur-

prising is that, under apparently the same surface conditions,

and no evident topography effects, both acquisitions, which are

nearly simultaneous, exhibit very different SNRs (0.89 versus

8.4 dB). No plausible reason has been found, except for a weak

volume scattering and a soil dielectric profile inhomogeneity

(i.e., the GNSS signals are reflected from an underground layer

of higher dielectric constant), as suggested—for example—in

[21] and [22].



Fig. 15. Continued.

IV. RESULTS AND DISCUSSION

From the total of 515540 GNSS-R data points, there are

125565 collocations with SM data, for which 7699 correspond

to an antenna pattern larger than 10 dB and near nadir in-

cidence angle (θi≤ 15◦). These data are analyzed first as a

function of the surface type, and later as a function of the

NDVI.

A. Data Analysis as a Function of the Surface Type

After preprocessing the datasets described above, the scatter

plots of TDS-1 SNR versus SMOS SM are plotted for each

surface type for which there was enough data in order to perform

a robust fit [23], indicating the MODIS NDVI value with a color

scale from 0 (blue) to 1 (red). Figs. 12–14 summarize these

results. The legend in each plot indicates the linear robust fit

[23] of the data (SNRTDS−1 versus SMSMOS ), the RMS error

of the fit, the Pearson correlation coefficient (R), and the number

of points used in the fit.

Figs. 12(a)–(d) shows the results over different types of

forests. Results for deciduous needleleaf forests are not shown

because of the lack of collocated data. Although there is no

apparent sensitivity to SM in the case of needleleaf and mixed

forests, in the case of broadleaf forests, there is some small sen-

sitivity ∼3.1–6.1 dB/(m3/m3). However, it has to be noted that

the Pearson correlation coefficient is quite low, even for ever-

green broadleaf forests (R = 0.28). This can be attributed to the

high NDVI values, and the footprint heterogeneity, except for

the large extensions occupied by evergreen broadleaf forest in

tropical regions.

Fig. 13(a)–(d) shows the results over open shrublands, sa-

vannas, woody savannas, and grasslands. Again, there is some

sensitivity to the surface SM 3.8–7.5 dB/(m3/m3), actually larger

than that over forests, although the Pearson correlation coeffi-

cient is still quite low, except for grasslands (R = 0.4). The

scattering of the data is quite large, suggesting that footprint

heterogeneity mainly, and topography to a smaller extent may

be playing an important role (as illustrated in Section III). This

is especially significant in the case of open shrublands, in which

the NDVI values are low. The differences between savannas and

woody savannas are not significant, and within the level of the

scattering of the data. Grasslands exhibit the highest sensitivity



Fig. 15a. Scatter plot and robust fits of TDS-1 GNSS-R data versus SMOS SM data binned in NDVI ranges of 0.1.



Fig. 16. Linear robust fits of (a) ordinates at the origin in [dB] and (b) slopes
[dB/(m3/m3)] corresponding to Fig. 15(a)–(j).

to SM ∼7.5 dB/(m3/m3), and the highest Pearson correlation

coefficient, but the scatter plot reveals that the higher SM values

correspond also to higher NDVI values, and most data points

are lying below the regression line. This is an indication that

the vegetation layer is attenuating the GPS signal, and, thus, it

is reducing the sensitivity to soil moisture. This point will be

addressed later.

Finally, Fig. 15(a) to (c) shows the results over croplands,

croplands/natural vegetation areas, and barren/sparsely vege-

tated areas. Now, the sensitivity to the surface SM is the highest

10.7–14.0 dB/(m3/m3), as well as the Pearson correlation co-

efficient (R = 0.45 and 0.35), except for the barren/sparsely

vegetated areas which is just R = 0.19, despite the low NDVI

values. This is an unexpected result that suggests that despite

the apparent footprint homogeneity (see Fig. 4, class 16), other

effects, such as topography (even gentle slopes) may be play-

ing a role due to the variations of the local incidence angle, as

discussed in [11] and [20].

B. Data Analysis as a Function of the NDVI

In the previous section, it has become apparent that the veg-

etation cover plays an important role reducing the sensitivity to

soil moisture. In this study, the vegetation height has not been

used as a proxy for vegetation because, from L-band microwave

radiometry, it is known that it is the VWC what matters in the

attenuation, which is the dominant effect at L-band, much larger

than the scattering that takes place in the branches and trunks.

