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Abstract: Temperature and precipitation are considered to be the most important indicators affecting
the green-up date. Sensitivity of the green-up date to temperature and precipitation is considered
to be one of the key indicators to characterize the response of terrestrial ecosystems to climate
change. We selected the main grassland types for analysis, including temperate steppe, temperate
meadow steppe, upland meadow, and lowland meadow. This study investigates the variation in key
meteorological indicators (daily maximum temperature (Tmax), daily minimum temperature (Tmin),
and precipitation) between 2001 and 2018. We then examined the partial correlation and sensitivity
of green-up date (GUD) to Tmax, Tmin, and precipitation. Our analysis indicated that the average
GUD across the whole area was DOY 113. The mean GUD trend was −3.1 days/decade and the 25%
region advanced significantly. Tmax and Tmin mainly showed a decreasing trend in winter (p > 0.05).
In spring, Tmax mainly showed an increasing trend (p > 0.05) and Tmin a decreasing trend (p > 0.05).
Precipitation showed no significant (p > 0.05) change trend and the trend range was ±10 mm/decade.
For temperate steppe, the increase in Tmin in March promotes green-up (27.3%, the proportion
of significant pixels), with a sensitivity of −0.17 days/◦C. In addition, precipitation in April also
promotes green-up (21.7%), with a sensitivity of −0.32 days/mm. The GUDs of temperate meadow
steppe (73.9%), lowland meadow (65.9%), and upland meadow (22.1%) were mainly affected by
Tmin in March, with sensitivities of −0.15 days/◦C, −0.13 days/◦C, and −0.14 days/◦C, respectively.
The results of this study reveal the response of vegetation to climate warming and contribute to
improving the prediction of ecological changes as temperatures increase in the future.

Keywords: green-up date; phenology; greening; sensitivity; climate change; meteorological indica-
tors; Hulun Buir; grassland

1. Introduction

Global temperatures continue to warm as a component of climate change, which
affects many ecological patterns [1]. Phenology is the study of the development of plant
and animal behavior throughout the year [2]. Myneni [3] found that in the context of global
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warming, plant phenology has undergone profound changes and has become a sensitive
indicator of global change [4]. Climate change alters the time of phenological events [5,6],
which may disrupt seasonal interactions between species, thereby affecting biodiversity
and ecosystem primary production [7,8]. To quantify the response of green-up date (GUD)
to climate change, it is increasingly important to pay attention to the interannual variation
of GUD relative to the temperature/precipitation change per unit, which is called the
temperature/precipitation sensitivity (days/◦C or days/mm, respectively) [9–11]. From
1956 to 2006, the daily minimum temperature (Tmin) of the global land surface increased
faster than that of the daily maximum temperature (Tmax). Such asymmetric warming
patterns may result in important biological trends, especially in basic ecosystem metabolic
processes, such as photosynthesis and respiration, which are sensitive to temperature
changes [12]. Therefore, nighttime warming may have a greater effect on respiration than
diurnal warming on photosynthesis. Most importantly, sensitivity is considered to be one
of the key indicators to characterize the response of terrestrial ecosystems to climate change,
and understanding the sensitivity of GUD to temperature can greatly improve our ability
to predict ecological changes as temperatures increase in the future [13,14].

Temperature is considered to be a convenient descriptor of temperate and cold zone
vegetation distribution [15]. Several studies have shown that climate warming in recent
decades has caused spatio-temporal changes in GUD, with the magnitude varying region-
ally and globally [3,5,16–22]. Tmax and Tmin have different changes and different effects
on phenology [23–25]. A recent study found that an increase in Tmax had a greater effect
on GUD than an increase in Tmin in central Europe. In the past few decades, Tmin has
increased faster than Tmax during the day in most parts of the world, leading to a reduction
in diurnal thermal amplitude [1]. Tmax is more relevant than Tmin for leaf development
because photosynthesis only occurs in the daytime and plays a greater role in plant carbon
fixation and plant green-up [26].

Researchers have found that ground-based observations [9–11,27], remote sensing
data [28,29], or flux data [30] show great variability in temperature sensitivity in the grass-
land types of different regions. In eastern Canada, a warming experiment on Picea mariana
at 20 different locations showed that both daytime and nighttime warming promoted
bud growth, with daytime warming being more conducive to germination than nighttime
warming [31]. In the Qinghai-Tibet Plateau, the increase in Tmin can significantly (p < 0.05)
advance vegetation green-up at both species and regional scales. However, Tmax had no
significant effect on GUD (p > 0.1) [32]. Compared with the cold Tibetan Plateau, China’s
temperate grasslands regions are warmer and drier, with a predominantly arid and semi-
arid climate. To understand the mechanisms by which temperature influences vegetation
greening, it is important to study the separate effects of daytime and nighttime warming
on vegetation GUD in temperate grasslands in China. A study had studied the asymmetric
effects of daytime and nighttime warming on spring phenology in the temperate grasslands
of China based AVHRR NDVI [24]. Therefore, it is necessary to use higher spatial resolution
remote sensing data for high precision research.

Hulun Buir is a grassland system with the highest latitude in China. The grasslands in
the southwest are semi-arid. The temperate meadow steppe (TMS) area is distributed on
the west side of the Great Khingan Mountains and is the most common type of TMS area in
China. The spatial heterogeneity of the hydroclimatic conditions determines the vegetation
distribution in the Hulun Buir grassland. In arid/semi-arid areas, water is critical for plant
growth, because soil moisture is usually not optimal.

