Atmos. Chem. Phys., 16, 1459–1477, 2016 www.atmos-chem-phys.net/16/1459/2016/ doi:10.5194/acp-16-1459-2016 © Author(s) 2016. CC Attribution 3.0 License. # Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth F. Paulot^{1,2}, P. Ginoux¹, W. F. Cooke¹, L. J. Donner¹, S. Fan¹, M.-Y. Lin^{1,2}, J. Mao^{1,2}, V. Naik³, and L. W. Horowitz¹ Correspondence to: F. Paulot (fabien.paulot@noaa.gov) Received: 12 August 2015 – Published in Atmos. Chem. Phys. Discuss.: 22 September 2015 Revised: 15 January 2016 – Accepted: 20 January 2016 – Published: 9 February 2016 **Abstract.** We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the nearsurface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N₂O₅ reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6%) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO_2 and +38% for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth. ## 1 Introduction Ammonium nitrate (NH₄NO₃) aerosols are produced by the reaction of nitric acid (HNO₃), a photochemical product of NO oxidation, and ammonia (NH₃). Emissions of NH₃ and NO are primarily from anthropogenic origin: fossil fuel combustion for NO and agriculture for NH₃ (i.e., Bouwman et al., 1997; Paulot et al., 2014). The formation of NH₄NO₃ is favored by cold temperatures and high relative humidity (Stelson and Seinfeld, 1982). NH₄NO₃ production competes with that of ammonium sulfate, which is generally more thermodynamically stable (Pinder et al., 2008), and that of coarsemode nitrate via heterogeneous uptake of HNO₃ on dust and sea salt (i.e., Zhuang et al., 1999; Jacobson, 1999; Jordan et al., 2003). NH₄NO₃ is an important component of surface particulate matter in the USA (i.e., Malm et al., 2004; Hand et al., 2012; Kim et al., 2014), Europe (i.e., Schaap et al., 2004), and Asia (i.e., Pathak et al., 2009; Ying et al., 2014), especially in winter. As NH₄NO₃ rapidly volatilizes away from sources of NO and NH3 and with warmer temperature, it is only predicted to make an important contribution to aerosol optical depth (AOD) over polluted regions (Park et al., 2014), with global annual estimates of nitrate optical depth ranging from 0.0023 to 0.025 (Bellouin et al., 2011; Shindell et al., 2013; Myhre et al., 2013; Hauglustaine et al., 2014). However, recent modeling studies have shown that NH₄NO₃ may become the largest contributor to anthropogenic AOD by the end of the twenty-first century (Hauglustaine et al., 2014), following the projected increase of NH₃ emissions and decrease of SO₂ emissions. Such an increase of NH₄NO₃ ¹Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA ²Program in Atmospheric and Oceanic Sciences, Princeton University, New Jersey, USA ³UCAR, National Oceanic and Atmospheric Administration, Princeton, New Jersey, USA would offset some of the decline in anthropogenic aerosol radiative forcing over the twenty-first century (West et al., 1998; Adams et al., 2001; Liao et al., 2006; Bellouin et al., 2011; Henze et al., 2012; Shindell et al., 2013; Hauglustaine et al., 2014). In this study, we aim to characterize the mechanisms controlling the response of NO₃ optical depth to changes in anthropogenic emissions from 2010 to 2050. We focus in particular on how this response is modulated by the temporal and spatial variations in NH₃ emissions, the heterogeneous chemistry of HNO3, and the surface removal of nitrate aerosols. In Sect. 2, we first describe a new configuration (AM3N) of the global chemistry-climate atmospheric model (AM3) from the Geophysical Fluid Dynamics Laboratory (GFDL), with revised treatments of sulfate and nitrate chemistry and aerosol deposition. We emphasize significant differences in the simulated budgets of SO_4^{2-} , NO_3^{-} , and $NH_x \equiv NH_3 + NH_4^+$ between AM3N and the version of AM3 used for the Coupled Model Intercomparison Project (CMIP) 5. In Sect. 3, we evaluate the simulated distribution of AOD, as well as SO_4^{2-} , NO_3^{-} , and NH_3 concentrations at the surface and in precipitated water. In particular, we evaluate AM3 and AM3N against the extensive set of aerosol composition and optical properties routinely measured at Bondville (40.1° N, 88.4° W). In Sect. 4, we examine the response of NO_3^- optical depth to projected changes in anthropogenic emissions in 2050 and its sensitivity to different treatments of removal and chemistry. # 2 Method # 2.1 Model description We use the GFDL-AM3 chemistry–climate model to simulate gas and aerosol chemistry. In its standard form, AM3 uses a finite volume dynamical core on a cubed sphere grid with 200 km (c48) horizontal resolution and 48 hybrid sigma pressure vertical layers (Donner et al., 2011). AM3 simulations were conducted for the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (Naik et al., 2013b) and as the atmospheric component of the GFDL coupled climate model CM3 for CMIP5 in support of the IPCC AR5. The chemistry of AM3 has been described by Naik et al. (2013a) with updates to the gas-phase and heterogeneous chemistry (Mao et al., 2013b, c). Briefly, AM3 includes SO_4^{2-} formation from gas-phase oxidation and the in-cloud reaction of SO_2 with O_3 and H_2O_2 (Tie et al., 2005). Incloud production of SO_4^{2-} is sensitive to cloud pH, which is calculated as a function of the concentration of SO_4^{2-} (assumed to be entirely in-cloud water), NH3, SO2, HNO3, and CO_2 . NH4NO3 formation is calculated following Stelson and Seinfeld (1982), but is assumed irreversible. Dry deposition and wet scavenging by large-scale and convective precipita- tion are described by Fang et al. (2011); Donner et al. (2011); Naik et al. (2013a). Aerosol optical properties (i.e., extinction efficiency, single-scattering albedo, and asymmetry parameter) are described by Donner et al. (2011) and Strong et al. (2015). Sulfate is assumed to be fully neutralized by ammonium. Its size distribution is taken as log-normal following Haywood and Ramaswamy (1998) with hygroscopic growth based on pure ammonium sulfate (Tang and Munkelwitz, 1994) and capped at 95% relative humidity. Aerosol activation into cloud droplets follows the parameterization of Ming et al. (2006). For radiative calculations, aerosols are assumed to be externally mixed except for sulfate and hydrophilic black carbon, which are assumed internally mixed (Donner et al., 2011). Nitrate is not considered for radiative calculations in AM3. A new configuration of AM3 is introduced (referred to as AM3N hereafter) with the following changes aimed at improving the simulation of nitrate aerosols (see Sect. 3). Aerosol chemistry – we use ISORROPIA to simulate the sulfate–nitrate–ammonia thermodynamic equilibrium (Fountoukis and Nenes, 2007). Equilibrium between gas and aerosol is assumed to be reached at each model time step (30 min), which is generally justified for PM_{2.5} (Meng and Seinfeld, 1996). In-cloud oxidation of SO₂ is restricted to liquid clouds and we revise the calculation of cloud pH to account for the partitioning of HNO₃/NO₃⁻ and NH₃/NH₄⁺ between the gas phase and cloud water. *Heterogeneous chemistry* – we include the heterogeneous uptake of HNO₃, NO₃⁻, N₂O₅, SO₂, and H₂SO₄ on dust particles (Table S1 in the Supplement). The uptake of HNO₃, NO_3^- , and N_2O_5 is assumed to be limited by alkalinity (Song and Carmichael, 2001). Following Fairlie et al. (2010), dust alkalinity is comprised of calcium and magnesium carbonates, with calcium and magnesium constituting 3 and 0.6 % (by mass) of coarse dust emissions (radius > 1 μm), respectively. Observations suggest alkalinity is primarily found in the coarse mode (Claquin et al., 1999); we assume that fine dust carries half as much alkalinity per kilogram as coarse dust. We also reduce the reaction probabilities (γ) of N_2O_5 , NO₂, and NO₃ on aerosols relative to AM3 (Mao et al., 2013b) (see Table S1 in the Supplement and Sect. 2.3.2). The implications of these changes for the budget of HNO₃ and aerosol NO₃ are described in Sect. 2.4. Nitrate optical depth – the optical properties and the mixing with black carbon of ammonium nitrate are assumed to be identical to those of ammonium sulfate. This approximation introduces an error in mass extinction at 550 nm of less than 20 % for relative humidity (RH) < 90 % and by less than 10 % between 90 and 95 %
