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Abstract. Rainfall is the most important input for rainfall–

runoff models. It is usually measured at specific sites on a

daily or sub-daily timescale and requires interpolation for

further application. This study aims to evaluate whether a

higher temporal and spatial resolution of rainfall can lead

to improved model performance. Four different gridded

hourly and daily rainfall datasets with a spatial resolution

of 1 km × 1 km for the state of Baden-Württemberg in Ger-

many were constructed using a combination of data from a

dense network of daily rainfall stations and a less dense net-

work of sub-daily stations. Lumped and spatially distributed

HBV models were used to investigate the sensitivity of model

performance to the spatial resolution of rainfall. The four

different rainfall datasets were used to drive both lumped

and distributed HBV models to simulate daily discharges in

four catchments. The main findings include that (1) a higher

temporal resolution of rainfall improves the model perfor-

mance if the station density is high; (2) a combination of

observed high temporal resolution observations with disag-

gregated daily rainfall leads to further improvement in the

tested models; and (3) for the present research, the increase

in spatial resolution improves the performance of the model

insubstantially or only marginally in most of the study catch-

ments.

1 Introduction

Rainfall is a primary driver of hydrological models and can

impact catchment runoff response significantly (Obled et al.,

1994; Ly et al., 2013). Rainfall is usually measured by stan-

dard rain gauges or wireless telemetering pluviometers over

a period of time (e.g., daily, sub-daily). Uncertainties in rain-

fall estimation for a catchment can occur due to instrument

errors as well as spatial and temporal variability of rainfall.

The latter are the main sources of uncertainties in model

simulation and flood forecasting (Beven, 1998; Berne et al.,

2004). The spatial variability of rainfall strongly influences

the timing and shape of a hydrograph, while the temporal

variability mainly affects the peak of a flood wave (Singh,

1997). The improvement in flood simulation requires under-

standing of the sensitivity of the rainfall–runoff models to

rainfall input data. Over the past decades, various methods

have been used to obtain the spatial distributions of rain-

fall based on raingauge data and catchment characteristics

(Goovaerts, 2000; Jeffrey et al., 2001; Hofierka et al., 2002;

Haylock et al., 2008; Ly et al., 2013). Kobold and Brilly

(2006) derived hourly areal rainfall interpolated from vari-

ous numbers of rain gauges to quantitatively assess the sen-

sitivity of peak flow to the uncertainty of rainfall data us-

ing an HBV model. They found that the error in rainfall

may lead to even greater error in flood peaks. Bárdossy

and Das (2008) also studied the impact of spatial variabil-

ity of rainfall by varying the distribution of raingauge net-

works. They found that the transferabilities of model param-

eters calibrated based on sparse and dense rainfall informa-

tion are very different. Das et al. (2008) used four different

model structures to simulate daily runoff in central Europe.

Results indicated that the semi-distributed and semi-lumped

models outperform the lumped and distributed model struc-

tures. They suggested that the lack of spatial information is

responsible for the low efficiency of the distributed model.
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Xu et al. (2013) indicated that the increase in raingauge net-

work density can improve the model performance, but no ap-

parent improvement was observed when the number of rain

gauges exceeded a threshold. Lobligeois et al. (2014) found

that semi-distributed models outperform the lumped mod-

els when rainfall is highly variable over a simulation catch-

ment, but they perform similarly when rainfall is relatively

uniform. Emmanuel et al. (2015) proposed rainfall variabil-

ity indexes to characterize the influence of spatial variability

rainfall and implemented this approach in the model simula-

tion for the Cevennes catchment in France (Emmanuel et al.,

2017). They found that higher spatial resolution of rainfall

could achieve better model performance. We can learn from

these studies that the sensitivity of model performance to

the spatial resolution of rainfall seems different for some

of the case studies. However, increasing spatial resolution

in model simulation can lead to considerable complexity of

model structure and require much more data than when using

a lumped version.

The rainfall–runoff response of a catchment is also

strongly impacted by the temporal variability of rainfall (Bár-

dossy and Pegram, 2016b). High temporal resolution rain-

fall data are collected at pluviometer stations with teleme-

try at sub-daily time resolutions. Sub-daily data often have

poor quality caused by equipment malfunction or misread-

ing. Compared with sub-daily rainfall data, daily data tend

to be more available and reliable, and cover a longer du-

ration of time periods. Disaggregating daily into sub-daily

data offers a potential solution to accurately capture the tem-

poral variability of rainfall (Parkes et al., 2013; Bárdossy

and Pegram, 2016a). Pui et al. (2012) compared three dif-

ferent approaches for disaggregating daily rainfall into sub-

daily series and found the resampling method to be the

best one for rainfall disaggregation. Bárdossy and Pegram

(2016b) used the Gaussian copula-based model for disaggre-

gating daily data to infill the gap of sub-daily data, and they

found that this conditional disaggregation of rainfall is reli-

able and applicable in various regions. Breinl and Di Baldas-

sarre (2019) applied a spatial method of fragments to disag-

gregate daily rainfall into hourly values. Kobold and Brilly

(2006) found that calibrating hydrological models with sub-

daily time steps can significantly improve the accuracy of

flood forecasting.