It is often observed that vegetation activity at high elevations is mainly influenced
by temperature changes, whereas plant growth at low elevations is often limited by water
stress [33]. This view needs to be further examined in the Hulun Buir grassland. In addition,
snowmelt in some high-altitude ecological areas in spring, such as in the Qinghai-Tibet
Plateau, and often provides important supplementary water resources, thus influencing
the spring vegetation development [34]. Winter precipitation plays an important role in
regulating the spring vegetation phenology of water-deficient biomes in temperate steppe
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(TS) and temperate desert of China [35]. In arid and semi-arid areas of northeast China,
the dates of phenological events are most significantly correlated with precipitation in
the previous 2–4 months [36]. The GUD of the frozen soil in Inner Mongolia is mainly
dominated by early autumn and winter precipitation, and the frozen soil plays an important
role in storing the available water for subsequent vegetation green-up [37]. In the Hulun
Buir TS and TMS regions, the annual average temperature is lower, with more than half
of the regional annual average temperatures below 0 ◦C [38]. Usually, the soil surface
is covered with snow in winter and the spring temperature increases lead to the spring
snowmelt, which may have positive effects on GUD, but for which additional research
is necessary.

Our present research focuses on the Hulun Buir grassland for two main reasons. First,
this grassland is distributed in the extreme northeast portion of China across humid, sub-
humid, and semi-arid areas. Second, Hulun Buir is the most representative area of TMS
in China. Our study has three main aims: (1) describe the variation in Tmax, Tmin, and
precipitation in winter and spring; (2) quantify the partial correlation between GUD and
Tmax, Tmin, and precipitation; and (3) determine the sensitivity of different grassland type
GUD to Tmax, Tmin, and precipitation.

2. Materials and Methods
2.1. Study Area

The Hulun Buir Grassland is located at the middle latitudes of Eurasia, distributed
in the northern temperate zone and a small part of the cold temperate zone—the highest
latitude grassland area in China. Hulun Buir is distributed in the northeast of Inner
Mongolia, forming the most concentrated TMS in China. Yet, it is also a typical grassland
area, where a variety of meadow steppe ecosystems are found (Figure 1). It is an important
part of the steppe sub-region of central Asia in the Steppe region of Eurasia, with rich
grassland types. Precipitation gradually decreases from east to west, and the gradients
in vegetation biomass are obvious. From east to west, the grassland shifts from a typical
semi-arid climate through the meadow steppe, and the ecological geographical gradient
changes from east to west with the dryness of the climate. Detailed information on the
vegetation, topography, and climate are given in Guo et al. [38]. Based on an analysis of the
entire study area, we selected TS, TMS, lowland meadow (LM), and upland meadow (UM)
for a more detailed analysis.
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2.2. Determination of Vegetation Green-Up Date

Remote sensing data were derived from Moderate Resolution Imaging Spectrora-
diometer (MODIS) MOD09A1 data (2001–2018) of the National Aeronautics and Space
Administration (NASA) https://modis.gsfc.nasa.gov/ (18 September 2019). The MOD09A1
dataset was produced at a spatial resolution of 500 m and a temporal resolution of 8 days.
Annual vegetation GUD on Hulun Buir grassland was determined from the normalized
difference phenology index (NDPI). The NDPI was developed to minimize the effects of
snowmelt [39]. NDPI is a sensitive indicator of vegetation growth and is thus widely used
to derive GUD [38,39].

NDPI =
ρNIR − 0.74 × ρred + 0.26 × ρSWIR
ρNIR + 0.74 × ρred + 0.26 × ρSWIR

(1)

where ρNIR, ρred, ρSWIR represents the reflectance of the near-infrared band, red band, and
shortwave-infrared, respectively.

For processing, the NDPI time series were filtered with a double logistic function,
as described in Guo et al. [38]. After that, we determined GUD from the pre-processed
MODIS NDPI using the median method. The median method was used to monitor the
annual green-up date. The formula used is given below:

NDPImid = (NDPImax + NDPImin) × 50%, (2)

where NDPImid represents the NDPI of the green-up date, NDPImax represents the maxi-
mum NDPI throughout the growing season, and NDPImin represents the minimum of the
NDPI increase phase.

2.3. Calculation of the Key Meteorological Indicators

The meteorological data (2000–2018) used in this study included temperature, precipi-
tation, and insolation data downloaded from the China Meteorological Forcing Dataset [40],
with a spatial resolution of 0.1◦ and a temporal resolution of 3 h. Meteorological data were
resampled from 0.1◦ to 500 m using the bilinear interpolation method in Envi5.3 software
(Exelis Visual Information Solutions, Broomfield, United States). The advantages are that
the method is simple and the processing speed fast.

Tmax, Tmin, precipitation, and insolation were chosen for the key meteorological
indicators. In this study, we used temperature data with a resolution of 3 h for calculations
of the daily maximum temperature and daily minimum temperature. Then, Tmax was
calculated by the mean of the daily maximum temperature in one month or one season,
and Tmin was calculated by the mean of the daily minimum temperature in one month
or one season. Precipitation was calculated by the sum of the precipitation in one month
or one season, and insolation was represented by the mean of the downward shortwave
radiation in one month or one season. According to the local climate of Hulun Buir, we
chose spring (March, April, and May) and winter (January, February, and December of last
year) for this study.

2.4. Trend Analysis Method

The Mann–Kendall [41,42] method was used to examine the trends in the green-up
date and meteorological indicators. Since the Mann–Kendall method is a nonparametric
test for monotonic trends, it does not assume a specific distribution for the data and is
insensitive to outliers. The Mann–Kendall method was a climate diagnosis and prediction
technology. It could determine whether there was a mutation in the time series, and
if there was, the time of the mutation can be determined. The Theil–Sen method is a
nonparametric statistical method for the significance test of the trend [43]. It is a method
for robust linear regression that chooses the median slope among all lines through pairs of
two-dimensional sample points. Combining the two is an excellent method for time series

https://modis.gsfc.nasa.gov/
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trend analysis, which has been widely used in climate and hydrological trend research in
recent years [44–46].