(Fig. S1 in the Supplement). The optical depth of NO_3^- associated with dust is expected to be small relative to fine-mode NO_3^- (e.g., Hauglustaine et al., 2014) and it is not considered here. *Dry deposition* – similar to AM3, the dry deposition fluxes of gases and fine aerosols are calculated based on a monthly climatology of deposition velocities. We update this climatology to account for recent observations of rapid deposition of H_2O_2 and some oxygenated volatile organic compounds, using the deposition velocities calculated in the GEOS-Chem chemical transport model as described by Nguyen et al. (2015). Wet deposition - in AM3, aerosol removal by snow is treated like that by rain. In AM3N, water-soluble aerosols are not removed by snow, when the snow is formed via the Wegener–Bergeron–Findeisen mechanism (referred to as Bergeron mechanism hereafter), i.e., when water evaporates from liquid cloud droplets and condenses onto growing ice crystals. This treatment is consistent with observations (Henning et al., 2004) and similar to that used in other global models (Liu et al., 2011; Wang et al., 2011; Fan et al., 2012). Scavenging by snow formed via riming and homogeneous freezing is treated like that by rain. Gases are not scavenged by snow except HNO₃ (Neu and Prather, 2012). Convective plumes are discretized on a vertical grid that has finer vertical resolution than AM3 (Donner, 1993). The improved discretization of the convective plume has little impact on precipitation at the surface but increases the convective wet removal of tracers as we will show in Sect. 3. ## 2.2 Emissions We use anthropogenic emissions from the Hemispheric Transport of Air Pollution v2 (HTAP_v2) task force regridded to $0.5^{\circ} \times 0.5^{\circ}$ for years 2008 and 2010 (Janssens-Maenhout et al., 2015). HTAP_v2 aircraft emissions are distributed vertically following Lamarque et al. (2010). Daily biomass burning emissions are based on the NCAR Fire INventory (FINNv1, Wiedinmyer et al., 2011) and emitted in the model surface layer. Average dust emissions are parameterized following Ginoux et al. (2001), as $$F_p = CSs_p u_{10\,\mathrm{m}}^2(u_{10\,\mathrm{m}} - u_{\rm t}) \text{ if } u_{10\,\mathrm{m}} > u_{\rm t}, \tag{1}$$ where C is a dimensional factor ($\mu g s^2 m^{-5}$), S is the source function based on topography, $u_{10\,\mathrm{m}}$ is the horizontal wind at $10 \,\mathrm{m} \,(\mathrm{m}\,\mathrm{s}^{-1})$, u_{t} is the threshold velocity $(\mathrm{m}\,\mathrm{s}^{-1})$, and s_p is the fraction of total dust emitted in the size class pas defined by Li et al. (2008). Over the 2008-2010 period, dust emission is $1640 \,\mathrm{Tg}\,\mathrm{a}^{-1}$. This includes $1230 \,\mathrm{Tg}\,\mathrm{a}^{-1}$ from natural sources (S from Ginoux et al. (2001), C = $0.125 \,\mu\mathrm{g}\,\mathrm{s}^2\,\mathrm{m}^{-5}$, $u_{\rm t} = 1 \,\mathrm{m}\,\mathrm{s}^{-1}$), similar to the AEROCOM multi-model mean (Huneeus et al., 2011), and 410 Tg a⁻¹ from anthropogenic sources (primarily over cropland and pasture from Ginoux et al. (2012b) with updated MODIS collection 6, $C = 0.219 \,\mu\text{g s}^2\,\text{m}^{-5}$, $u_t = 3 \,\text{m s}^{-1}$). Isoprene emissions are calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 2006; Rasmussen et al., 2012). NO emissions from lightning are calculated as a function of subgrid convection (Horowitz et al., 2003). Differences in the treatment of convection in AM3N result in greater NO emissions from lightning in AM3N (5.6 Tg N a⁻¹) compared to AM3 (5.2 Tg N a⁻¹), with both estimates within the range of emissions inferred from observations (Martin et al., 2007; Murray et al., 2012). Other natural emissions, including soil NO_x and soil and ocean NH₃ emissions, are described by Donner et al. (2011) and Naik et al. (2013a). Global total emissions of SO_2 , NH₃, and NO_x are listed in Table 1. # 2.3 Sensitivity simulations Considering the large uncertainty in the simulated nitrate optical depth and surface concentrations, we design a set of sensitivity simulations based on AM3N to characterize the sensitivity of nitrate and sulfate to key uncertainties in chemistry and in NH₃ emissions (Table 2). All simulations are run from 2007 to 2010, using 2007 to spin-up the model. To facilitate the comparison with observations and limit meteorological variability across model configurations, the model horizontal wind is relaxed to 6 hourly values from the National Centers for Environmental Predictions reanalysis (Kalnay et al., 1996) as described in Lin et al. (2012). # 2.3.1 NH₃ emissions *Present-day* – the largest source of NH₃ to the atmosphere is agriculture. Unlike anthropogenic emissions of other compounds, which are dominated by fossil fuel emissions, NH₃ emissions exhibit large seasonal variations, which reflect the seasonality of agricultural practices (e.g., fertilizer application) as well as the decrease of NH3 solubility with temperature (Misselbrook et al., 2004; Pinder et al., 2006; Paulot et al., 2014). The HTAP_v2 inventory includes monthly variations in anthropogenic NH₃ emissions over North America, Europe, and parts of Asia, including Japan and China, but excluding India. Anthropogenic emissions of NH₃ previously used in AM3 simulations for ACCMIP and CMIP5 are constant throughout the year (Lamarque et al., 2010). To evaluate the impact of the seasonality of NH_3 emissions on NO_3^- , we remove all temporal variability in the anthropogenic emissions of NH₃ in simulation AM3N_ns. NH₃ emissions also exhibit diurnal variability (Pinder et al., 2006), which may affect the simulated concentrations of NH₃ and NH₄NO₃ (Zhu et al., 2013; Van Damme et al., 2014b; Schiferl et al., 2014; Zhu et al., 2015). In AM3N_diu, we impose the NH₃ diurnal cycle of the regional LOTOS (Long Term Ozone Simulation) model globally (Schaap et al., 2004). The ratio between maximum emissions (13:00–14:00 local time) and minimum emissions (03:00-06:00) is 5.7. 2050 – anthropogenic NH₃ emissions for 2050 are estimated by scaling HTAP_v2 surface anthropogenic NH₃ emissions with national projections from the Representative Concentration Pathway 8.5 (RCP8.5) from 2010 to 2050 (Fig. 1), while keeping natural and biomass burning emissions at their present-day levels. We use the RCP8.5 scenario for 2050 (van Vuuren et al., 2011) as it most closely resem- **Table 1.** Simulated budget of SO_4 , NH_x , and NO_y in 2010. | | AM3 | AM3N | |--|------|------| | SO_4^{2-a} | | | | Production (Tg S a ⁻¹) | 37.3 | 33.1 | | ОН | 10.4 | 7.7 | | H_2O_2 | 26.7 | 16.2 | | O_3 | 0.1 | 4.5 | | dust | 0.0 | 1.9 | | Loss $(Tg S a^{-1})$ | 37.4 | 33.3 | | Dry deposition | 4.7 | 4.6 | | SO_4^{2-} | 4.7 | 3.8 | | $SO_4^{\overline{2}-}$ on dust | 0.0 | 0.8 | | Wet deposition | 32.7 | 28.7 | | SO_4^{2-} | 32.7 | 27.5 | | SO_4^{2-} on dust | 0.0 | 1.1 | | Lifetime (days) | 4.9 | 3.8 | | NH _r | 1., | 3.0 | | | | | | NH ₃ emission $(Tg N a^{-1})^b$ | 54.5 | 54.5 | | Loss $(Tg N a^{-1})$ | 54.8 | 55.0 | | Dry deposition | 14.4 | 23.5 | | NH_4^+ | 14.3 | 3.6 | | NH ₃ | 0.1 | 19.9 | | Wet deposition | 40.4 | 30.7 | | NH_4^+ | 39.4 | 20.7 | | NH ₃ | 1.0 | 10.1 | | Gas oxidation | 0.0 | 0.8 | | Lifetime (days) | 5.5 | 2.5 | | NO _y | | | | NO emission (Tg N a ⁻¹) | 51.4 | 51.8 | | Loss (Tg N a^{-1}) | 51.3 | 51.0 | | Dry deposition | 25.4 | 23.1 | | HNO_3 | 18.3 | 10.7 | | NO_3^- on dust | 0.0 | 3.4 | | NH_4NO_3 | 0.7 | 0.8 | | Organic nitrogen | 3.9 | 4.0 | | Wet deposition | 25.6 | 27.6 | | HNO_3 | 23.4 | 17.8 | | NO_3^- on dust | 0.0 | 3.7 | | NH ₄ NO ₃ | 0.5 | 3.5 | | Organic nitrogen | 1.7 | 2.6 | | Lifetime (days) | 22.7 | 13.4 | $[^]a$ SO $_2$ emissions are 74.0 Tg S a^{-1} including 16.0 Tg S a^{-1} from dimethyl sulfide (DMS) oxidation. bles emissions from regional inventories over the 2000–2010 period (Granier et al., 2011). However, we do not use the RCP8.5 spatial distribution of NH₃ sources, as it differs notably from HTAP_v2 over many source regions such as India, the Nile delta, the Benelux, the California Central Val- **Figure 1.** Average annual emissions of NH₃ for 2010 (top row) and 2050 (bottom row) based on anthropogenic NH₃ emissions from HTAP_v2 (left column) and from RCP8.5 (right column). Non anthropogenic emissions (including biomass burning) are the same in all scenarios. Total annual emissions are indicated inset. ley, and the Saskatchewan (Fig. 1). These differences may reflect mapping errors for RCP8.5 NH₃ emissions from agriculture as noted by Lamarque et al. (2013). Our approach results in 18 % more anthropogenic emissions (60 Tg N a⁻¹) than in RCP8.5 for 2050. ## 2.3.2 Heterogeneous chemistry Wintertime production of HNO₃ in the northern midlatitudes' boundary layer is dominated by the uptake of N₂O₅ on aerosols (e.g., Dentener and Crutzen, 1993; Tie et al., 2003; Lamsal et al., 2010). The probability for the heterogeneous conversion of N_2O_5 to $HNO_3(\gamma)$ remains uncertain (Chang et al., 2011), with field and laboratory observations showing that it is inhibited by aerosol nitrate and organics (Brown et al., 2009; Brown and Stutz, 2012; Wagner et al., 2013; Gaston et al., 2014), but enhanced by cold temperatures (Griffiths and Anthony Cox, 2009; Wagner et al., 2013). To quantify the impact of the heterogeneous production of HNO_3 on aerosol NO_3^- , we neglect the heterogeneous production of HNO3 via N2O5 aerosol uptake in AM3N_nhet. We also neglect the productions of HNO₃ by NO₃ and NO₂ reactive uptake, as they may modulate the wintertime budget of NO_v in polluted region (Paulot et al., 2013). Note that previous characterizations of NO₃⁻ optical depth also neglected the heterogeneous chemistry of oxidized nitrogen (e.g., Bellouin et al., 2011). We also evaluate the impact of the heterogeneous chemistry on dust as it is not included in all