Some studies focus on both the spatial and temporal res-

olutions of rainfall. Bruneau et al. (1995) found that the

temporal and spatial resolutions of rainfall used as the in-

puts of hydrological models can have considerable influence

on the model efficiency and parameter values. Booij (2002)

found the influence of rainfall spatial resolution to be greater

than temporal resolution in terms of simulation of extreme

flows. Meselhe et al. (2009) pointed out that physically based

models are more sensitive to the spatial and temporal res-

olutions of rainfall data than conceptual models. Zhu et al.

(2018) found that the spatial variability of rainfall is much

more sensitive to model performance for catchments larger

than 2000 km2 under dry soil conditions, and floods in small

catchments are more influenced by the temporal variability

of rainfall. So far, more efforts have been invested in improv-

ing the spatial or temporal resolution of rainfall, but there

are fewer studies on quantification and direct comparison of

the catchment dynamic responses driven by different rainfall

temporal and spatial resolutions.

The overarching aim of this study is to understand the de-

pendency of hydrological model performance on the rainfall

data. The specific research objectives are 3-fold: (1) inves-

tigate the effects of rainfall data quality on model perfor-

mance, (2) examine the sensitivity of model performance to

different spatial and temporal resolutions of rainfall data us-

ing two different model spatial configurations, and (3) ex-

plore the possibility of improving model performance on a

daily scale. The paper will be followed by Sect. 2 to describe

the study area and the rainfall datasets used in this research.

In Sect. 3, the hydrological model and the calibration method

are explained. Section 4 presents the results and discussion of

this work. The conclusions and outlook are in Sect. 5.

2 Study area and hydrometeorological datasets

This study area is located in a semi-humid region in the

Baden-Württemberg state of Germany (Fig. 1) with a tem-

perate monsoon climate of mild winters and warm sum-

mers. The elevation of this region ranges from 85 m to

149 m a.s.l. (above sea level). The heterogeneity of climate

characteristics is mainly due to the great variability of el-

evations within the study area. The annual mean air tem-

perature in Baden-Württemberg is about 10.2 ◦C. Rainfall

is evenly distributed throughout the year. However, its sea-

sonality shows a weak trend. The monthly rainfall is high-

est in June and lowest in October. The meteorological data

used in this study were provided by the German Weather

Service (DWD). Daily air temperature data required for the

rainfall–runoff model were interpolated on a 1 × 1 km2 grid

from the observations using the external drift kriging algo-

rithm (Ahmed and De Marsily, 1987). The topographical

elevation was taken as external drift (Hundecha and Bár-

dossy, 2004; Das et al., 2008). The long-term monthly poten-

tial evapotranspiration and the average air temperature were

used to compute the daily potential evapotranspiration using

the Hargreaves and Samani method (Hargreaves and Samani,

1985).

Rainfall data from a dense network of daily rainfall sta-

tions (62 km2 per station in 1991) and from a less dense

network of sub-daily stations (144 km2 per station in 1991)

with high-resolution rainfall observations were used for this

study. All data are available for the time period 1991–2010.

The number of available daily stations and sub-daily stations

varies according to different time periods. Figure 2 illus-

trates the number of available observation stations in Baden-

Württemberg between 1991 and 2010. It can be seen from the
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Figure 1. Locations of the sub-daily and daily rain gauges in Baden-

Württemberg and the four selected catchments.

graph that more than 430 daily stations but only 30 sub-daily

stations were available in 1991. The total number of daily

stations decreased to 250 around 2003 and remained stable

for the subsequent years. The number of sub-daily stations

has been increasing throughout this period and experienced a

sharp increase from 100 to 200 in 2005. Four different rain-

fall datasets were generated and explained as follows.

1. High temporal resolution observed rainfall was ag-

gregated to hourly and then interpolated to 1 × 1 km2

grids using the ordinary kriging algorithm (Matheron,

1963). The correlation function obtained from the cross-

correlations of the hourly time series was used as a basis

for the variogram. This set is referred to as the Sparse

Hourly (SH) set.

2. Observed daily rainfall combined with the daily ag-

gregations of the high temporal resolution data were

used to create 1 × 1 km2 gridded datasets using the or-

dinary kriging algorithm. The variogram was based on

the cross-correlations of the daily time series. This set

is referred to as the Dense Daily (DD) set.

3. High-resolution rainfall was aggregated to daily time

steps and interpolated subsequently for a 1×1 km2 grid

using the ordinary kriging. The variogram was based on

the cross-correlations of the aggregated daily time se-

ries. This set will be referred to as the Sparse Daily (SD)

set.