2.5. Partial Correlation

A partial correlation method was used to investigate the influence of Tmax, Tmin, and
precipitation on the interannual variation of GUD. A partial correlation analysis refers
to the process when two variables are related to the third variable at the same time, the
influence of the third variable is removed, the correlation degree between the other two
variables is analyzed, and the determination index is the value of the partial correlation
coefficient. This method has been successfully applied to eliminate the covariate effect
between multiple influencing factors [38,47,48]. Suppose there are variables x1, x2, . . . ,
xn (n > 2), then the partial correlation coefficients of any two variables xi and xj can be
calculated as follows:

rij·l1l2 ...lg =
rij·l1l2 ...lg−1 − rilg ·l1l2 ...lg−1 rjlg ·l1l2 ...lg−1√ (

1 − r2
ilg ·l1l2 ...lg−1

) (
1 − r2

jlg ·l1l2 ...lg−1

) (3)

where l1, l2, . . . , lg represents variables other than xi and xj, rij·l1l2 ...lg indicates the partial
correlation coefficient between xi and xj when controlling variables l1, l2, . . . , lg. rij·l1l2 ...lg−1

indicates the partial correlation coefficient between xi and xj when controlling variables l1,
l2,..., lg−1. rilg ·l1l2 ...lg−1 indicates the partial correlation coefficient between xi and lg when
controlling variables l1, l2, . . . , lg−1. rjlg ·l1l2 ...lg−1 indicates the partial correlation coefficient
between xj and lg when controlling variables l1, l2, . . . , lg−1.

2.6. Sensitivity Analysis

The sensitivity of vegetation GUD to temperature or precipitation is defined as the
slope of a linear regression model of temperature or precipitation to GUD over a certain
period, which describes the change in the GUD date per unit change of temperature and
precipitation [49]. Sensitivity is an important parameter to measure the response of GUD
to future climate change. The sensitivity calculation formula is as follows:

Y = aX + b (4)

where Y is the GUD of vegetation, X is a meteorological factor (daily maximum temperature,
daily minimum temperature, and precipitation in winter, spring, or one month), b is a
constant, and a is the sensitivity of GUD to meteorological indicators.

This study calculated the sensitivity of vegetation GUD to meteorological indicators
from 2001 to 2018, including the daily maximum temperature, daily minimum temperature,
and precipitation, and analyzed different grassland types and periods to better understand
the response of vegetation to climate change.

2.7. Flow Chart

A flow chart of the key indicators computation and statistical analysis is displayed
in Figure 2. GUD was extracted based on the NDPI calculated from the remote sensing
data (MOD09A1) by the median method. Meteorological indicators were calculated from
the temperature, precipitation, and insolation. A partial correlation analysis was used to
investigate the relationship between GUD and Tmax, Tmin, and precipitation at the season
or month scale. A sensitivity analysis was used to investigate the sensitivity of GUD to the
meteorological indicators.



Remote Sens. 2022, 14, 670 6 of 27Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 29 
 

 

 
Figure 2. Flow chart of the key indicator computations and statistical analysis. 

3. Results 
3.1. Spatial and Temporal Patterns of GUD 

The multiyear mean remote sensing green-up dates (Figure 3) ranged from DOY (day 
of year) 90 in warm and dry areas to DOY 150 in cold and wet areas across the Hulun Buir 
grassland; the analysis also revealed spatial variations that were delayed from the west 
and east to the central region. The mean GUD across the whole area was DOY 113.1. The 
mean standard deviation across the whole area was 9.9 days. The temperate steppe had 
the earliest green-up date (DOY 104 ± 8.2; mean ± standard deviation), followed by the 
temperate meadow steppe (DOY 114 ± 7.1), lowland meadow (DOY 120 ± 12.4), and up-
land meadow (DOY 119 ± 5.4). 

 
Figure 3. Mean GUD between 2001 and 2018. 

The trends in green-up dates decreased from the west and east to the central region 
(Figure 4) and ranged from −20 days/decade to 20 days/decade. The mean trend overall 
was −3.1 days/decade. However, only 0.01% of the pixels exhibited significant (p < 0.05) 
positive changes, and where mainly distributed in the northwestern temperate steppe; 
25.0% of pixels exhibited significant (p < 0.05) negative changes, and where mainly dis-
tributed in the temperate meadow steppe and northeast lowland meadow. The areas with 

Remote sensing data Meteorological data

NDPI

PrecipitationGreen-up date Daily Maximum 
temperature 

Meteorological 
indicators

MOD09A1 China Meteorological Forcing Dataset

Temperature Precipitation Insolation

Partial correlation Daily Minimum 
temperature  Sensitivity

Figure 2. Flow chart of the key indicator computations and statistical analysis.

3. Results
3.1. Spatial and Temporal Patterns of GUD

The multiyear mean remote sensing green-up dates (Figure 3) ranged from DOY (day
of year) 90 in warm and dry areas to DOY 150 in cold and wet areas across the Hulun
Buir grassland; the analysis also revealed spatial variations that were delayed from the
west and east to the central region. The mean GUD across the whole area was DOY 113.1.
The mean standard deviation across the whole area was 9.9 days. The temperate steppe
had the earliest green-up date (DOY 104 ± 8.2; mean ± standard deviation), followed by
the temperate meadow steppe (DOY 114 ± 7.1), lowland meadow (DOY 120 ± 12.4), and
upland meadow (DOY 119 ± 5.4).
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Figure 3. Mean GUD between 2001 and 2018.

The trends in green-up dates decreased from the west and east to the central region
(Figure 4) and ranged from −20 days/decade to 20 days/decade. The mean trend overall
was −3.1 days/decade. However, only 0.01% of the pixels exhibited significant (p < 0.05)
positive changes, and where mainly distributed in the northwestern temperate steppe;
25.0% of pixels exhibited significant (p < 0.05) negative changes, and where mainly dis-
tributed in the temperate meadow steppe and northeast lowland meadow. The areas with
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large delayed trends were primarily concentrated in the temperate steppe, whereas the ar-
eas with large advanced trends were primarily concentrated in the lowland meadow areas.
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3.2. Spatial and Temporal Patterns of Meteorological Indicators

To further study the variation in air temperature, Tmax and Tmin were calculated, and
the variation in air temperature in winter and spring was analyzed. The trend analysis
was conducted using the winter temperatures from 2001 to 2018, and the results are shown
in Figure 5. On the whole, the variation trend in Tmax and Tmin is consistent in most
regions, and the area with a significant decreasing trend accounted for 0.4% pixels and
10.4% pixels of the area, respectively. The average trend in Tmax was −0.46 ◦C/decade,
while the average trend in Tmin was −1.06 ◦C/decade. The decline in Tmin was higher than
that of Tmax.