Since the VWC can be related to the leaf area index (LAI), the

NDVI, or other vegetation indices, the NDVI has been used since

it is readily available every 15 days from NASA NEO website

[18]. The impact of vegetation attenuation will be analyzed in

more detail in Section IV-C.

To further analyze this effect, the whole dataset has now been

binned by NDVI values in steps of 0.1, regardless of the land use.

Results are shown in Fig. 15(a)–(j). Fig. 15(a) corresponds to

NDVI values from 0 to 0.1. In this case, the absence of vegetation

translates into a very high sensitivity to SM ∼38 dB/(m3/m3),

and the highest Pearson correlation parameter R = 0.63, which

demonstrates the large sensitivity of GNSS-R observations to

soil moisture. As the NDVI increases (0.1 ≤ NDVI ≤ 0.4), veg-

etation reduces the sensitivity to soil moisture, and the Pearson

correlation coefficient sharply decreases. This can be attributed

to different factors, but notably to footprint heterogeneity, rather

than to vegetation attenuation and scattering effects. Interest-

ingly, for higher NDVI values (0.4 ≤ NDVI ≤ 1.0), the sen-

sitivity to SM increases again (5.0–13.6 dB/(m3/m3)), as well

as the Pearson correlation coefficient R ≈ 0.22 − 0.35. This

apparently surprising result may be attributed to the fact that

densely vegetated areas are also those for which there is more

water availability for plants to grow.

Fig. 16 shows the linear robust fits of (a) the ordinates at the

origin, and (b) the slopes corresponding to Fig. 15(a)–(j). The

values of the ordinate at the origin and slope for NDVIs between

0 and 0.1 are both discarded by the robust fit as outliers. As for

the other NDVI values, the linear robust fit predicts a decrease

of the reflectivity (ordinate at the origin) from 5 to 1 dB, and

an increase of the slope from 5 to 12 dB/(m3/m3) when the

NDVI increases from 0 to 1, although in the second case, there

is a large scattering in the data. The decrease of the reflectivity

(ordinate at the origin) is associated to the reduction of the

apparent reflection coefficient due to the presence of vegetation

as it will be discussed in Section IV-C.

C. Vegetation Impact on GNSS-R Observations

At this point, it is worth noting that, since the scattering

over the soil surface is mostly coherent, the prediction of the

vegetation impact on the GNSS-R observations can benefit from

the extensive studies performed for microwave radiometry at

L-band, i.e., at 1.4 GHz, in which the Tau–Omega has been



successfully used [24], [25]:
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where the first term corresponds to the soil emission attenu-

ated by the vegetation canopy, the second one corresponds to

the vegetation upwelling emission including the first-order scat-

tering through the single scattering albedo (ωcanopy
p ), and the

third one to the vegetation downwelling emission reflected on

the soil surface, and then attenuated and scattered in the veg-

etation in the upwelling path. The vegetation layer attenuation

is Lcanopy
p = eτ c a n o p y

p /cos(θ) , where τ canopy
p is the nadir optical

depth of the vegetation layer.

From the emissivity in (1), the soil+vegetation reflection3

coefficient can be derived as

Γsoil+veg
p (θ) = Γsoil

p (θ) · e−2·τ c a n o p y
p /cos(θ)

·
(

1 − ωcanopy
p

)2

(2)

where Γp=LR (θ) = (Γv (θ) − Γh(θ))/2 is the reflection co-

efficient at circular polarization expressed as a function of

the vertical and horizontal linear polarization reflection coef-

ficients [26], 2 · τ canopy
p is the two-way vegetation opacity, and

(1 − ωcanopy
p )2 accounts for the two-path of the GPS signal in

the down- and upwelling paths.

For low vegetation, the vegetation opacity (also known

as vegetation optical depth) can be related to the VWC as

[24], [25]:

τp = b · VWC = (0.12 ± 0.03) · VWC (3)

and good correlation has also been obtained for green vegeta-

tion between τp and the LAI, although this parameterization

is less accurate during the senescence phase, during which the

opacity might be underestimated from low LAI values over

some vegetation types. A possible parameterization is given by

[24], [25]:

τNAD = b′s · LAI + b′′s (4)

τp = τNAD ·
(

sin2 (θ) · ttp + cos2 (θ)
)

(5)

where the ttp are parameters that allow to account for the depen-

dence of τp with the incidence angle. Even though all vegetation

parameters b′s , tth , and ttv are a function of the canopy type,

the dependence of b′s and on the canopy hydric status, and

the change of the vegetation structure in relation to the phenol-

ogy is usually neglected (b′s = 0.06, b′′s = 0). The dependence

of τp with the incidence angle and polarization can also be

usually neglected (tth = ttv = 1), so τp = τv = τh = τNAD ,

and, therefore, τLR = τh,v . For low vegetation, at L-band, the

single-scattering albedo can be safely neglected ωcanopy ≈ 0.