4. Observed daily rainfall combined with the hourly ag-

gregations of the high temporal resolution data were

Figure 2. The number of available observation locations. Daily sta-

tions – solid line; sub-daily stations – dashed line.

Figure 3. Schematic representation of four different rainfall

datasets.

used to create a 1 × 1 km2 grid using the disaggrega-

tion method rescaled ordinary kriging (Bárdossy and

Pegram, 2016b). The variogram was based on the cross-

correlations of the hourly time series. This set is referred

to as the Dense Hourly (DH) set.

Figure 3 shows the flowchart of the data collection and

process. The DD and SD sets are the daily aggregations of

the DH and SH sets. Note that DH is a dataset combining

hourly and disaggregated daily gauge data. One of the re-

search questions raised here is to find out whether disag-

gregation leads to an improvement in model performance.

Comparisons of the model performance using the inputs of

the (SD, SH) and (DD, DH) pair will reveal the effect of tem-

poral resolution. Meanwhile, comparison between (SD, DD)

and (SH, DH) will show the influence of the rainfall obser-

vation network density on the model performance.

Four mesoscale catchments (Fig. 1), namely Rottweil,

Schwaibach, Pforzheim and Kocherstetten, were selected

from the upstream region of the state for testing the sen-

sitivity of model performance to the four different rainfall

datasets. The daily streamflow record of these catchments

was collected for the period 1991–2010. The basic charac-
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Figure 4. Schematic representation of the HBV model.

teristics for the study catchments are listed in Table 1. These

catchments range in size from 417 to 1300 km2, along with

large differences in elevation and annual precipitation. It can

be seen clearly from the map that these four catchments have

different raingauge densities; the Schwaibach catchment lo-

cated in the mountainous area with elevations ranging from

190 to 1028 m has the lowest density of raingauge networks

and the highest annual precipitation. Rottweil and Kocher-

stetten have similar climate conditions in terms of annual pre-

cipitation and runoff, but the catchment size of Kocherstetten

is almost 3 times that of Rottweil. Pforzheim has the smallest

drainage area and the lowest amount of precipitation.

3 Model and methodology

3.1 Model structure

The conceptual HBV model was developed in the 1970s

by the Swedish Meteorological and Hydrological Insti-

tute (SMHI) (Bergström and Forsman, 1973). Thanks to

its simplicity, low demand of inputs and small number of

model parameters, the HBV model has been widely used

for rainfall–runoff simulation and flood forecasting. Figure 4

represents the structure diagram of the HBV model (Singh,

2010). There are three main modules in the HBV model,

namely snow routine, soil moisture routine and runoff rou-

tine (Hartmann, 2007; Singh, 2010).

In the snow routine, the snow accumulation and melt-

ing process is estimated by the relatively simple degree-

day method (Rango and Martinec, 1995) with two parame-

ters: degree-day factor (DD) and threshold temperature for

snow/rain (TT) (as shown in Eq. 1). The measured precipita-

tion is supposed to be solid (snowfall) if the air temperature

is lower than threshold temperature; otherwise, precipitation

appears in a liquid state (rainfall) if the weather is warmer

than the threshold value.

Snowmelt = DD · (T − TT), if T > TT (1)

In the HBV model, soil moisture storage is decided by bal-

ancing rainfall and evapotranspiration according to two soil

moisture constants: permanent wilting point (PWP) and field

capacity (FC). The soil wetness index, defined as the ratio of

direct runoff to effective precipitation (1Q
1P

), is expressed as

1Q

1P
=

(

SM

FC

)Beta

, (2)

where SM denotes the actual soil moisture and “Beta” the

proportion of effective precipitation contributing to runoff

for given soil moisture. The Penman equation is used to

estimate the potential evapotranspiration according to the

long-term monthly mean air temperature (TM) and long-term

monthly averaged potential evapotranspiration (PEM) (Pen-

man, 1948):

Etp = (1 + C (T − TM))PEM, (3)

where C is the evapotranspiration coefficient. The actual

evapotranspiration (Eta) can be estimated as

Eta =

{

Etp if SM > PWP
SM

PWP
· Etp else

. (4)

As shown in Eq. (2), runoff is calculated by a nonlinear func-

tion based on excessive effective precipitation and actual soil

moisture. The runoff concentration process consists of upper

and lower reservoirs with five parameters:

Q0 = K0 (S1 − HL) , (5)

Q1 = K1S1, (6)

Qd = KdS1, (7)

Q2 = K2S2. (8)

The runoff is divided into surface flow (Q0), interflow (Q1)

and baseflow (Q2) with three recession coefficients K0, K1

and K2, along with a conceptual threshold water level (HL)

for generating surface flow. The two parallel reservoirs are

connected in the form of percolation storage (Qd ) from the

upper reservoir to the lower one with the parameter of the

percolation constant Kd . A transformation function with the

triangular weighting parameter MAXBAS is used to smooth

the total runoff (Q0 + Q1 + Q2) to obtain discharge at the

outlet.