The spring temperature variation trend is shown in Figure 6. The variation trends in
Tmax and Tmin are not significant in most regions. Tmax mainly shows an increasing trend,
accounting for 99.5% of the area, while Tmin also shows an increasing trend, accounting
for 54.9% of the area. The area with a significant decreasing trend of Tmin accounted for
4.3% pixels and the area with a significant increasing trend of Tmax accounted for 2.8%
pixels. The average trend in Tmax was 0.93 ◦C/decade, while the average trend of Tmin was
0.13 ◦C/decade. In spring, the increase of Tmax was higher than that of Tmin.

The winter precipitation variation trend is shown in Figure 7. From the perspective of
the whole Hulun Buir grassland, there are many regions with small fluctuations in winter
precipitation, with an average variation trend of −1.9 mm/decade, and 2.6% pixels with a
significant variation trend. Increasing trends accounted for 21.9% of the whole region, but
no area with a significant variation trend.
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The spring precipitation variation trend is shown in Figure 8. From the perspective of
the whole study area, there were many regions with small fluctuations in spring precipita-
tion, with an average trend of −4.8 mm/decade, but only 0.5% pixels with a significant
increase (p < 0.05). The increasing trend accounts for 26.3% area, and 61.5% have a trend in
spring precipitation of ±10 mm/decade, which has a small fluctuation range.
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3.3. Partial Correlation Analysis between Green-Up Date and Meteorological Indicators
3.3.1. Partial Correlation Analysis in Winter

Partial correlation analysis was conducted for vegetation GUD to Tmax, Tmin, and
precipitation in winter (Table 1). Across the entire region, 63.2% of pixels showed a negative
partial correlation between GUD and Tmax in winter (Figure 9a), of which 13.7% of the
pixel partial correlation coefficients were less than −0.50 (0.50 corresponds to p = 0.05).
Furthermore, only 3.3% of the pixel partial correlation coefficients were greater than 0.50.
In total, 57.6% of pixels showed a positive partial correlation between GUD and Tmin in
winter (Figure 9b), of which 7.2% of the pixel partial correlation coefficients were greater
than 0.50. Only 1.6% of the pixel partial correlation coefficients were greater than 0.62.
Compared with Tmax and Tmin, precipitation had less influence on GUD (Figure 9c). A total
of 4.1% of the pixel partial correlation coefficients were greater than 0.50.

Table 1. The pixels proportion of the partial correlation in winter (%).

Partial Correlation
in Winter

Significant
Negative (p < 0.05)

Significant
Positive (p < 0.05)

Non-Significant
Negative (p > 0.05)

Non-Significant
Positive (p > 0.05)

GUD and Tmax

TS 4.5 4.6 49 41.9
TMS 33.9 1.1 51.3 13.7
UM 46.6 0.3 40.7 12.4
LM 13.3 2.9 50.4 33.4

study area 13.7 3.3 49.5 33.5

GUD and Tmin

TS 3.5 1.5 51.4 43.6
TMS 0.9 13.8 28.6 56.7
UM 0.3 19.2 16 64.5
LM 2.3 9.2 35.1 53.4

study area 2.6 7.2 39.8 50.4

GUD and
precipitation

TS 0.3 4.9 38.4 56.4
TMS 1.3 9.2 33.3 56.2
UM 1.7 2.4 29.4 66.5
LM 7 2.2 57.8 33

study area 3.6 4.1 46.3 46
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Figure 9. Spatial patterns of the interannual partial correlations between green-up date and daily
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in winter. Partial
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01,
p = 0.05, and p = 0.10, respectively. The middle-left insets show the frequency distributions of trends
corresponding to the values indicated by the map legends.
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In TMS, UM, and LM, Tmax in winter was negatively correlated with GUD, and
the significant correlation pixels proportions were 33.9%, 46.6%, and 13.3%, respectively.
Tmin in winter was positively correlated with GUD, and the significant correlation pixels
proportions were 13.8%, 19.2%, and 9.2%, respectively. In TS there was little correlation
between temperature/precipitation and GUD.

3.3.2. Partial Correlation Analysis in Spring

Partial correlation analysis was conducted for vegetation GUD to Tmax, Tmin, and
precipitation in spring (Table 2). Across the entire region, 61.3% of pixels showed a negative
partial correlation between GUD and Tmax in spring (Figure 10a), of which 7.5% of the
pixel partial correlation coefficients were less than −0.50. Only 3.1% of the pixel partial
correlation coefficients were greater than 0.50; 57.0% of pixels showed a negative partial
correlation between GUD and Tmin in spring (Figure 10b), of which 4.2% of the pixel partial
correlation coefficients were less than −0.50. Only 2.1% of the pixel partial correlation
coefficients were greater than 0.50; 59.0% of pixels showed a negative partial correlation
between GUD and precipitation in spring (Figure 10c), of which 8.3% of the pixel partial
correlation coefficients were less than −0.50.

Table 2. The pixels proportion of the partial correlation in spring (%).

Partial Correlation
in Spring

Significant
Negative (p < 0.05)

Significant
Positive (p < 0.05)

Non-Significant
Negative (p > 0.05)

Non-Significant
Positive (p > 0.05)

GUD and Tmax

TS 0.8 3.4 50 45.8
TMS 14 1.5 60.6 23.9
UM 26.2 0.9 53.7 19.2
LM 9.6 3 55.4 32

study area 7.5 3.1 53.7 35.7

GUD and Tmin

TS 5 0.6 61.9 32.5
TMS 5 0.5 60 34.5
UM 0.8 2.3 45.3 51.6
LM 3.1 3.7 44.5 48.7

study area 4.2 2.1 52.8 40.9

GUD and
precipitation

TS 18.3 0.1 66.6 15
TMS 0.2 0.2 57.2 42.4
UM 0.3 1 59.7 39
LM 3.1 0.5 36.6 59.8

study area 8.3 0.3 50.7 40.7

In TS, 18.3% of pixels showed a negative partial correlation between GUD and precipi-
tation in spring. GUD in TS was mainly influenced by precipitation in spring. In TMS, UM,
and LM, Tmax had a greater influence on GUD than Tmin and precipitation, and the pixels
proportions of GUD and Tmax were 14%, 26.2%, and 9.6%, respectively.