models (e.g., Pye et al., 2009; Bellouin et al., 2011). In AM3N_ndust, we neglect the uptake of HNO₃, N₂O₅, NO₃, H₂SO₄, and SO₂ on dust. ^b including $39.9\,\mathrm{Tg\,N\,a^{-1}}$ from anthropogenic sources, $3.9\,\mathrm{Tg\,N\,a^{-1}}$ from biomass burning, and $10.7\,\mathrm{Tg\,N\,a^{-1}}$ from natural sources (primarily from the ocean). **Table 2.** Configurations of AM3N used in this study. | | Temporal variation of NH ₃ emissions | Heterogeneous chemistry on dust | Heterogeneous production of HNO ₃ | Dry deposition of NH ₄ NO ₃ | |---------------|---|---------------------------------|--|---| | AM3N | Monthly | Yes | Yes | SO ₄ ²⁻ | | AM3N_fdep | Monthly | Yes | Yes | $\overrightarrow{HNO_3}$ | | AM3N_diu | Monthly + diurnal | Yes | Yes | SO_4^{2-} | | AM3N_ns | No | Yes | Yes | SO_4^{2-} | | AM3N_nhet | Monthly | Yes | No | SO_4^{2-} | | AM3N_ndust | Monthly | No | Yes | $SO_4^{\overline{2}-}$ | | AM3N_fdep_diu | Monthly + diurnal | Yes | Yes | HNO_3 | # 2.3.3 Surface removal of fine NO_3^- In AM3N, the dry deposition of NH₄NO₃ is slow, similar to other fine aerosols. Several field observations have reported steeper vertical gradients and faster deposition velocities (v_d) for NO₃⁻ than for SO₄²⁻ (Huebert et al., 1988; Wyers and Duyzer, 1997; Van Oss et al., 1998; Rattray and Sievering, 2001; Nemitz et al., 2004; Fowler et al., 2009; Wolff et al., 2010; Barbaro et al., 2015). This difference stems from gradients in temperature, RH, and HNO₃ within the boundary layer, which reduce the stability of NH₄NO₃ near the surface. The volatilization of NH₄NO₃ may result in an underestimate of the surface deposition of TNO₃ \equiv HNO₃+NO₃⁻, since v_d (NH₄NO₃) $\ll v_d$ (HNO₃). As an upper bound, we assume that the surface removal of fine NO₃⁻ is limited by turbulent transport by setting v_d (NO₃⁻) $= v_d$ (HNO₃) in AM3N_fdep. ## 2.4 Budget and global distribution Table 1 shows the budgets of SO_4^{2-} , NH_x , and NO_y in AM3 and AM3N for 2010. Here NO_y is defined as the sum of all species that contained oxidized nitrogen. The budgets for all simulations are given in Table S2. The lifetimes of SO_4^{2-} , NH_x , and NO_y are significantly shorter in AM3N than in AM3. This decrease is driven in part by greater convective removal associated with changes in finer vertical discretization of convective plumes. For instance, the lifetime of SO_4^{2-} with respect to convective removal decreases from 44 to 18 days. For SO_4^{2-} , the increased effectiveness of convective removal is partly offset by reduction in the removal by snow (Sect. 2.2). The SO_4^{2-} lifetime in both AM3 and AM3N falls within the range of AEROCOM models (3–5.2 days Schulz et al., 2006). Unlike AM3, AM3N includes ammonium in the calculation of cloud pH, which reduces the acidity of cloud droplets and favors the production of SO_4^{2-} via in-cloud oxidation of SO_2 by O_3 . The production of SO_4^{2-} via $SO_2 + O_3$ is 4.5 Tg S a⁻¹ in AM3N, greater than the recent estimate of Sofen et al. (2011) (1.5 Tg S a⁻¹). This discrepancy may reflect differences in cloud pH and lower H_2O_2 concentrations in AM3N because of faster dry deposition for H_2O_2 and effi- cient removal of HO_2 via aerosol uptake (Mao et al., 2013a). AM3N does not include production of SO_4^{2-} via the aqueous reaction of SO_2 with O_2 catalyzed by iron and manganese or by the oxidation of SO_2 by stabilized Criegee intermediates (Mauldin III et al., 2012). The lifetime of SO_2 is 1.3 days in both AM3 and AM3N, similar to Sofen et al. (2011) and Lee et al. (2011). The overall conversion from SO_2 to SO_4^{2-} (excluding SO_4^{2-} on dust) is reduced compared to AM3 from 50 to 42% and lower than the AEROCOM multi-model mean (62%). In AM3, NH₃ uptake by SO_4^{2-} is solely controlled by kinetics without any thermodynamic limit, such that NH₃ burden is small (0.005 TgN) and NH₃ generally limits the formation of NH₄NO₃. In AM3N, the uptake of NH₃ by SO_4^{2-} aerosols cannot exceed the thermodynamic limit calculated by ISORROPIA, which results in a greater NH₃ burden (0.11 TgN) and favors the production of NH₄NO₃. The shorter lifetime of NH_x in AM3N than in AM3 reflects the change in the speciation of NH_x and the faster dry deposition of NH₃ relative to NH₄⁺. The lifetime of NH_x in AM3N (2.5 days) is similar to that derived by Xu and Penner (2012) and Hauglustaine et al. (2014) (2.3 days). AM3N and AM3 differ most strikingly in their simulations of NO_v. The contribution of HNO₃ to the removal of NO_y decreases from 81 % (AM3) to 56 % (AM3N). In contrast, the contribution of aerosols to NO_v removal increases from 2 to 22 %. Recent studies (Hauglustaine et al., 2014; Xu and Penner, 2012) have found an even greater contribution of aerosols to the removal of NO_v (> 30 %); this difference may reflect the lack of HNO₃ uptake by sea salt in AM3N. Organic nitrogen contributes 10% of NO_v removal in both AM3 and AM3N. The much lower fraction of NO_v deposited as HNO₃ in AM3N relative to AM3 reflects both the increased production of NH₄NO₃ and the uptake of HNO₃ on dust. The total heterogeneous production of HNO₃ by N₂O₅ $(9.7 \, \text{Tg} \, \text{N} \, \text{a}^{-1})$, $NO_2 \, (0.6 \, \text{Tg} \, \text{N} \, \text{a}^{-1})$, and $NO_3^- \, (0.4 \, \text{Tg} \, \text{N} \, \text{a}^{-1})$ uptake on fine aerosols is reduced by 50 % in AM3N relative to AM3. This decrease is primarily driven by reduced reaction probabilities for NO2 and NO3 uptake. In contrast, the change of $\gamma_{N_2O_5}$ from 0.1 (AM3) to 0.01 (AM3N) reduces the heterogeneous uptake of N2O5 by only 20% because of **Figure 2.** Annual mean burden of NO_3^- , NO_3^- on dust, NH_4^+ , and NH_3 in $mgNm^{-2}$ in AM3N from 2008 to 2010. Global burdens are indicated inset. The location of the Bondville site is indicated by a black cross in the upper left panel. the large increase in the sulfate surface area in winter (see Sect. 3). The magnitude of the N_2O_5 source of HNO₃ in AM3N is 3 times as large as reported by Hauglustaine et al. (2014). This may reflect greater reactive aerosol surface area in AM3N, as N_2O_5 hydrolysis can take place on SO_4^{2-} , BC, OC, and NO_3^- aerosols, while only SO_4^{2-} is considered by Hauglustaine et al. (2014). Reduction in the simulated HNO₃ burden – driven by faster NO_3^- deposition (AM3N_fdep), heterogeneous uptake of HNO₃ on dust (AM3N_ndust), or reduced heterogeneous production of HNO₃ (AM3N_nhet) – increase cloud pH, which favors the oxidation of SO_2 by O₃ (Table S2). Figure 2 shows the burden of fine NO₃⁻, NO₃⁻ on dust, NH₄⁺, and NH₃ in AM3N. The simulated global burdens fall within the range of previous estimates (Bauer et al., 2007; Feng and Penner, 2007; Pye et al., 2009; Pringle et al., 2010; Bellouin et al., 2011; Xu and Penner, 2012; Hauglustaine et al., 2014) for fine NO_3^- (0.04–0.11 TgN), NO_3^- on dust $(0.07-0.41 \text{ Tg N}), \text{ NH}_4^+ (0.21-0.27 \text{ Tg N}), \text{ and NH}_3 (0.07-0.07 \text{ Tg N})$ 0.29 Tg N). The burden of fine NO₃ peaks over China where it reaches over 5 mg N m⁻², with a secondary maximum over India. Fine NO₃ burden is also elevated over northern Europe and the US Midwest, where agricultural activities are located close to large sources of oxidized nitrogen. Compared with the fine nitrate distribution from Hauglustaine et al. (2014) for 2000, AM3N simulates greater nitrate burden over Asia but lower burdens over Europe and the USA. These differences may reflect different spatial distributions of NH₃ emissions (Fig. 1). AM3N simulates large enhancements in NH3 column over source regions such as India (where the burden reaches $12 \,\mathrm{mg}\,\mathrm{m}^{-2}$), northern China, the Netherlands, and the US Midwest, as supported by satellite observations (Van Damme et al., 2014a). This lends some support to the spatial allocation of anthropogenic NH₃ emissions in HTAP_v2 inventory, although observed enhance- **Figure 3.** Observed (black) and simulated monthly concentrations of NO_3^- , SO_4^{2-} , and NH_3 at Bondville (40.1° N, 88.4° W) in surface air (left panel) and precipitated water (right panel). Observations are averaged from 2006 to 2012, while model output is from 2008 to 2010. The vertical bars denote 1 standard deviation of the mean monthly observations. The different model sensitivity experiments are described in Table 2. ments in NH₃ burden over the Po Valley and California are not captured by AM3N. # 3 Evaluation # 3.1 Bondville We first evaluate the model against an extensive suite of observations collected at Bondville (40.1° N, 88.4° W; 213 m a.s.l.). Bondville is located in the vicinity of large sources of NH₃ and NO_x, which result in elevated surface NO₃⁻ concentrations (Fig. 3) and make this site well-suited to evaluate the representation of nitrate aerosols in AM3 and AM3N. Here we compare the model against observations of surface NO₃⁻ and SO₄²⁻ concentrations (from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network), surface NH₃ concentrations (Ammonia Monitoring Network (AMoN)), SO₄²⁻, NO₃⁻, and NH₄⁺ wet deposition (National Atmospheric Deposition Pro- gram (NADP)), surface dry aerosol extinction (NOAA Earth System Research Laboratory (ESRL), Delene and Ogren, 2002), and AOD (Aerosol Robotic Network (AERONET)). Vertical profiles of aerosol extinction were also collected by NOAA ESRL Airborne Aerosol Observing (AAO) program from 2006 to 2009 (Esteve et al., 2012; Sheridan et al., 2012). Temperature and humidity profiles are measured twice daily by the ESRL Surface Radiation Budget Network (SURFRAD). Figure 3 shows the observed (black) and simulated monthly concentrations in surface air (left column) and in precipitated water (right