In this study, to investigate the sensitivity of model perfor-

mance to the spatial resolution of input variables, two HBV

models with different spatial configurations were applied:

lumped HBV and spatially distributed HBV, respectively.

Hydrol. Earth Syst. Sci., 23, 2647–2663, 2019 www.hydrol-earth-syst-sci.net/23/2647/2019/
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Table 1. Catchment characteristics for the four selected catchments.

No. Stream gauge Longitude Latitude Area Elevation Annual Average Annual

name (◦ E) (◦ N) (km2) (m) rainfall temperature runoff

(mm) (◦C) (mm)

1 Rottweil, Neck 8.38 48.10 455 555–1010 929.0 9.7 363.2

2 Schwaibach, Kinzig 8.02 48.24 955 190–1028 1331.8 9.7 757.3

3 Pforzheim, Würm 8.43 48.52 417 357–583 761.7 9.3 232.9

4 Kocherstetten, Kocher 9.45 49.16 1288 292–698 930.6 9.4 401.6

In the lumped model, precipitation, temperature and poten-

tial evapotranspiration were assumed uniformly distributed

within a catchment and all the processes were calculated for

the whole catchment. Previous studies have indicated that the

elevation is an important reason for the spatial differentiation

of meteorological variables, including temperature, precipi-

tation, evapotranspiration and snowmelt, being in reality not

uniformly distributed within a catchment. They often exhibit

dependence with elevation. The spatially distributed HBV

model used in this study divides a catchment into several

zones based on elevation. The 1 × 1 km2 grid-based rainfall

and temperature data were averaged for each elevation zone.

In the spatially distributed model, the parameters associated

with the snowmelt and soil moisture modules were calibrated

for each elevation zone. The parameters associated with the

runoff response module were calibrated for each catchment

similarly to the lumped model (Das et al., 2008).

Out of the 15 parameters within the HBV model, 9 param-

eters were calibrated in this study. Table 2 lists the initial up-

per and lower limits of the to-be-calibrated parameters using

historical data. The data-depth-based parameter optimization

method – the Robust Parameter Estimation (ROPE) algo-

rithm (Bárdossy and Singh, 2008) – was applied for model

parameter optimization. The ROPE approach could lead to a

certain number of model parameters with ideal model perfor-

mance (Bárdossy et al., 2016). For this study, each simulation

results in 10 000 heterogeneous parameter sets with similarly

acceptable model performance.

3.2 Performance criteria

Previous studies have shown that model performance

strongly depends on the selection of performance criteria

(Gupta et al., 2009). The model simulations corresponding

to the model parameters using different objective functions

differ considerably as they have different focuses (Bárdossy

et al., 2016). The purpose of this study is to investigate the

sensitivity of the conceptual model to rainfall variability and

accordingly find effective ways to improve the precision of

flood forecasting. Since high flow is extremely important for

flood forecasting, the Nash–Sutcliffe (NS) coefficient (Nash

and Sutcliffe, 1970), one of the widely used indicators, was

used in this study to assess the model performance based on

observed discharge. The NS coefficient focuses on high flow

as it evaluates the squared difference between simulated and

measured streamflow. It can be calculated using the follow-

ing equation:

NS = 1 −

T
∑

t=1

(Qo(t) − Qm(t))2

T
∑

t=1

(

Qo(t) − Qo

)2

, (9)

where Qo(t) and Qm(t) are the observed and simulated dis-

charge, respectively, and Qo is the mean of the observed dis-

charge.

The mean square error (MSE) of the flow for the time pe-

riod of the observed discharge higher than the 10th percentile

of flow was used to assess the flood forecasting ability of the

models:

MSE =
1

n

n
∑

i=1

(Qo(i) − Qm(i))2, (10)

where Qo(i) and Qm(i) are the observed and modeled dis-

charges when the observed discharge is higher than the

10th percentile of flow.

3.3 Model calibration experiments

A split-sample calibration methodology was applied in this

study to divide the data into two 10-year periods: 1991–2000

and 2001–2010. Model calibration was carried out for both

time periods and then a cross-validation analysis was per-

formed. For each calibration run, the first water year data

were used as a warm-up period and were not used to eval-

uate the model performance.

In this study we investigated the impacts of using differ-

ent methods for spatial interpolation of hourly rainfall data

on model performance. The four rainfall datasets were used

as input variables for model calibration and validation. In all

modeling experiments, daily mean temperature and poten-

tial evapotranspiration were used as inputs. This is to isolate

the effects of different rainfall inputs on the model perfor-

mance. The effects of the temporal and spatial resolutions

of the rainfall inputs on the model performance were as-

sessed in terms of the NS coefficient and the MSE of the high

flow. We conducted experiments of model calibration for a
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Table 2. Description of HBV model parameters and parameter ranges for model calibration.