Since the GUD happens in the spring, we suggest 1 month (March, April, or May) in
spring is needed for a more fine-scale analysis.
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Figure 10. Spatial patterns of the interannual partial correlations between green-up date and daily
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in spring. Partial
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01,
p = 0.05, and p = 0.10, respectively. The middle-left insets show the frequency distributions of the
trends corresponding to the values indicated by the map legends.
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3.3.3. Partial Correlation Analysis in March

Partial correlation analysis was conducted for vegetation GUD to Tmax, Tmin, and
precipitation in May (Table 3). Across the entire region, 79.3% of pixels showed a positive
partial correlation between GUD and Tmax in March (Figure 11a), of which 10.0% of the
pixel partial correlation coefficients were greater than 0.50. Only 1.9% of the pixel partial
correlation coefficients were less than −0.50. A total of 70.3% of pixels showed a negative
partial correlation between GUD and Tmin in March (Figure 11b), of which 31.9% of the
pixel partial correlation coefficients were less than −0.50, and 2.5% of the pixel partial
correlation coefficients were greater than 0.50. The pixels (59.3%) showed a positive partial
correlation between GUD and precipitation in spring (Figure 11c), of which 4.4% of the
pixel partial correlation coefficients were greater than 0.50 and 0.9% of the pixel partial
correlation coefficients were less than −0.50. Increasing Tmin in March can make vegetation
greening faster, which was distributed in the central and Midwest region.

In TMS and UM, Tmax had a greater influence on GUD than that in TS and LM. The
significant positive pixels proportion of GUD and Tmax were 25.3% and 26.2% in TMS
and UM. In TS, TMS, UM, and LM, Tmin had a great influence on GUD, with significant
positive pixels proportions of 27.3%, 73.95, 65.9%, and 22.1%, respectively. Precipitation
had influence only in UM, with a significant positive pixels proportion of 9.1%.

Table 3. The pixels proportion of the partial correlation in March (%).

Partial Correlation
in March

Significant
Negative (p < 0.05)

Significant
Positive (p < 0.05)

Non-Significant
Negative (p > 0.05)

Non-Significant
Positive (p > 0.05)

GUD and Tmax

TS 3.2 3.7 21.3 71.8
TMS 0.1 25.3 8 66.6
UM 0.3 33.1 4.3 62.3
LM 1.5 8.2 21.1 69.2

study area 1.9 10 18.9 69.2

GUD and Tmin

TS 27.3 3.1 41 28.6
TMS 73.9 0.3 20.8 5
UM 65.9 0.2 27.6 6.3
LM 22.1 2.9 41.2 33.9

study area 31.9 2.5 38.4 27.2

GUD and
precipitation

TS 0.8 3.4 46.5 49.3
TMS 1.9 4.5 52.2 41.4
UM 1.1 9.1 28.5 61.3
LM 0.6 4.6 32.5 62.2

study area 0.9 4.4 39.8 54.9
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Figure 11. Spatial patterns of the interannual partial correlations between green-up date and daily
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in March. Partial
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01,
p = 0.05, and p = 0.10, respectively. The middle-left insets show the frequency distributions of the
trends corresponding to the values indicated by the map legends.
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3.3.4. Partial Correlation Analysis in April

Partial correlation analysis was conducted for vegetation GUD to Tmax, Tmin, and
precipitation in April (Table 4). There was mainly a negative correlation between GUD and
the meteorological indicators in April. Across the entire region, 59.8% of pixels showed a
negative partial correlation between GUD and Tmax in April (Figure 12a), of which 7.2% of
the pixels partial correlation coefficients were less than −0.50. A total of 3.0% of the pixels
partial correlation coefficients were greater than 0.50. The pixels (60.7%) showed a negative
partial correlation between GUD and Tmin in April (Figure 12b), of which 3.6% of the pixel
partial correlation coefficients were less than −0.50, and less than 1% of the pixel partial
correlation coefficients were greater than 0.50. The pixels (58.6%) showed a negative partial
correlation between GUD and precipitation in April (Figure 12c), of which 9.4% of the pixel
partial correlation coefficients were less than −0.50 and less than 1% of the pixel partial
correlation coefficients were greater than 0.50.

In TS, Tmax and precipitation in April were negatively correlated with GUD, and
the significant correlation area was 9.1% and 21.7%, respectively. In TMS, there was little
correlation between the meteorological indicators and GUD in April. For UM and LM,
Tmax in April were negatively correlated with GUD, and the significant correlation area was
11.7% and 6.5%. Precipitation had a greater influence on TS than that on TMS, UM, and LM.
Vegetation in New Barag Right Banner and New Barag Left Banner, which are in semi-arid
areas, mostly green-up in April. Precipitation in April can significantly advance GUD.

Table 4. The pixels proportion of the partial correlation in April (%).

Partial Correlation
in April

Significant
Negative (p < 0.05)

Significant
Positive (p < 0.05)

Non-Significant
Negative (p > 0.05)

Non-Significant
Positive (p > 0.05)

GUD and Tmax

TS 9.1 3.7 50.4 36.8
TMS 4.1 0.8 68.1 27
UM 11.7 0.8 65.4 22
LM 6.5 3 50 40.5

study area 7.2 3 52.6 37.2

GUD and Tmin

TS 3.5 1.2 53 42.3
TMS 1.6 0.1 59.8 38.5
UM 1.5 0.3 59.4 38.8
LM 3.9 0.6 59.1 36.4

study area 3.6 0.7 57.1 38.6

GUD and
precipitation

TS 21.7 0.8 61.9 15.6
TMS 2.1 0.7 49.3 47.9
UM 0.2 1.6 35.7 62.4
LM 3.3 2.3 41.6 52.8

study area 0.4 1.7 49.2 39.7
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Figure 12. Spatial patterns of the interannual partial correlations between green-up date and daily 
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in April. Partial 
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01, p = 0.05, 
and p = 0.10, respectively. The middle-left insets show the frequency distributions of trends corre-
sponding to the values indicated by the map legends. 