column) for NO₃⁻, SO₄²⁻, and NH₃ (NH₄⁺ for wet deposition) for AM3 and different AM3N configurations. Both NO₃ and NH₃ concentrations are higher year round in AM3N than in AM3, as ISORROPIA enforces thermodynamic limitation on the uptake of NH₃ by SO_4^{2-} . Observations show a spring peak in surface NH₃ concentrations, while both AM3 and AM3N simulate a summer peak. Bondville is surrounded by corn and soybean fields and NH₃ emissions associated with spring fertilizer application may be underestimated (Paulot et al., 2014). In summer, more efficient convective removal of SO₄²⁻ in AM3N reduces the AM3 high bias for SO_4^{2-} surface concentration and low bias for SO_4^{2-} wet deposition. In winter, the low bias for surface SO_4^{2-} concentration in AM3 is reduced as a result of less efficient removal by snow and increased in-cloud oxidation of SO₂. AM3N_nhet and AM3N_fdep produce greater SO_4^{2-} concentrations in winter than AM3N consistent with increased in-cloud oxidation of SO₂ by O₃ (Table S2). NO_3^- shows a large positive bias in AM3N in winter (> 70% in February). This bias can be reduced by either neglecting the heterogeneous production of HNO₃ via NO₂, NO₃, and N₂O₅ (AM3N_nhet) or treating the deposition of fine NO_3^- like that of HNO₃ (AM3N_fdep). Conversely, neglecting the seasonality of NH₃ emissions (AM3N_ns), similar to simulations performed for ACCMIP and CMIP5, increases the bias for NO_3^- in winter. To analyze the factors controlling NH₄NO₃ in the model, we calculate the gas ratio (GR) at each model time step. The GR was first proposed by Ansari and Pandis (1998) to diagnose the sensitivity of NH₄NO₃ to its gas-phase precursors NH₃ and HNO₃ and is defined as $$GR = \frac{[NH_3] + [NH_4^+] - 2[SO_4^{2-}]}{[HNO_3] + [NO_3^-]}.$$ (2) GR defines three different regimes: (a) GR > 1, in which NH₄NO₃ formation is limited by the availability of HNO₃, (b) 0 < GR < 1, in which NH₄NO₃ is limited by the availability of NH₃, and (c) GR < 0, in which NH₄NO₃ is inhibited by SO₄². We define the degree of limitation of NH₄NO₃ by HNO₃ ($\mathcal{L}(\text{HNO}_3)$) as the fraction of the time when GR > 1. In winter, NH₄NO₃ is most frequently limited by HNO₃ ($\mathcal{L}(\text{HNO}_3)$) = 78 % in AM3N). Figure 4 (bottom panel) shows $\mathcal{L}(\text{HNO}_3)$ binned by NO₃⁻ concentra- **Figure 4.** Observed and simulated distribution of daily NO_3^- concentration at Bondville (40.1° N, 88.4° W) in winter (top panel) from 2006 to 2012 (observations) and 2008 to 2010 (model). The degree of HNO₃ limitation for NH₄NO₃ formation (GR > 1) is shown in the bottom panel. The different model sensitivity experiments are described in Table 2. tions. NH_4NO_3 is most limited by HNO_3 availability at low $[NO_3^-]$, while NH_3 becomes more limiting at high $[NO_3^-]$. This suggests that even in an environment that is generally NH_3 -rich with respect to NH_4NO_3 formation, NH_3 emissions modulates NO_3^- production during high NO_3^- episodes $(AM3N_ns)$. Figure 4 also shows that AM3N nhet and AM3N fdep produce different distributions of daily [NO₃] although they have similar mean monthly [NO₃] (top panel). AM3N_fdep reproduces observations at low NO₃ concentrations well but underestimates the frequency of high NO₃ events, when NH₄NO₃ exhibits significant sensitivity to NH₃. Under these conditions, less volatilization of NH₄NO₃ near the surface is expected as NH₃ is not depleted near the surface like HNO₃. AM3_nhet $[NO_3^-]$ is most consistent with observations at high $[NO_2^-]$, conditions under which N_2O_5 heterogeneous uptake has been observed to be inhibited both in laboratory and field settings (Bertram and Thornton, 2009; Wagner et al., 2013). The ability of AM3N_fdep and AM3N_nhet to capture NO₃ under different conditions emphasizes the need to represent the dynamic nature of $\gamma(N_2O_5)$ and TNO₃ surface removal. Figure 5 shows the observed and simulated monthly AOD at Bondville. Observed AOD peaks in summer and reaches a minimum in winter. This seasonality is well captured by AM3 (top panel), while AOD in AM3N_fdep_diu (bottom panel) peaks in spring and is biased high in winter and fall. Biases in AOD may be caused by errors in aerosol abundance and speciation but also by errors in aerosol hygroscopic growth. Their relative contribution can be estimated by comparing observed and simulated aerosol extinction pro- **Figure 5.** Observed and simulated aerosol optical depth at 550 nm at Bondville (40.1° N, 88.4° W) in AM3 and AM3N_fdep_diu. Observations (black crosses) are averaged from 2006 to 2012 and the thin vertical black bars denote 1 standard deviation of the mean. Thick color bars show the simulated optical depth of SO_4^{2-} (red), NO_3^{-} (cyan), OC (green), BC (purple), dust (brown), and sea salt (blue) for AM3N_fdep_diu (2008–2010 average). files, under dry conditions (RH < 40 %) (Delene and Ogren, 2002; Sheridan et al., 2012; Esteve et al., 2012). Figure 6 shows that AM3N overestimates aerosol dry extinction in spring and fall, which suggests that the simulated aerosol abundance is overestimated. This bias may be caused by organic carbon or dust, which contribute over 30% of the simulated aerosol dry extinction throughout the column in spring, summer, and fall (Fig. S2 in the Supplement). In winter and summer, AM3N is more consistent with the observed aerosol dry extinction profile than AM3. In particular, AM3 exhibits a low bias in winter and a high bias in summer, consistent with the biases for surface $[SO_4^{2-}]$ and with the lack of extinction from NO₃⁻, the largest contributor to AM3N dry aerosol extinction below 1000 m in winter (Fig. S2). The different biases of AM3 and AM3N against AOD and dry extinction in winter and summer suggest errors in the hygroscopic growth of aerosols. This is consistent with comparisons with twice daily soundings of temperature (Fig. S3) and relative humidity (Fig. S4) over Bondville, which show that AM3N is on average too humid in winter and spring and too dry in summer. In particular, AM3N overestimates the **Figure 6.** Mean seasonal observed (black dots) and simulated surface and vertical profiles of aerosol dry extinction at Bondville (40.1° N, 88.4° W). The vertical profile show the average of all observations by the Airborne Aerosol Observatory from 2006 to 2009 collected during daytime (10:00–16:00 local time). Surface observations reflect the average of all daytime observations at the ESRL BND station from 2006 to 2012 with no local pollution. The model is averaged for daytime from 2008 to 2010. Horizontal lines show the 25th to 75th percentiles of observed dry aerosol extinctions. Dry extinctions are reported at standard temperature and pressure (273.15 K, 1 atm). We multiply the modeled nitrate extinction by 0.8 to account for the evaporation of ammonium nitrate in the nephelometer (Bergin et al., 1997). The different model sensitivity experiments are described in Table 2. occurrence of high-humidity periods (RH > 90 %, Fig. S5), when aerosol hygroscopic growth is especially large. Modeled AOD would be especially sensitive to positive RH biases in winter since AOD winter is primarily controlled by SO_4^{2-} and NO_3^{-} , which have stronger hygroscopic growth than organic carbon and dust. # 3.2 Global evaluation We broaden our evaluations of AM3 and AM3N using observations of surface $[NO_3^-]$, $[SO_4^{2-}]$, and $[NH_3]$ in the USA (IMPROVE and AMoN) and Europe (European Monitoring and Evaluation Programme (EMEP)), $[NH_x]$ and $[HNO_3]$ (EMEP), and SO_4^{2-} , NO_3^- , and NH_4^+ concentrations in precipitated water (NADP and EMEP). We compare the model monthly means from 2008 to 2010 to the average monthly observations from 2006 to 2012. For AMoN, we consider all observations (2007–2014) to take advantage of the ongoing expansion of the network. We apply Grubbs' test (Grubbs, 1950) for each station to filter out possible outliers (95 %critical value). Table 3 shows the normalized mean bias (ratio of the mean difference between the model and observations to the mean observed value) and the correlation between the model and observations for each data set for AM3, AM3N. Evaluations of all AM3N configurations and seasonal com- **Table 3.** Normalized mean bias and correlation coefficient (in parentheses) of monthly model results vs. measurements of surface concentrations of SO_4^{2-} , NO_3^- and HNO_3 , NH_3 and NH_x , concentrations of SO_4^{2-} , NH_4^+ , and NO_3^- in rain, and total aerosol optical depth at 550 nm from AERONET, MISR, and MODIS*. | | | | AM3 | AM3N | AM3N_fdep_diu | | |-------------------------------|----------------|---|--------------|--------------|---------------|--| | SO ₄ ²⁻ | | | | | | | | 4 | Aerosol | | | | | | | | | USA | 0.07 (0.81) | -0.11(0.89) | -0.06(0.89) | | | | | Europe | -0.43(0.24) | -0.22(0.62) | -0.13(0.64) | | | | Wet depo | | | | | | | | | USA | 0.00 (0.42) | -0.07(0.59) | -0.08(0.57) | | | | | Europe | -0.18 (0.53) | -0.32 (0.57) | -0.32 (0.53) | | | NO_3^- | | | | | | | | | Aerosol | | | | | | | | | USA | -0.61(0.64) | 1.03 (0.64) | 0.17 (0.65) | | | | a . | Europe | -0.78(0.62) | 0.32 (0.62) | -0.30(0.58) | | | | Gas + aer | | 0.19 (0.61) | 0.17 (0.75) | 0.20 (0.57) | | | | Wet depo | Europe | -0.18(0.61) | 0.17 (0.75) | -0.29(0.57) | | | | wet depo | USA | 0.14 (0.33) | 0.23 (0.52) | 0.11 (0.54) | | | | | Europe | -0.32(0.57) | -0.29(0.54) | -0.39(0.54) | | | NIII | | - · · · · · · · · · · · · · · · · · · · | | | | | | NH_{x} | Gas | | | | | | | | Gas | USA | -0.75 (0.50) | -0.10(0.54) | -0.22 (0.53) | | | | | Europe | -0.65 (0.48) | 0.23 (0.54) | 0.17 (0.50) | | | | Gas + aer | • | 0.00 (0.10) | 0.20 (0.0.1) | 0117 (0100) | | | | • | Europe | 0.69 (0.66) | 0.18 (0.64) | 0.02 (0.64) | | | | Wet deposition | | | | | | | | | USA | -0.20(0.50) | -0.20(0.69) | -0.15(0.69) | | |