Parameter Description Max Min

TT Threshold temperature for snowmelt initiation (◦C) 2 −2

DD Degree-day factor 3 1.5

FC Field capacity (mm) 600 50

Beta Shape coefficient 8 0.2

HL Threshold water level for near-surface flow (mm) 100 1

K0 Near-surface flow storage constant 0.8 0.2

K1 Interflow storage constant 0.25 0.1

Kd Percolation storage constant 0.2 0.05

K2 Baseflow storage constant 0.1 0.01

lumped model and a spatially distributed HBV model using

hourly and daily input variables, respectively. For the spa-

tially distributed model structure, a contour interval of 100 m

was used to divide a catchment into different elevation zones.

Note that all the model calibrations were performed on the

basis of simulating daily discharge.

We investigated whether the combination of daily and

hourly models can lead to better prediction in streamflow.

It is interesting to investigate the similarities of different

temporal resolution. Therefore, the common calibration ap-

proach was used to calibrate the daily and hourly models si-

multaneously. This approach may identify robust model pa-

rameters that are applicable using different temporal resolu-

tions. The common calibration approach is a multi-objective

optimization function, and the compromise programming

method (Zeleny, 1981) was used to formulate the objective

function:

O(θ) =

n
∑

i=1

(

NS∗

i − NSi(θ)
)p

. (11)

Here index i denotes the type of temporal resolution;

NS∗

i means the optimal model performance which can be

represented by the individual calibrated model performance.

Here we aim to minimize the value of the objective func-

tion O(θ). For the balancing factor p, a moderately high p =

4 was given in this study. More details about the common

calibration of hydrological models’ strategy can be found in

Bárdossy et al. (2016).

4 Results and discussion

4.1 Comparison of the rainfall datasets

The quality of the rainfall datasets was assessed and com-

pared for the four selected catchments. As the SD and

DD sets are daily aggregations of the SH and DH sets, we

only compared daily rainfall sets SD and DD for both cali-

bration periods (Fig. 5). It can be seen clearly from the fig-

ures that the interpolated rainfall datasets display some dif-

ferences for all study catchments. The asymmetry of the scat-

terplots is evident for the period 1991–2000. In general, the

DD dataset leads to higher values than the SD dataset. This

is mainly because the low density of sub-daily observations

during the period of 1991–2000 leads to large errors in the

spatial interpolation of rainfall. This is especially the case for

Schwaibach catchment, which varies strongly in geographi-

cal elevation (from 190 to 1028 m). For the period of 2001–

2010, the SD and DD sets are in closer agreement due to the

higher density of sub-daily gauges.

4.2 Results of calibration and validation

As described in Sect. 3.3, for the selected catchments, model

calibrations were carried out using four rainfall datasets for

both lumped and spatially distributed HBV models. Two 10-

year time periods, 1991–2000 and 2001–2010, were used for

calibration and cross-validation. In total 16 calibration runs

and 16 validation runs were performed for each catchment.

As mentioned before, each simulation obtained 10 000 pa-

rameter sets with similar model performance. We then used

the mean value of the 10 000 model performances to quantify

the model performance.

Table 3 lists the average value of the NS model perfor-

mance for the four selected catchments using the lumped

HBV model and Table 4 lists the simulated NS performance

for a spatially distributed version of the model, respectively.

The results show that all four datasets can reproduce rela-

tively accurate historical daily streamflow series for all se-

lected catchments. Results also show that the model perfor-

mances vary across catchments. The Kocherstetten catch-

ment generally performs best, with an average NS value

of 0.84 for all simulations, while Pforzheim has the worst

mean NS performance of 0.58 for all calibration runs. More-

over, for a specific catchment, the calibrated models perform

differently for different data periods. For the Schwaibach and

Pforzheim catchments, the calibrated model performance for

the period of 2001–2010 is better than the performance for

the time period 1991–2000 for most of the datasets. This

might be due to the increasing raingauge density inside or

near the catchment and the quality of rainfall data with the

development of time and technological progress. In particu-
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Figure 5. Comparison of the daily rainfall data that were interpolated using different densities of raingauge networks.

lar, the model calibrations for the period 1991–2000 of the

Schwaibach catchment using sets SH and SD perform very

poorly for both calibration and validation. The NS coefficient

using SH and SH inputs is about 0.3 less than the results of

sets DH and DD. This indicates that systematic interpolated

rainfall errors have a critical influence on model calibration.

We then analyzed whether the model is robust for sim-

ulating high flows. Tables 5 and 6 list the mean square er-

rors of the top 10th percentile of flows for the lumped and

spatially distributed models, respectively. Figure 6 shows the

flow duration curve for the natural logarithm of simulated

and observed discharge for all study catchments for the years

between 2001 and 2010. Figure 7 shows the corresponding

results for flows higher than the 10th percentile of flow. Re-

sults indicate that for most of the calibration runs, set DH

performs best for the high flow, followed by set SH, set DD

performs a little weaker than set SH, while set SD has the

worst performance in flood simulation.