Figure 12. Spatial patterns of the interannual partial correlations between green-up date and daily
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in April. Partial
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01,
p = 0.05, and p = 0.10, respectively. The middle-left insets show the frequency distributions of trends
corresponding to the values indicated by the map legends.
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3.3.5. Partial Correlation Analysis in May

Partial correlation analysis was conducted for vegetation GUD to Tmax, Tmin, and
precipitation in May (Table 5). Across the entire region, 78.5% of pixels showed a negative
partial correlation between GUD and Tmax in May (Figure 13a), of which 12.3% of the
pixel partial correlation coefficients were less than −0.50. Less than 1.0% of the pixel
partial correlation coefficients were greater than 0.50. The pixels (89.8%) showed a positive
partial correlation between GUD and Tmin in May (Figure 13b), of which 17.1% of the pixel
partial correlation coefficients were greater than 0.50 and less than 1% of the pixel partial
correlation coefficients were less than −0.50. The pixels (66.5%) showed a negative partial
correlation between GUD and precipitation in May (Figure 13c), of which 8.6% of the pixel
partial correlation coefficients were less than −0.50 and 0.4% of the pixel partial correlation
coefficients were greater than 0.50.

In TMS, UM, and LM, Tmax and Tmin had the opposite effect to GUD. The pixels
proportion of the partial correlation between GUD and Tmin was slightly more than that
between GUD and Tmax. The increased Tmin can delay vegetation GUD in all types while
the increased Tmax can advance vegetation GUD. Precipitation had an influence on GUD
only in TS, and the significant negative correlation pixels proportion was 19.4%.

Table 5. The pixels proportion of the partial correlation in May (%).

Partial Correlation
in May

Significant
Negative (p < 0.05)

Significant
Positive (p < 0.05)

Non-Significant
Negative (p > 0.05)

Non-Significant
Positive (p > 0.05)

GUD and Tmax

TS 11.1 0.3 77.6 11
TMS 22.3 0.1 70.1 7.5
UM 44.5 0 44.4 11.1
LM 8.2 0.1 59.6 32.2

study area 12.3 0.2 66.2 21.3

GUD and Tmin

TS 0.2 9.3 16.2 74.3
TMS 0.1 32.7 5.5 61.7
UM 0 51.8 1.7 46.5
LM 0 16.2 75.8 16.2

study area 0.1 17.1 10.2 72.6

GUD and
precipitation

TS 19.4 0.1 57.9 22.6
TMS 0.6 0.2 84 15.2
UM 2.2 0.2 77.1 20.5
LM 3.6 0.7 51.1 44.5

study area 8.6 0.4 57.9 33.1
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Figure 13. Spatial patterns of the interannual partial correlations between green-up date and daily 
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in May. Partial 
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01, p = 0.05, 
and p = 0.10, respectively. The middle-left insets show the frequency distributions of trends corre-
sponding to the values indicated by the map legends. 

Figure 13. Spatial patterns of the interannual partial correlations between green-up date and daily
maximum temperature (a), daily minimum temperature (b), and precipitation (c) in May. Partial
correlation coefficient values of ±0.62, ±0.50, and ±0.43 correspond to significance at p = 0.01,
p = 0.05, and p = 0.10, respectively. The middle-left insets show the frequency distributions of trends
corresponding to the values indicated by the map legends.
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3.4. Sensitivity Analysis of Green-Up Date to Meteorological Indicators

We calculated the average sensitivity of the significant positive and significant negative
correlations between the GUD and meteorological indicators. We only pay attention to
the areas where the proportion of significant partial pixels is more than 5% for sensitivity
average calculation, which is marked in bold font in the tables.

3.4.1. Sensitivity Analysis of TS

Sensitivity analysis was conducted for vegetation GUD of TS to Tmax, Tmin, and
precipitation in winter and spring (Table 6). In the TS region, Tmax, Tmin, and precipitation
in winter have little influence on GUD, while Tmin and precipitation in spring have great
influence. In spring, the sensitivity of GUD to Tmin was −0.06 days/◦C (GUD advanced
0.06 days when temperature increase 1 ◦C), and the sensitivity of GUD to precipitation
was −0.41 days/mm (GUD advanced 0.41 days when precipitation increase 1 mm), mainly
distributed across the area with the highest temperature and lowest precipitation. The
GUD of this area was the earliest GUD in the study area.

Table 6. Sensitivity of the GUD to meteorological indicators of TS in winter and spring.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

winter
GUD to Tmax −0.09 0.02
GUD to Tmin −0.01 0.00

GUD to precipitation −0.11 0.36

spring
GUD to Tmax −0.07 0.02
GUD to Tmin −0.06 0.02

GUD to precipitation −0.41 0.51
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

Sensitivity analysis was conducted for vegetation GUD of TS to Tmax, Tmin, and precip-
itation in March, April, and May (Table 7). In the TS region, Tmin in March had the greatest
influence on GUD. The sensitivity of GUD to Tmin in March was −0.17 days/◦C while this
temperature sensitivity was also largest. Precipitation in both April and May had a great
influence on GUD. The sensitivity of GUD to precipitation in April was −0.32 days/mm,
which is greater than the sensitivity in May.