| | Europe | -0.23(0.52) | -0.36(0.58) | -0.32(0.58) | | | AOD | | | | | | | | | MODIS | | | | | | | | | World | 0.09 (0.57) | -0.08(0.68) | -0.08(0.68) | | | | | $High\ NO_3^-$ | -0.15(0.83) | 0.11 (0.87) | 0.09 (0.87) | | | | | High SO_4^{2-} | 0.57 (0.83) | 0.06 (0.87) | 0.06 (0.87) | | | | MISR | • | | | | | | | | World | -0.03(0.53) | -0.16(0.59) | -0.16(0.59) | | | | | High NO ₃ | -0.12(0.84) | 0.21 (0.87) | 0.18 (0.87) | | | | | High SO_4^{2-} | 0.54 (0.86) | 0.12 (0.88) | 0.12 (0.88) | | | | AERONE | | | | | | | | | World | -0.03(0.72) | -0.10(0.82) | -0.11 (0.82) | | | | | High NO ₃ | -0.50(0.87) | -0.01(0.76) | -0.07(0.70) | | | | | High SO_4^{2-} | 0.33 (0.47) | -0.10(0.74) | -0.10(0.71) | | ^{*} Model results are averaged from 2008 to 2010, while we use observations from 2006 to 2012, except for MODIS and MISR (2008–2010) and NH₃ observations in the USA (2007–2014). Detailed seasonal comparisons are presented in the Supplement. parisons (Table S3 and Figs. S6 to S18) are provided in the Supplement. Table 3 shows that AM3 and AM3N exhibit similar normalized mean biases for SO_4^{2-} surface concentrations and wet deposition in the USA and Europe. However, AM3N exhibits better correlation with observations, which reflects a large improvement in the simulated seasonality of surface SO_4^{2-} (Figs. S6 and S12). As previously noted, the improvement in the simulated $[SO_4^{2-}]$ in AM3N reflects increased removal in summer by convective precipitation, greater production of SO_4^{2-} via $O_3 + SO_2$, and less efficient removal by snow in winter. The increased removal of SO_4^{2-} by convective precipitation in AM3N improves the simulation of summer wet deposition in the USA, although it remains bi- **Figure 7.** Simulated degree of limitation of NH₄NO₃ formation by HNO₃ (GR > 1) weighted by NH₄NO₃ concentration at different pressure levels in AM3N for 2010. ased low (Fig. S9). Increased convective removal of HNO₃ and NH₃ also reduces the low bias in simulated summer wet deposition for NO $_3^-$ (-50 to -23 %, Fig. S10) and NH $_4^+$ (-46 to -16 %, Fig. S10). Greater in-cloud oxidation of SO₂ by ozone in AM3N_fdep and AM3N_nhet reduces the low biases for surface [SO $_4^{2-}$] relative to AM3N (from -11 to -5 % in the USA and -22 to -13 % in Europe). Surface [NO₂] is generally overestimated in AM3N, especially over the USA (+100%). Recent studies using a range of NH₃ emissions and different representations of aerosol thermodynamics and heterogeneous chemistry have also found large positive biases in simulated surface [NO₂] (Heald et al., 2012; Walker et al., 2012; Hauglustaine et al., 2014). Figure 7 shows the annual distribution of $\mathcal{L}(HNO_3)$ in AM3N. At the surface, NH₄NO₃ formation is primarily limited by the availability of HNO₃ over continental regions, such as Europe, India, or northern China. Under HNO₃limited conditions, our analysis at Bondville suggests that increasing the deposition of TNO₃ (AM3N_fdep) can improve the simulation of surface $[NO_3^-]$. On a continental basis, we also find that AM3N_fdep_diu better captures surface [NO₃] (+17% bias in the USA) and we will focus on this configuration in the following. Note that the diurnal cycle of NH₃ emissions has a small impact on the simulated mean surface [NO₃] concentration, but reduces surface [NH₃] and increases its export to the free troposphere. Figure S20 shows the observed and simulated diurnal cycle of [NO₃] at the YRK site from the SouthEastern Aerosol Research and Characterization Network. NO₃⁻ exhibits a pronounced diurnal cycle with a maximum in the early morning and a minimum in the late afternoon (as a result of both thermodynamics and boundary layer height). AM3N and AM3N diu capture the timing of the diurnal cycle well. As NH₃ emissions peak in the afternoon, the magnitude of the NH₄NO₃ diurnal cycle in AM3N diu is lower than in AM3N. Higher daytime concentrations of NH₄NO₃ in AM3N diu suggest that accounting for the diurnal cycle of NH₃ emissions may increase the magnitude of the radiative forcing associated with NH₄NO₃. Figure 8 shows the average monthly variation of AOD from 2008 to 2010 over different regions as observed by MODIS (Remer et al., 2008) and MISR (Kahn et al., 2009) and simulated by AM3 and AM3N_fdep_diu. Although AM3 does not exhibit a large bias on a global scale (normalized mean biases lower than 10% for both MODIS and MISR), it fails to capture the seasonality of AOD over most continental regions. Over North America, AOD is biased low in winter and high in summer in AM3, consistent with the biases in surface $[SO_4^{2-}]$. The spring bias may be exacerbated by insufficient transport of aerosols from Asia. AM3 is biased high over tropical land masses, consistent with insufficient convective removal of aerosols. AM3N_fdep_diu AOD shows improved correlations with observations over most continental regions (see also Fig. S19). The increased AOD in winter and spring can be partly attributed to nitrate optical depth, which accounts for over 30% of AOD over North America. Following Lee and Adams (2010) and Shindell et al. (2013), we further evaluate the performances of AM3 and AM3N in locations within the top decile of simulated NO_3^- and SO_4^{2-} burden against observations from MODIS, MISR, and AERONET. AM3 AOD is biased high over high SO_4^{2-} regions (+30 to 50%) and low over high NO_3^- regions (-10 to -50%) consistent with the analysis of Shindell et al. (2013). The bias over high SO_4^{2-} regions is greatly reduced in AM3N (< 10%), while the model exhibits a high bias against satellite AOD observations (10–20%) but little bias against AERONET observations in high NO_3^- regions. More detailed comparisons with AERONET show that AM3N better captures AOD at high latitudes in spring (Fig. S19), which lends support to the changes made to the representation of incloud sulfate production and wet deposition. ## 4 Sensitivity of nitrate optical depth #### 4.1 Present-day emission Figure 9 compares the contributions of SO_4^{2-} , NO_3^- , OC, BC, dust, and sea salt to the global mean AOD in AM3 and AM3N_fdep_diu with previous estimates (Shindell et al., 2013; Hauglustaine et al., 2014). Present-day global mean AOD in AM3N_fdep_diu is 0.136, 16 % less than in AM3. All AOD components decrease as a result of more efficient convective removal, with the largest decrease for SO_4^{2-} (-36%). SO_4^{2-} optical depth decreases most from AM3 to AM3N_fdep_diu over tropical regions, while it increases at high latitudes, consistent with changes in SO_4^{2-} chemistry and removal. NO₃ optical depth ranges from 0.0052 (AM3N_nhet) to 0.0078 (AM3N_ndust). Our best estimate is 0.0060 (AM3N_fdep_diu). The different treatment of reactive nitrogen results in similar changes in SO_4^{2-} (0.002) and NO₃ optical depth (0.003). The range of NO₃ optical depths derived from AM3N (0.0052-0.0078) encompasses **Figure 8.** Observed and simulated monthly AOD at 550 nm in different regions averaged over the 2008–2010 period. Circles show observations from MODIS (open circles) and MISR (filled circles). The solid and dashed black lines show the AOD simulated by AM3N_fdep_diu and AM3 respectively. We also show the simulated optical depths of sulfate (red), nitrate (cyan), dust (brown), organic carbon (green), black carbon (purple), and sea salt (blue) in AM3N_fdep_diu. The model is sampled to match the location and time of valid measurements by both MODIS and MISR in each region. Correlations between simulated and observed AOD are shown inset for AM3N_fdep_diu and AM3 (in parentheses). recent estimates by Hauglustaine et al. (2014) and Bellouin et al. (2011), but differs significantly from the Goddard Institute for Space Studies (GISS) (0.023) and the Centre for International Climate and Environmental Research – Oslo (CICERO) (0.002) models. Shindell et al. (2013) reported that convective transport of NH $_3$ to the free troposphere, where NH $_4$ NO $_3$ is stable and sensitive to NH $_3$ (Fig. 7), is responsible for the elevated nitrate in the GISS model. Revisions of the treatment of NH $_3$ convective removal in GISS reduce the simulated present-day NO $_3^-$ optical depth to 0.005 (S. Bauer, personal communication, 2015). Shindell et al. (2013) also showed that CICERO may overestimate SO_4^{2-} optical depth, which would inhibit the production of NH₄NO₃ by decreasing the amount of free ammonia ([NH_x] - 2[SO₄²⁻]). Figure 10 shows the annual AM3N nitrate optical depth and its sensitivity to the treatment of NH₃ emissions and NO₃⁻ chemistry in AM3N. The sensitivity of NO₃⁻ optical depth to NH₃ seasonality is small and follows the patterns of NH₄NO₃ limitations by NH₃, with largest sensitivity over the eastern USA and in the outflow of continents The global sensitivity to NH₃ seasonality is a lower bound, since the sea- sonality of anthropogenic NH₃ emissions is not represented in important source regions (e.g., India, South America) in HTAPv2. We find greater sensitivity to the diurnal cycle of NH₃ emissions, which is attributed to increased transport of NH₃ into the free troposphere, where NH₄NO₃ is more sensitive to NH₃ (Fig. 7) and more stable because of colder temperature. Decreasing HNO₃ production, either by neglecting its heterogeneous production (AM3N_nhet) or increasing the deposition of NO₃⁻ (AM3N_fdep), reduces the annual mean NO₃ optical depth by 25 % globally. Regionally, NO₃ in polluted regions is more sensitive to the heterogeneous production of HNO₃ because of the large aerosol surface area in these regions. Neglecting heterogeneous chemistry on dust results in a large relative increase of NO₃ optical depth in dusty regions, but the increase of the global mean NO₃ optical depth is small (13%). This muted response is caused by low NH₃ sources near major natural dust sources. A notable exception is anthropogenic dust, whose sources are primarily associated with