4.3 Model performance using different temporal

resolutions of rainfall data

Firstly, the model performance of different temporal reso-

lutions of rainfall was compared for four datasets and two

model spatial configurations. For the pairwise comparison,

all the conditions are the same in the model except for the

rainfall temporal resolution (hourly and daily). The results

of the sparse sets and dense sets are separated here. Fig-

ure 8 compares the model performance of using hourly and

daily rainfall inputs that were interpolated using only high-

resolution rainfall observations (SH, SD). Figure 9 compares

the results from the rainfall inputs that incorporated observed

daily values with high-resolution observations (DH, DD).

The result shows that all the scatters are lying below the di-

agonal line for the different levels of observation density. For

both the calibration and validation periods, the simulations

using hourly input data outperform the ones based on the

daily resolution. For the dataset with low observation net-

work density, the averaged NS of set SH is about 0.73 for the

www.hydrol-earth-syst-sci.net/23/2647/2019/ Hydrol. Earth Syst. Sci., 23, 2647–2663, 2019
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Table 3. Average NS model performance for the lumped HBV model.

Catchment Rainfall Calibration for Calibration for Validation for Validation for

dataset 1991–2000 2001–2010 1991–2000 2001–2010

Rottweil

SH 0.71 0.71 0.65 0.65

DH 0.79 0.73 0.73 0.68

SD 0.61 0.61 0.56 0.55

DD 0.67 0.63 0.63 0.59

Schwaibach

SH 0.60 0.88 0.52 0.72

DH 0.89 0.88 0.88 0.87

SD 0.57 0.85 0.49 0.68

DD 0.84 0.86 0.83 0.83

Pforzheim

SH 0.61 0.69 0.60 0.65

DH 0.63 0.69 0.63 0.67

SD 0.48 0.60 0.46 0.56

DD 0.48 0.60 0.49 0.57

Kocherstetten

SH 0.88 0.85 0.86 0.84

DH 0.89 0.85 0.87 0.84

SD 0.84 0.84 0.81 0.79

DD 0.84 0.83 0.81 0.81

Table 4. Average NS model performance for the distributed HBV model.

Catchment Rainfall Calibration for Calibration for Validation for Validation for

dataset 1991–2000 2001–2010 1991–2000 2001–2010

Rottweil

SH 0.70 0.68 0.63 0.55

DH 0.80 0.69 0.74 0.66

SD 0.61 0.59 0.54 0.46

DD 0.68 0.60 0.63 0.57

Schwaibach

SH 0.59 0.88 0.50 0.76

DH 0.90 0.88 0.88 0.87

SD 0.55 0.86 0.47 0.72

DD 0.85 0.86 0.84 0.85

Pforzheim

SH 0.55 0.68 0.55 0.64

DH 0.59 0.67 0.59 0.64

SD 0.42 0.58 0.41 0.54

DD 0.45 0.58 0.46 0.54

Kocherstetten

SH 0.88 0.86 0.86 0.84

DH 0.89 0.86 0.87 0.84

SD 0.84 0.84 0.82 0.80

DD 0.84 0.84 0.82 0.81

calibration period and 0.68 for the validation period, while

the mean NS coefficient calibrated using the SD set is 0.67

and 0.6, respectively. The higher observation density datasets

show a similar tendency. The mean NS of using the DH set

is around 0.79 for calibration and 0.77 for validation, while

that of set DD is 0.72 and 0.69, respectively. The fact that

the hourly scale model performs better than the daily model

suggests that the dynamic runoff of the catchment could be

better simulated with a higher temporal resolution of rain-

fall. According to the distances from the diagonal to the scat-

terplots, we can observe that the difference in model per-

formance for different temporal resolutions is larger for the

catchments with relatively low NS model performance, such

as Schwaibach and Pforzheim. For Rottweil and Kocherstet-

ten, the performance of the hourly calibrated model is only

slightly better than the daily model.
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Figure 6. Comparison of the simulated flow duration curve.

4.4 Model performance in terms of observation

density

The rainfall gauge network density has a significant impact

on model simulation and parameter optimization. Figure 10

shows the simulated NS coefficient of the model simulations

using the daily input data interpolated using different densi-

ties of raingauge networks. It shows obviously from the lo-

cation of points that the simulated model performance us-

ing the DD set is generally better than that using the SD set

for both the calibration and validation periods. The aver-

aged NS model performances of DD and SD sets are 0.71

and 0.64, respectively. The model performance using hourly

inputs shows a similar trend to that using daily inputs. As

shown in Fig. 11, the model using the DH set outperforms

the one using the SH set. These results demonstrate that high

raingauge density led to improvement in model performance

at both daily and hourly time resolution.