Table 7. Sensitivity of GUD to meteorological indicators of TS in March, April and May.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

March
GUD to Tmax −0.09 0.01
GUD to Tmin −0.17 0.03

GUD to precipitation −0.07 0.20

April
GUD to Tmax −0.09 0.02
GUD to Tmin −0.02 0.00

GUD to precipitation −0.32 0.11

May
GUD to Tmax −0.01 0.01
GUD to Tmin −0.01 0.02

GUD to precipitation −0.17 0.18
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

3.4.2. Sensitivity Analysis of TMS

Sensitivity analysis was conducted for vegetation GUD of TMS to Tmax, Tmin, and
precipitation in winter and spring (Table 8). Whether in winter or in spring, Tmax have
great influence in the northern TMS region, and the sensitivity of GUD to Tmax was
−0.11 days/◦C and −0.12 days/◦C, respectively. Compared with the Tmax, Tmin has less
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influence and the sensitivity of GUD to Tmin was far less than the sensitivity of GUD to
Tmax. Precipitation in winter and spring have little influence on GUD.

Table 8. Sensitivity of the GUD to meteorological indicators of TMS in winter and spring.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

Winter
GUD to Tmax −0.11 0.04
GUD to Tmin −0.01 0.00

GUD to precipitation −0.28 0.35

Spring
GUD to Tmax −0.12 0.02
GUD to Tmin −0.08 −0.02

GUD to precipitation −0.11 0.72
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

Sensitivity analysis was conducted for vegetation GUD of TMS to Tmax, Tmin, and
precipitation in March, April, and May (Table 9). In the TMS region, except in April, Tmax

or Tmin in March and May had influence on GUD. Tmin in March had greatest influence on
GUD. The sensitivity of GUD to Tmin in March was −0.15 days/◦C while this temperature
sensitivity was also the largest. The sensitivity of GUD to Tmin in May was 0.03 days/◦C
(GUD delayed 0.03 days when temperature increase 1 ◦C), which had the opposite impact
on GUD. Precipitation had little influence on GUD.

Table 9. Sensitivity of the GUD to meteorological indicators of TMS in March, April, and May.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

March
GUD to Tmax −0.37 −0.03
GUD to Tmin −0.15 0.09

GUD to precipitation −0.04 0.30

April
GUD to Tmax −0.18 0.02
GUD to Tmin −0.07 −0.02

GUD to precipitation −0.24 0.66

May
GUD to Tmax −0.01 0.01
GUD to Tmin −0.01 0.03

GUD to precipitation −0.14 −0.10
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

3.4.3. Sensitivity Analysis of UM

Sensitivity analysis was conducted for vegetation GUD of UM to Tmax, Tmin, and
precipitation in winter and spring (Table 10). Similar to TMS, whether in winter or in
spring, Tmax have great influence in UM region, and the sensitivity of GUD to Tmax was
−0.10 days/◦C and −0.14 days/◦C, respectively. Compared with the Tmax, Tmin has less
influence and the sensitivity of GUD to Tmin was far less than the sensitivity of GUD to
Tmax. Precipitation in winter and spring have little influence on GUD.

Sensitivity analysis was conducted for vegetation GUD of UM to Tmax, Tmin, and
precipitation in March, April, and May (Table 11). In the UM region, except for Tmin in
April, Tmax or Tmin in March, April and May had an influence on the GUD. Tmin had
much more influence on GUD in March and May. In March, the sensitivity of GUD to
Tmin (−0.13 days/◦C) was far more than the sensitivity of GUD to Tmax (0.02 days/◦C).
However, in May, the sensitivity of GUD to Tmin (−0.02 days/◦C) was nearly the same as
the sensitivity of GUD to Tmax (0.02 days/◦C). Precipitation has less influence on GUD than
temperature. In this grassland type, the sensitivity of GUD in March was the greatest one.
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Table 10. Sensitivity of the GUD to meteorological indicators of UM in winter and spring.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

winter
GUD to Tmax −0.10 0.03
GUD to Tmin −0.04 0.00

GUD to precipitation −0.34 0.39

spring
GUD to Tmax −0.14 0.03
GUD to Tmin −0.04 0.00

GUD to precipitation - 1.00
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

Table 11. Sensitivity of the GUD to meteorological indicators of UM in March, April, and May.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

March
GUD to Tmax −0.21 0.02
GUD to Tmin −0.13 0.10

GUD to precipitation −0.05 0.35

April
GUD to Tmax −0.22 0.02
GUD to Tmin −0.04 0.01

GUD to precipitation −0.17 1.03

May
GUD to Tmax −0.02 0.02
GUD to Tmin - 0.03

GUD to precipitation −0.02 0.36
1 The unit is days/◦C (Sensitivity of GUD to Tmax or Tmin) or days/mm (Sensitivity of GUD to precipitation).

3.4.4. Sensitivity Analysis of LM

Sensitivity analysis was conducted for vegetation GUD of LM to Tmax, Tmin, and
precipitation in winter and spring (Table 12). Similar to TMS and UM, whether in winter
or in spring, Tmax have a great influence on the UM region, and the sensitivity of GUD to
Tmax was −0.09 days/◦C and −0.10 days/◦C, respectively. Compared with the Tmax, Tmin
have less influence in winter and the sensitivity of GUD to Tmin was 0.04 days/◦C (GUD
delayed 0.04 days when temperature increase 1 ◦C). Precipitation in spring have a great
influence on GUD, and the sensitivity of GUD to precipitation was −0.20 days/mm, which
was mainly distributed in the southwestern study area.

Table 12. Sensitivity of the GUD to meteorological indicators of LM in winter and spring.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

winter
GUD to Tmax −0.09 0.04
GUD to Tmin −0.02 0.04

GUD to precipitation −0.40 0.33

spring
GUD to Tmax −0.10 0.03
GUD to Tmin −0.04 0.02

GUD to precipitation −0.20 0.40
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

Sensitivity analysis was conducted for vegetation GUD of LM to Tmax, Tmin, and
precipitation in March, April, and May (Table 13). In the UM region, only Tmin in March
and May had much more influence on GUD. Tmin in March had more influence on GUD
than that in May. In March, the sensitivity of GUD to Tmin (−0.14 days/◦C) was far more
than the sensitivity of GUD to Tmin (0.02 days/◦C) in May. Unlike the whole spring,
precipitation has little influence on GUD in March, April, and May.
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Table 13. Sensitivity of GUD to meteorological indicators of LM in March, April, and May.