agriculture (Ginoux et al., 2012a). The proximity of NH₃ and anthropogenic dust sources results in 35 % greater sensitivity of NO₃ optical depth to anthropogenic dust than to natural dust (per kilogram of dust). **Figure 9.** Contribution of different aerosol types to the global mean annual aerosol optical depth at 550 nm in AM3, AM3N, and other climate models considering NO_3^- aerosol (all-sky except clearsky for GISS). AM3 and AM3N AOD are representative of 2010 conditions, while other models reflect 2000 conditions. The range of SO_4^{2-} , NO_3^- , and total AOD across AM3N configurations are shown by red, light blue, and black horizontal bars respectively. Note that changes in the parameterization of NH3 convective removal reduce the simulated NO_3^- optical depth by GISS to 0.005 (S. Bauer, personal communication, 2015). # **4.2 2050** emissions Figure 9 shows the contributions of sulfate, nitrate, organic carbon, black carbon, dust, and sea salt to the global mean AOD in AM3 and AM3N_fdep_diu using 2050 emission as described in Sect. 2.2. Sulfate optical depths decrease by 20 % from 2010 to 2050 in both AM3 and AM3N_fdep_diu, similar to Hauglustaine et al. (2014). In all configurations, AM3N produces a small increase of the global mean NO₃ optical depth in response to changes in anthropogenic emissions from 2010 to 2050 (< 30 %), with NO₃ optical depth ranging from 0.0061 (AM3N_fdep) to 0.01 (AM3N_ndust). In AM3N, the conversion rate from NH₃ to NO₃⁻ (excluding dust) defined as the molar ratio of the fine NO₃ burden to NH₃ emissions decreases by 10 % from 0.34 day⁻¹ to 0.29 day⁻¹. NH₄NO₃ lifetime with respect to deposition increases by 25 % under the 2050 emissions, which suggests that the increase in NO₃ optical depth in AM3N is driven by reduced sinks rather than increased production. The response of NO₃ to changes in anthropogenic emissions is weaker than reported in recent studies. For instance, Hauglustaine et al. (2014) reported a NO₃⁻ optical depth of 0.01 for 2050 and an increase of the conversion rate from NH₃ to NO₃⁻ from $0.36 \,\mathrm{day}^{-1}$ to $0.57 \,\mathrm{day}^{-1}$ from 2000 to 2050. Using the same anthropogenic emissions, the simulated NO₃ optical depth in AM3N in 2050 (the configuration closest to **Figure 10.** Annual mean NO_3^- optical depth at 550 nm in AM3N (top left panel) and its relative sensitivity to the treatment of NH₃ emissions, NO_3^- production, and loss in % for 2008–2010 conditions. The change in NO_3^- optical depth relative to AM3N is indicated in the bottom left for each configuration. The sensitivity is only shown in regions where NO_3^- optical depth is greater than 0.005. that used by Hauglustaine et al., 2014) is 0.077 and the conversion rate from NH_3 to NO_3^- is 0.33 day⁻¹. Figure 11 shows that the simulated NO_3^- optical depth decreases in all AM3N configurations over Europe and China, increases over India, and exhibits little change over the USA. In all regions SO_2 emissions are projected to decrease. This results in greater sensitivity of NO_3^- optical depth to HNO_3 , which is reflected in the increase of the sensitivity of NO_3^- optical depth to the uptake of HNO_3 by dust and lower sensitivity to temporal variations of NH_3 emissions (seasonality, diurnal cycle). The sensitivity of NO_3^- optical depth to the heterogeneous production of HNO_3 is reduced despite the increased sensitivity of NO_3^- to HNO_3 . This follows the decrease in aerosol surface area associated with the reduction of the SO_4^{2-} burden. The simulated changes in NO_3^- optical depth from the present day to 2050 over the USA, China, and Europe are consistent with surface NH_4NO_3 limitations. For instance, surface NH_4NO_3 is primarily limited by HNO_3 in Europe and China and the decrease of NO_3^- optical depth is driven by the reduction of NO emissions. In these regions, AM3N simulates similar NO_3^- optical depth using different anthropogenic emissions of NH_3 for 2050, which is also consistent with the reduced sensitivity to NH_3 emissions. However, surface NH_4NO_3 limitation patterns cannot explain the increase of NO_3^- optical depth over India. Figure 12 shows that the NO_3^- burden is projected to shift equatorward in the Northern Hemisphere in response **Figure 11.** Nitrate optical depth at 550 nm over the United States, Europe, China, and India for 2008–2010 (white bars) and 2050 (black bars) anthropogenic emissions for different configurations of AM3N. The thin red bar indicates the nitrate optical depth calculated using RCP8.5 2050 NH $_3$ emissions in AM3N. The relative changes between 2008–2010 and 2050 in NO $_3^-$ optical depth and surface emissions of NH $_3$, SO $_2$, and NO are indicated for each region. to changes in anthropogenic emissions from the present day to 2050. NH₄NO₃ increases in the free troposphere but decreases near the surface, a vertical redistribution also noted by Hauglustaine et al. (2014). The decrease of surface NO₃ in the midlatitudes is primarily driven by lower NO emission. Large differences in the seasonality, spatial distribution, and magnitude of anthropogenic NH₃ emissions in RCP8.5 (dotted line) and scaled HTAPv2 for 2050 have little impact on the simulated NO_3^- burden (< 10 %), which reflects the diminishing sensitivity of surface NH₄NO₃ to NH₃. However, NO₃ remains sensitive to NH₃ in the free troposphere, where it can persist longer than in the boundary layer thanks to lower temperature. The solid line in Fig. 12 shows the impact of lower convective removal of NH₃ (achieved by neglecting the impact of pH on NH₃ solubility) on the NO₃ burden. Over the 2008–2010 period, this results in a 40 % increase of the NO_3^- burden with a near quadrupling in the tropics, qualitatively matching the results of Hauglustaine et al. (2014) in this region. In 2050, the impact is much more pronounced and the simulated burden is more than twice as large as in 2010, a similar response to that found by Hauglustaine et al. (2014). Note that increasing NH₃ emissions from biomass burning and distributing these emissions vertically (Naik et al., 2013a) also increases tropical NO₃ (not shown) but to a much lower degree (< 50 %). These results suggest that differences in the transport of NH₃ to the free troposphere across models contribute to the variability in the projected NO_3^- burden and optical depth. Such differences may arise from differences in the parameterizations of convection (Folkins et al., 2006) as suggested by the much lower tropical NO_3^- burden in AM3N than in the LMDz-INCA model (Hauglustaine et al., 2014) but also from changes in the tropical circulation in response to climate change (e.g., Ma et al., 2012). #### 5 Conclusions We have developed a new configuration of AM3 (AM3N) with revised treatment of nitrate and sulfate chemistry and deposition. We showed that AM3N better captures observed AOD than a configuration of AM3 similar to that used for ACCMIP and CMIP5. AM3N overestimates surface NO_3^- concentration especially in the USA. This bias may reflect neglect in AM3N of the dynamic nature of N_2O_5 uptake and near-surface volatilization of NH_4NO_3 . We have evaluated the sensitivity of NO_3^- optical depth to poorly constrained aspects of NO_3^- chemistry (heterogeneous production of HNO_3 , uptake of HNO_3 by natural and anthropogenic dust, surface removal of NH_4NO_3) and NH_3 emissions (diurnal cycle, seasonality). Globally, the formation of NH_4NO_3 is more limited by HNO_3 than NH_3 , such that NO_3^- optical depth is more sensitive to the representation of the heterogeneous chemistry of HNO_3 than to uncertainties in NH_3 emissions. Simulated present-day NO_3^- optical depth ranges from 0.0054 to 0.0082, depending on the treatment of reactive nitrogen Differences in the treatment of reactive nitrogen alone are unlikely to account for the large spread in estimates of present-day NO_3^- optical depth (0.0023-0.025). We have examined the response of simulated NO₃ optical depth to projected changes in anthropogenic emissions from 2010 to 2050 in RCP8.5. Depending on the configuration of AM3N (Table 2), NO₃ optical depth varies from 0.0061 to 0.01 in 2050. The increase of NO_3^- (< 30 % relative to 2008–2010) is partly inhibited by greater limitation of NH₄NO₃ production by HNO₃ at the surface due to lower NO emissions, more efficient removal of HNO₃ by dust, and a large decrease in the heterogeneous production of HNO₃ by N₂O₅ (associated with lower aerosol surface area). In the Northern Hemisphere, the NO₃ burden is projected to shift southward, following the increase of tropical NH₃ emissions and the decrease of NO emissions in the midlatitudes. This shift is associated with an increase of the NO₃ burden in the free troposphere, where NH₄NO₃ formation is limited by NH₃. We suggest that the convective transport of NH₃ and its response to climate change (not considered here) play an important role in modulating the response of NO₃ optical depth to changes in anthropogenic emissions. The complexity of the response of NO₃⁻ to changes in surface processes, chemistry, and convection indicates that the global trends of NH₃ **Figure 12.** Annual zonal mean distribution of NO₃⁻ in AM3N with 2008–2010 anthropogenic emissions (top) and 2050 anthropogenic emissions (from RCP8.5 except for NH₃; see text). The blue, green, red, and cyan regions denote the NO₃⁻ burden located above 800 hPa, between 600 and 800 hPa, between 400 and 600 hPa, and below 400 hPa, with the partial burden in each pressure range indicated inset. The annual mean zonal burdens of NO₃⁻ simulated using AM3N_fdep_diu (dashed line), using AM3N with anthropogenic emissions from RCP8.5 for NH₃ (dotted line), using AM3N_ndust (dashed dotted line), and using AM3N with reduced convective removal of NH₃ (solid line) are also shown. The white circles