Figure 12 illustrates the cumulative distribution function

of the NS coefficient using sets SD, SH and DH for model

calibration (left) and validation (right). As can be seen clearly

from the curves, if rainfall data come from a sparse net-

work of sub-daily stations, use of higher temporal resolu-

tion datasets (the SH set) leads to better model performance

than using lower-resolution ones (the SD set). Simulation of

daily streamflow can benefit from running the model at a

higher temporal resolution. In addition, the combination of

observed sub-daily rainfall with disaggregated daily rainfall

(the DH set) leads to a further improvement in daily stream-

flow simulation.

4.5 Model performance in terms of the spatial

resolution of rainfall data

The model performance was compared between the lumped

and spatially distributed HBV models when they were

driven by different rainfall datasets. Figure 13 compares the
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Figure 7. Comparison of the simulated flow duration curve for flows higher than the 10th percentile of flow.

Figure 8. Comparison of the NS coefficient for using hourly and daily rainfall as model input for the SH and SD sets.
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Table 5. Mean square error for flows higher than the 10th percentile of flow for the lumped HBV model.

Catchment Rainfall Calibration for Calibration for Validation for Validation for

dataset 1991–2000 2001–2010 1991–2000 2001–2010

Rottweil

SH 83.1 74.6 118.7 83.5

DH 55.1 69.8 82.4 84.7

SD 120.0 104.5 151.4 108.5

DD 101.7 98.9 120.0 110.1

Schwaibach

SH 2511.4 338.6 3214.9 663.6

DH 565.4 324.4 722.7 328.2

SD 2739.9 401.1 3423.0 805.7

DD 916.0 389.2 1048.1 448.2

Pforzheim

SH 11.8 7.3 12.4 8.3

DH 11.2 6.9 11.8 7.3

SD 19.1 10.6 19.6 12.0

DD 18.9 10.3 19.5 10.9

Kocherstetten

SH 438.9 457.5 545.5 558.7

DH 288.5 439.3 350.5 518.8

SD 651.9 551.9 801.9 760.4

DD 556.0 544.1 665.0 701.3

Table 6. Mean square error for flows higher than the 10th percentile of flow for the distributed HBV model.

Catchment Rainfall Calibration for Calibration for Validation for Validation for

dataset 1991–2000 2001–2010 1991–2000 2001–2010

Rottweil

SH 89.0 86.8 127.8 120.1

DH 56.5 85.2 80.1 95.0

SD 121.0 113.6 161.4 144.5

DD 100.6 111.5 119.6 121.9

Schwaibach

SH 2657.1 326.9 3330.8 527.1

DH 526.1 311.4 680.7 317.7

SD 2869.6 387.9 3546.7 681.5

DD 892.8 376.5 983.2 405.9

Pforzheim

SH 12.5 7.1 12.7 8.1

DH 11.9 6.7 12.4 7.2

SD 19.6 10.3 19.7 11.5

DD 19.5 9.9 19.6 10.6

Kocherstetten

SH 425.7 455.1 541.2 551.5

DH 293.5 429.1 355.3 515.1

SD 633.3 552.0 778.6 727.3

DD 542.4 540.8 637.0 670.9

NS model performance for calibration (left) and validation

(right) periods. The correlation between model performance

and the spatial resolution of a model seems unclear for the

study catchments. For some simulations, the spatially dis-

tributed model outperforms the lumped one, especially for

the catchments with a high NS coefficient, despite the in-

crease in model performance being only marginal. How-

ever, for the catchments with relatively poorer model per-

formance, the lumped model could even lead to slightly bet-

ter performance than the semi-distributed model, especially

for the validation period when the difference seems larger

than the calibration period. This indicates that for model val-

idation, the model parameters estimated by the distributed

HBV model show weaker transferability. A possible expla-

nation for this case could be that the distributed model has

a larger number of parameters to be calibrated and that the

parameters are underestimated during the calibration period.

We conclude that the improvement in the spatial resolution

of model structure did not enhance the model performance,

which is surprising since higher spatial resolution and more
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Figure 9. Comparison of the NS coefficient for using hourly and daily rainfall as model input for the DH and DD sets.

Figure 10. Comparison of the NS coefficient for different densities of raingauge networks; models were simulated based on daily time steps.

model parameters are expected to improve the model perfor-

mance. Our results confirm the findings of Das et al. (2008)

that the distributed models do not necessarily improve model

performance.

The distributed model did not perform better than the

lumped model in this study. This could be because the catch-

ment underlying surface information and/or the calibration

procedure was not sufficient for identifying optimal dis-

tributed model parameters. A second reason could be that the

temporal resolution of the rainfall inputs is not sufficient for

the distributed model.

4.6 Common model calibration with different temporal

resolutions

As shown before, the combination of hourly and daily gauge

data leads to the improvement in data quality as the model

using sets DH and DD has better performance than using

sets SH and SD. Furthermore, common calibration of the

lumped HBV model was performed for sets DH and DD to

identify model parameters good for both hourly and daily

time steps. It is important to note that the parameters (DD,

K0, K1, Kd and K2) that are dependent on time steps should

be converted according to the simulation step of the model.