Sensitivity of GUD to
Meteorological Indicators 1

Significant Negative
(p < 0.05)

Significant Positive
(p < 0.05)

March
GUD to Tmax −0.20 0.09
GUD to Tmin −0.14 0.09

GUD to precipitation −0.10 0.34

April
GUD to Tmax −0.16 0.04
GUD to Tmin −0.05 0.02

GUD to precipitation −0.23 0.56

May
GUD to Tmax −0.02 0.02
GUD to Tmin −0.02 0.02

GUD to precipitation −0.08 0.28
1 The unit is days/◦C (sensitivity of GUD to Tmax or Tmin) or days/mm (sensitivity of GUD to precipitation).

4. Discussion
4.1. Comparisons with Previous Studies

The mean GUD across the Hulun Buir area was DOY 113.1; this result was similar to
the study in the temperate grasslands of China [24] and the study in Hulun Buir grassland
area [38]. The mean GUD trend overall was −3.1 days/decade from 2001–2018. The study
in the temperate grasslands of China showed that the GUD significantly advanced at a
rate of 1.84 days/decade from 1982 to 2015 [24,47]. Our GUD trend results have the same
advanced trend, and the strength of the advance is slightly higher. Global warming is
causing temperatures to rise, and we found large differences in the extent of the Tmax and
Tmin changes; however, these changes are not significant.

The research results of Peng et al. [50] pointed out that the Tmin of the growing season
in the whole temperate arid region on Northern Hemisphere was positively correlated with
NDVI. TS in Hulun Buir is semi-arid and the driest area in the whole region. Tmin in March
promoted green-up, which is consistent with the Peng et al. [50] study. Shen et al. pointed
out that precipitation in spring have a strong impact on the GUD in temperate grasslands.
Our results show in TS, that the GUD has the greatest sensitivity to precipitation.

Peng et al. [50] also showed that in the past three decades, the higher Tmax in spring
were significantly positively correlated with NDVI. In Hulun Buir, GUD of TMS, LM, and
UM was significantly negatively correlated with Tmax in spring, and most of the areas
were distributed in the northern part of the region higher than 50◦ N (which was in the
sub-humid and humid region). The increase in Tmax can promote the growth of vegetation
and advance GUD.

4.2. Results in Terms of Plant Physiology

Plant species may respond differently to warming and soil water supply, depending
on their morphological, physiological, and lifecycle characteristics [51–53]. In arid and
semi-arid ecosystems, warming causes water stress in shallow soils, which reduces shallow-
root plant growth and development, allowing plants to make more efficient use of topsoil
water [54].

Nocturnal warming may also affect the photosynthetic activity of vegetation through
different mechanisms. First, nighttime warming can be achieved by increasing carbohy-
drate consumption in leaves at night [55,56], stimulating photosynthesis in plants [55].
Second, nighttime also negatively affects plant photosynthesis by increasing autotrophic
respiration [50], but nighttime conditions do not affect photosynthesis itself. Field warming
experiments in arid temperate grassland regions of China showed that nocturnal warming
increased plant photosynthesis by about 20% [56]. Global warming promotes vegetation
photosynthesis and shifts in phenology during spring in the Northern Hemisphere [3,57,58].
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4.3. Factors Affecting the Spatial Variation of Sensitivity

From the perspective of geographical location and meteorological conditions, the
semi-arid areas in southwest China, including the north of New Barag Left Banner and
the west of Chen Barag Banner, have relatively high temperatures and low precipitation.
The increase in Tmin can significantly advance GUD, whereas Tmax plays the opposite role.
In the central and eastern regions, Tmax showed a negative correlation with GUD, and
a significant correlation was mainly distributed in the northernmost region, where the
temperature was lower and the precipitation was less. The increase in Tmax was beneficial
to the GUD.

The temperature is highest and the precipitation lowest in New Barag Right Ban-
ner. The proportion of partial correlation between the spring precipitation and GUD is
significantly higher than that of Tmax and Tmin, and GUD is greatly affected by spring
precipitation. Similarly, in the northwest of New Barag Left Banner and the west of Chen
Barag Banner, there was a significant negative correlation between GUD and Tmin, but a
significant positive correlation between GUD and Tmax. The increase in Tmax inhibited
vegetation growth, while the increase in Tmin was beneficial to GUD. This was consistent
with the study of Peng et al. [50] that NDVI was significantly positively correlated with Tmin
in the Northern Hemisphere where most of the studied regions were arid and semi-arid.
The increase in Tmin could improve the biomass in arid temperate grassland areas of China.
The northern region is in the sub-humid region with lower temperatures and relatively
more precipitation. Tmax plays a role in promoting vegetation green-up, while Tmin does
the opposite, which is consistent with the study of Piao et al. [26]. Photosynthesis of plants
occurs in the daytime and is directly affected by Tmax.

5. Conclusions

In the present study, remote sensing and meteorological data were used to investigate
the sensitivity of GUD to meteorological indicators in the Hulun Buir grasslands of China
during the winter and spring warming periods between 2001 and 2018. Our analysis
indicated that the average GUD across the whole area was DOY 113. The mean GUD
trend was −3.1 days/decade and the 25% region advanced significantly. Tmax and Tmin
tended to decrease during winter over the period studied (p > 0.05). In spring, Tmax
mainly has an increasing trend (p > 0.05) and Tmin also has an increasing trend (p > 0.05).
Precipitation mainly shows no significant (p > 0.05) change trend and the trend range was
±10 mm/decade. In TS, GUD has the greatest sensitivity to spring precipitation and April
precipitation. In TMS, UM, and LM, the GUDs have the greatest sensitivity to Tmin in
March and precipitation has little impact on GUD.
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Abbreviations

GUD green-up date
Tmax daily maximum temperature
Tmin daily minimum temperature
TS temperate steppe
TMS temperate meadow steppe
UM upland meadow
LM lowland meadow
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDPI normalized difference phenology index
DOY day of year
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