in the top panel indicate the 2000 annual zonal mean NO₃⁻ burden simulated by Hauglustaine et al. (2014). emissions may not be a suitable proxy to estimate the future forcing from NO_3^- aerosols (Heald and Spracklen, 2015). We conclude that in addition to improvements to NH_3 emission inventories (e.g., bidirectional exchange of NH_3 , Zhu et al., 2015), observational constraints on the processes controlling the vertical redistribution of NH_3 and the response of NO_3^- to NH_3 in the free troposphere (e.g., magnitude of NH_3 emissions in the tropics (Aneja et al., 2012; Whitburn et al., 2015), biomass burning injection height (Val Martin et al., 2010), transport and removal of NH_3 in convective updrafts, heterogeneous chemistry on dust) and sensitivity studies to characterize their response to climate change are needed to improve estimates of present and future NO_3^- optical depth. # The Supplement related to this article is available online at doi:10.5194/acp-16-1459-2016-supplement. Acknowledgements. We are grateful to J. Ogren and B. Andrews for guidance with observations from the NOAA AAO program. We thank D. Ward for helpful discussions. This study was supported by NOAA Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate program and by NASA under grant NNH14ZDA001N-ACMAP to P. Ginoux and F. Paulot. Edited by: B. Ervens #### References Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., and Jacob, D.: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J. Geophys. Res.-Atmos., 106, 1097–1111, doi:10.1029/2000JD900512, 2001. Aneja, V. P., Schlesinger, W. H., Erisman, J. W., Behera, S. N., Sharma, M., and Battye, W.: Reactive nitrogen emissions from crop and livestock farming in India, Atmos. Environ., 47, 92– 103, 2012. Ansari, A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor Concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998. Barbaro, E., Krol, M. C., and Vilà-Guerau de Arellano, J.: Numerical simulation of the interaction between ammonium nitrate aerosol and convective boundary-layer dynamics, Atmos. Environ., 105, 202–211, doi:10.1016/j.atmosenv.2015.01.048, 2015. Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, doi:10.5194/acp-7-5043-2007, 2007. Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res.-Atmos., 116, D20206, doi:10.1029/2011JD016074, 2011. Bergin, M. H., Ogren, J. A., Schwartz, S. E., and McInnes, L. M.: Evaporation of Ammonium Nitrate Aerosol in a Heated Nephelometer: Implications for Field Measurements, Environ. Sci. Technol., 31, 2878–2883, doi:10.1021/es970089h, 1997. Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, doi:10.5194/acp-9-8351-2009, 2009. Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, 1997. Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405–6447, doi:10.1039/C2CS35181A, 2012. Brown, S. S., Dubé, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res.-Atmos., 114, D00F10, doi:10.1029/2008JD011679, 2009. Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub, D.: Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model Calculations of - N2O5: A Review, Aerosol Sci. Technol., 45, 665–695, doi:10.1080/02786826.2010.551672, 2011. - Claquin, T., Schulz, M., and Balkanski, Y. J.: Modeling the mineralogy of atmospheric dust sources, J. Geophys. Res.- Atmos., 104, 22243–22256, doi:10.1029/1999JD900416, 1999. - Delene, D. J. and Ogren, J. A.: Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites, J. Atmos. Sci., 59, 1135–1150, doi:10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2, 2002. - Dentener, F. J. and Crutzen, P. J.: Reaction of N_2O_5 on Tropospheric Aerosols: Impact on the Global Distributions of NO_x , O_3 , and OH, J. Geophys. Res., 98, 7149–7163, 1993. - Donner, L. J.: A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects, J. Atmos. Sci., 50, 889–906, doi:10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2, 1993. - Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3, J. Clim., 24, 3484–3519, doi:10.1175/2011JCLI3955.1, 2011. - Esteve, A. R., Ogren, J. A., Sheridan, P. J., Andrews, E., Holben, B. N., and Utrillas, M. P.: Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles, Atmos. Chem. Phys., 12, 2987–3003, doi:10.5194/acp-12-2987-2012, 2012. - Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999–4012, doi:10.5194/acp-10-3999-2010, 2010. - Fan, S.-M., Schwarz, J. P., Liu, J., Fahey, D. W., Ginoux, P., Horowitz, L. W., Levy, H., Ming, Y., and Spackman, J. R.: Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations, J. Geophys. Res.-Atmos., 117, D23205, doi:10.1029/2012JD018126, 2012. - Fang, Y., Fiore, A. M., Horowitz, L. W., Gnanadesikan, A., Held, I., Chen, G., Vecchi, G., and Levy, H.: The impacts of changing transport and precipitation on pollutant distributions in a future climate, J. Geophys. Res.-Atmos., 116, D18303, doi:10.1029/2011JD015642, 2011. - Feng, Y. and Penner, J. E.: Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D01304, doi:10.1029/2005JD006404, 2007. - Folkins, I., Bernath, P., Boone, C., Donner, L. J., Eldering, A., Lesins, G., Martin, R. V., Sinnhuber, B., and Walker, K.: Testing convective parameterizations with tropical measurements of HNO₃, CO, H₂O, and O₃: Implications for the - water vapor budget, J. Geophys. Res.-Atmos., 111, D23304, doi:10.1029/2006JD007325, 2006. - Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K⁺– Ca^{2+} – Mg^{2+} – NH_4^+ – Na^+ – SO_4^2 – NO_3^- – Cl^- – H_2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007, 2007. - Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J., Granier, C., Neftel, A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T., Ro-Poulsen, H., Cellier, P., Cape, J., Horvàth, L., Loreto, F., Niinemets, U., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M., Vesala, T., Skiba, U., Brïggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J.: Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193–5267, aC-CENT Synthesis, 2009. - Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N_2O_5 to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmos. Chem. Phys., 14, 5693–5707, doi:10.5194/acp-14-5693-2014, 2014. - Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res.-Atmos., 106, 20255–20273, doi:10.1029/2000JD000053, 2001. - Ginoux, P., Clarisse, L., Clerbaux, C., Coheur, P.-F., Dubovik, O., Hsu, N. C., and Van Damme, M.: Mixing of dust and NH3 observed globally over anthropogenic dust sources, Atmos. Chem. Phys., 12, 7351–7363, doi:10.5194/acp-12-7351-2012, 2012a. - Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388, 2012b. - Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Gon, H. D. v. d., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F.,
Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., Aardenne, J. v., Werf, G. R. v. d., and Vuuren, D. P. v.: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, Clim. Chang., 109, 163–190, doi:10.1007/s10584-011-0154-1, 2011. - Griffiths, P. T. and Anthony Cox, R.: Temperature dependence of heterogeneous uptake of N2O5 by ammonium sulfate aerosol, Atmos. Sci. Lett., 10, 159–163, doi:10.1002/asl.225, 2009. - Grubbs, F. E.: Sample Criteria for Testing Outlying Observations, Ann. Math. Statist., 21, 27–58, doi:10.1214/aoms/1177729885, 1950 - Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from - Nature), Atmos. Chem. Phys., 6, 3181–3210, doi:10.5194/acp-6-3181-2006, 2006. - Hand, J., Gebhart, K., Schichtel, B., and Malm, W.: Increasing trends in wintertime particulate sulfate and nitrate ion concentrations in the Great Plains of the United States (2000–2010), Atmos. Environ., 55, 107–110, doi:10.1016/j.atmosenv.2012.03.050, 2012. - Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031– 11063, doi:10.5194/acp-14-11031-2014, 2014. - Haywood, J. M. and Ramaswamy, V.: Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res.-Atmos., 103, 6043– 6058, doi:10.1029/97JD03426, 1998. - Heald, C. L. and Spracklen, D. V.: Land Use Change Impacts on Air Quality and Climate, Chem. Rev., 115, 4476–4496, doi:10.1021/cr500446g, 2015. - Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295–10312, doi:10.5194/acp-12-10295-2012, 2012. - Henning, S., Bojinski, S., Diehl, K., Ghan, S., Nyeki, S., Weingartner, E., Wurzler, S., and Baltensperger, U.: Aerosol partitioning in natural mixed-phase clouds, Geophys. Res. Lett., 31, L06101, doi:10.1029/2003GL019025, 2004. - Henze, D. K., Shindell, D. T., Akhtar, F., Spurr, R. J. D., Pinder, R. W., Loughlin, D., Kopacz, M., Singh, K., and Shim, C.: Spatially Refined Aerosol Direct Radiative Forcing Efficiencies, Environ. Sci. Technol., 46, 9511–9518, doi:10.1021/es301993s, 2012. - Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res.