The common calibration was performed for the two time

periods separately, and a cross-validation analysis was per-

formed as well. The common calibration and validation re-

sults were compared with the individual calibration (Fig. 14).

For the calibration period, the common calibration always

leads to slightly weaker performance for all datasets. For

three of the DD datasets, model performances of common

parameters are similar to individual calibration results. The

average loss of NS coefficients over all catchments is about

0.02 for set DH and 0.01 for set DD. For the validation pe-

riod, it can be seen from the scatterplots that the common

parameters outperform the individual ones for about half

of all the simulations. It suggests that parameter values ob-

tained using the common calibration approach based on dif-

ferent time steps can improve the temporal transferability of

models. The reason for the robustness of common parame-
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Figure 11. Comparison of the NS coefficient for different densities of raingauge networks; models were simulated based on hourly time

steps.

Figure 12. Cumulative distribution of the NS coefficient for model calibration using different rainfall datasets.

ters might be that a common calibration strategy can provide

more information for identifying model parameters.

The calibrated model parameters using daily rainfall,

hourly rainfall and a common calibration strategy were also

compared. Figures 15 and 16 show the distributions of the

optimized model parameters for Rottweil and Pforzheim, re-

spectively. Note that all parameters are normalized by the ini-

tial ranges in Table 2. From the boxplots we could find that

some model parameters strongly depend on the selected rain-

fall dataset. This is very evident with the shape factor (Beta)

and the threshold water level for surface runoff (L).

5 Conclusions and outlook

In this study, we investigated the impacts of temporal and

spatial variability of rainfall in model simulation and pa-

rameter estimation. We also explored the question whether

higher temporal and spatial resolutions of rainfall data lead

to any improvement in model performance. Both the lumped

and spatially distributed HBV model were applied to sim-

ulate daily runoff for four mesoscale catchments driven by

four different rainfall datasets which were constructed using

a combination of data from a high density of daily stations

and relatively low-density sub-daily stations. The impacts of

rainfall variability on model simulations were evaluated us-

ing the NS coefficient and the mean squared error of flows

higher than the 10th percentile of flow. The model sensitiv-

ities to the temporal and spatial resolutions of rainfall were

compared. In addition, the common calibration approach was

proposed to calibrate the models with different time steps si-

multaneously for finding robust model parameters.

For the study catchments, the results indicate that the tem-

poral variability of rainfall data has direct impact on the dy-

namic response of a catchment. For both lumped and spa-

tially distributed models, if the observation density is the

same, the hourly based simulation outperforms the daily

based simulation, indicating that higher temporal resolution
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Figure 13. Comparison of the NS coefficient for different spatial resolutions of model structure.

Figure 14. Comparison of the NS coefficient for individual calibration and common calibration using datasets with different temporal

resolutions.

can significantly improve the model performance. Disaggre-

gating high-density daily observations into relatively low-

density sub-daily values could lead to considerable model

improvement, especially for the catchment with a sparse rain-

gauge network. The rainfall disaggregation approach is an

effective way of increasing the temporal resolution of rain-

fall data and the model performance. However, the lumped

and spatially distributed HBV models perform very similarly,

indicating that higher spatial resolution does not improve

or only marginally improves the model performance for the

study catchments. The result agrees with the general find-

ings of Lobligeois et al. (2014) and Zhu et al. (2018), where

insignificant improvement was observed using higher spatial

resolution of rainfall. The reason that the spatially distributed

model does not outperform the lumped model could be due

to the fact the study catchments are smaller than 2000 km2

with relatively uniform rainfall.

As stated at the beginning of this paper, we aim to inves-

tigate the sensitivity of the model to rainfall variability and

to find effective ways of improving the model performance.

This study shows that rainfall data disaggregation can lead

to a significant improvement in model performance, while

higher spatial resolution of rainfall does not always enhance

model performance. Most of the hydrological models can be

easily adjusted to use different time steps. The study suggests

that increasing the temporal resolution of rainfall inputs with

the disaggregation method can be an easier and more efficient

way to improve model performance, compared to increasing

the model spatial resolution at a cost of increasing the com-

plexity of model structure and parameters.

This study focuses on high flows and uses only the NS co-

efficient as a quantitative measure of model sensitivity. As

model performance highly depends on the selection of ob-

jective functions, the model sensitivity can be different if the

model performance is measured differently. In addition, all

the hourly simulated runoff was aggregated into daily runoff,

and the hydrological response was evaluated based on daily

discharge. Sub-daily response of a catchment is more sensi-
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Figure 15. Comparison of model parameters for different temporal resolutions for Rottweil catchment.

Figure 16. Comparison of model parameters for different temporal resolutions for Pforzheim catchment.
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tive to the temporal and spatial variability of rainfall, which

should be considered in the future if the hourly discharge ob-

servation is available.
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