Forests are aggregated in three categories: needle leaf and

broadleaf (including tropical forests and woodland), mixed

3Γp=LR stands for the reflection coefficient when the incident wave is right-
hand circularly polarized, as in the case of GNSS signals, and the scattered wave
is left-hand circularly polarized.

forests, and woodlands. The same general procedure can be

applied for the three categories as in the low vegetation case,

although the parameters are specific of each category [25]:

τNAD = b′F · LAImax + b
′′

F (6)

leading to a unified approach. As a result of the variability

in orientation of branches and leaves, a simple τNAD constant

independent on the polarization and incidence angle is often

used which includes the contributions from the crown, the lit-

ter, and the understory: b′F = 0.295 for deciduous broadleaf,

evergreen broadleaf, and woodlands, b′F = 0.337 for needle

leaf, and b′F = 0.31 for mixed forests, and b′′F = 0. For forests,

the single scattering albedo may also be considered constant,

i.e., independent on angle, polarization and time, but not neg-

ligible. At L-band, it is approximated by ωcanopy ≈ 0.095
for deciduous broadleaf, evergreen broadleaf, and woodlands,

ωcanopy ≈ 0.080 for needle leaf, and ωcanopy ≈ 0.087 for mixed

forests.

The application of the Tau—Omega model explains the dif-

ferent behaviors presented, but not the lack of sensitivity to of

mixed and needleleaf forests.

In [27], a number of vegetation indices were analyzed to ac-

count for the vegetation effects in GNSS-R observations. It was

concluded that the Normalized Difference Water Index 2 com-

puted as NDWI2 − red = (ρred−ρSWIR2)/(ρred+ρSWIR2)
from bands red (640–670 nm), and SWIR2 (2100–2290 nm)

from LANDSAT 8 Operational Land Imager instrument, was the

most promising one. However, since it has been demonstrated

[28] that a linear relationship exists between optical depth and

log(1-NDVI) (with R2 > 99%), in this study, among different

vegetation indices, the NDVI has been used as a variable to

account for the vegetation status.

V. CONCLUSION

A recent study [11] has analyzed the received GNSS-R power

from TDS-1 versus log(σ), being the σ the rms surface height,

the canopy height, the SMOS dielectric constant, and the SMOS

retrieved soil moisture. In this study, a qualitative analysis of the

surface soil moisture, roughness, topography, and subsurface

volume scattering has been performed to illustrate and justify

the impact of SM and vegetation in the GNSS-R data, and the

scatter in the statistical results obtained later. Then, the sensitiv-

ity of GNSS-R scattered power to SM is analyzed at global scale

over different types of surfaces, and for a wide range of values

of the NDVI. It has been shown that for nearly bare soils, there

is a high sensitivity to SM ∼38 dB/(m3/m3), and a high Pearson

correlation parameter R = 0.63, in agreement with [11] where

a sensitivity of 7 dB/(0.2 m3/m3) was quoted. The reflection co-

efficient and the sensitivity to SM both decrease with increasing

vegetation opacity (and scattering). However, excluding NDVI

values smaller than 0.1, there is a moderate increase of the sen-

sitivity to SM for increasing NDVI, which may be attributed to

the fact that the denser vegetation covers occur in humid regions.

Since GNSS-R observations over land are mostly coherent, the

impact of the vegetation cover can benefit from the parame-

terizations of the vegetation opacity and the single scattering



albedo of the well-known Tau–Omega model successfully used

in L-band microwave radiometry. Despite the vegetation cover

reduces the GNSS-R reflectivity values and the sensitivity to

soil moisture, vegetation effects can be accounted for in GNSS-

R SM retrieval algorithms using vegetation indices such as the

NDVI, the LAI, or the SWIR2 [27] to compensate for vegetation

effects in SM retrieval algorithms from space-borne GNSS-R.
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