-Atmos., 108, doi:10.1029/2002JD002853, 2003. - Huebert, B. J., Luke, W. T., Delany, A. C., and Brost, R. A.: Measurements of concentrations and dry surface fluxes of atmospheric nitrates in the presence of ammonia, J. Geophys. Res.-Atmos., 93, 7127–7136, doi:10.1029/JD093iD06p07127, 1988. - Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781–7816, doi:10.5194/acp-11-7781-2011, 2011. - Jacobson, M. Z.: Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUI-SOLV II, Atmos. Environ., 33, 3635–3649, doi:10.1016/S1352-2310(99)00105-3, 1999. - Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: - HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, doi:10.5194/acp-15-11411-2015, 2015. - Jordan, C. E., Dibb, J. E., Anderson, B. E., and Fuelberg, H. E.: Uptake of nitrate and sulfate on dust aerosols during TRACE-P, J. Geophys. Res.-Atmos., 108, 8817, doi:10.1029/2002JD003101, 2003 - Kahn, R., Nelson, D., Garay, M., Levy, R., Bull, M., Diner, D., Martonchik, J., Paradise, S., Hansen, E., and Remer, L.: MISR Aerosol Product Attributes and Statistical Comparisons With MODIS, IEEE Trans. Geosci. Remote Sens., 47, 4095–4114, doi:10.1109/TGRS.2009.2023115, 2009. - Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. - Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., and Stanier, C. O.: Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America, J. Geophys. Res.-Atmos., 119, 2014JD022320, doi:10.1002/2014JD022320, 2014. - Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, doi:10.5194/acp-10-7017-2010, 2010. - Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, doi:10.5194/acp-13-7997-2013, 2013. - Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., Dirksen, R., Luo, C., and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes, J. Geophys. Res.-Atmos., 115, D05302, doi:10.1029/2009JD013351, 2010. - Lee, C., Martin, R. V., van Donkelaar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., and Schwab, J. J.: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIA-MACHY and OMI) observations, J. Geophys. Res.-Atmos., 116, D06304, doi:10.1029/2010JD014758, 2011. - Lee, Y. H. and Adams, P. J.: Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with re- - mote sensing observations, Atmos. Chem. Phys., 10, 2129–2144, doi:10.5194/acp-10-2129-2010, 2010. - Li, F., Ginoux, P., and Ramaswamy, V.: Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources, J. Geophys. Res.-Atmos., 113, D10207, doi:10.1029/2007JD009190, 2008. - Liao, H., Chen, W., and Seinfeld, J. H.: Role of climate change in global predictions of future tropospheric ozone and aerosols, J. Geophys. Res. Atmos., 111, 12304, doi:10.1029/2005JD006852, 2006. - Lin, M., Fiore, A. M., Horowitz, L. W., Cooper, O. R., Naik, V., Holloway, J., Johnson, B. J., Middlebrook, A. M., Oltmans, S. J., Pollack, I. B., Ryerson, T. B., Warner, J. X., Wiedinmyer, C., Wilson, J., and Wyman, B.: Transport of Asian ozone pollution into surface air over the western United States in spring, J. Geophys. Res.-Atmos., 117, D00V07, doi:10.1029/2011JD016961, 2012. - Liu, J., Fan, S., Horowitz, L. W., and Levy, H.: Evaluation of factors controlling long-range transport of black carbon to the Arctic, J. Geophys. Res. Atmos., 116, D04307, doi:10.1029/2010JD015145, 2011. - Ma, J., Xie, S.-P., and Kosaka, Y.: Mechanisms for Tropical Tropospheric Circulation Change in Response to Global Warming*, J. Climate, 25, 2979–2994, doi:10.1175/JCLI-D-11-00048.1, 2012. - Malm, W. C., Schichtel, B. A., Pitchford, M. L., Ashbaugh, L. L., and Eldred, R. A.: Spatial and monthly trends in speciated fine particle concentration in the United States, J. Geophys. Res.-Atmos., 109, D03306, doi:10.1029/2003JD003739, 2004. - Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, doi:10.5194/acp-13-509-2013, 2013a. - Mao, J., Horowitz, L. W., Naik, V., Fan, S., Liu, J., and Fiore, A. M.: Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing, Geophys. Res. Lett., 40, 1241–1246, doi:10.1002/grl.50210, 2013b. - Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.: Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–11268, doi:10.1002/jgrd.50817, 2013c. - Martin, R. V., Sauvage, B., Folkins, I., Sioris, C. E.,
Boone, C., Bernath, P., and Ziemke, J.: Space-based constraints on the production of nitric oxide by lightning, J. Geophys. Res.-Atmos., 112, D09309, doi:10.1029/2006JD007831, 2007. - Mauldin III, R. L., Berndt, T., Sipila, M., Paasonen, P., Petaja, T., Kim, S., Kurten, T., Stratmann, F., Kerminen, V. M., and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488, 193–196, 2012. - Meng, Z. and Seinfeld, J. H.: Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species, Atmos. Environ., 30, 2889–2900, doi:10.1016/1352-2310(95)00493-9, 1996. - Ming, Y., Ramaswamy, V., Donner, L. J., and Phillips, V. T. J.: A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models, J. Atmos. Sci., 63, 1348–1356, doi:10.1175/JAS3686.1, 2006. - Misselbrook, T., Sutton, M., and Scholefield, D.: A simple processbased model for estimating ammonia emissions from agricultural - land after fertilizer applications, Soil Use and Management, 20, 365–372, doi:10.1111/j.1475-2743.2004.tb00385.x, 2004. - Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res.-Atmos., 117, D20307, doi:10.1029/2012JD017934, 2012. - Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, doi:10.5194/acp-13-1853-2013, 2013. - Naik, V., Horowitz, L. W., Fiore, A. M., Ginoux, P., Mao, J., Aghedo, A. M., and Levy, H.: Impact of preindustrial to presentday changes in short-lived pollutant emissions on atmospheric composition and climate forcing, J. Geophys. Res.-Atmos., 118, 8086–8110, doi:10.1002/jgrd.50608, 2013a. - Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277–5298, doi:10.5194/acp-13-5277-2013, 2013b. - Nemitz, E., Sutton, M. A., Wyers, G. P., Otjes, R. P., Mennen, M. G., van Putten, E. M., and Gallagher, M. W.: Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles, Atmos. Chem. Phys., 4, 1007–1024, doi:10.5194/acp-4-1007-2004, 2004. - Neu, J. L. and Prather, M. J.: Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone, Atmos. Chem. Phys., 12, 3289–3310, doi:10.5194/acp-12-3289-2012, 2012. - Nguyen, T. B., Crounse, J. D., Teng, A. P., Clair, J. M. S., Paulot, F., Wolfe, G. M., and Wennberg, P. O.: Rapid deposition of oxidized biogenic compounds to a temperate forest, P. Natl. Acad. Sci. USA, 112, E392–E401, doi:10.1073/pnas.1418702112, 2015. - Park, R. S., Lee, S., Shin, S.-K., and Song, C. H.: Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia, Atmos. Chem. Phys., 14, 2185–2201, doi:10.5194/acp-14-2185-2014, 2014. - Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711–1722, doi:10.5194/acp-9-1711-2009, 2009. - Paulot, F., Jacob, D. J., and Henze, D. K.: Sources and Processes Contributing to Nitrogen Deposition: An Adjoint Model Anal- - ysis Applied to Biodiversity Hotspots Worldwide, Environ. Sci. Technol., 47, 3226–3233, doi:10.1021/es3027727, 2013. - Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3), J. Geophys. Res.-Atmos., 119, 4343–4364, doi:10.1002/2013JD021130, 2014. - Pinder, R. W., Adams, P. J., Pandis, S. N., and Gilliland, A. B.: Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs, J. Geophys. Res.-Atmos., 111, D16310, doi:10.1029/2005JD006603, 2006. - Pinder, R. W., Dennis, R. L., and Bhave, P. V.: Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales, Atmos. Environ., 42, 1275–1286, doi:10.1016/j.atmosenv.2007.10.039, 2008. - Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Lelieveld, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geosci. Model Dev., 3, 391–412, doi:10.5194/gmd-3-391-2010, 2010. - Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.: Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys. Res.-Atmos., 114, D01205, doi:10.1029/2008JD010701, 2009. - Rasmussen, D., Fiore, A., Naik, V., Horowitz, L., McGinnis, S., and Schultz, M.: Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models, Atmos. Environ., 47, 142–153, doi:10.1016/j.atmosenv.2011.11.021, 2012. - Rattray, G. and Sievering, H.: Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado, Atmos. Environ., 35, 1105–1109, doi:10.1016/S1352-2310(00)00276-4, 2001. - Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.: Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res. Atmos., 113, D14S07, doi:10.1029/2007JD009661, 2008. - Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Builtjes, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys., 4, 857–874, doi:10.5194/acp-4-857-2004, 2004. - Schiferl, L. D., Heald, C. L., Nowak, J. B., Holloway, J. S., Neuman, J. A., Bahreini, R., Pollack, I. B., Ryerson, T. B., Wiedinmyer, C., and Murphy, J. G.: An investigation of ammonia and inorganic particulate matter in California during the Cal-Nex campaign, J. Geophys. Res.-Atmos., 119, 2013JD020765, doi:10.1002/2013JD020765, 2014. - Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simu- - lations, Atmos. Chem. Phys., 6, 5225–5246, doi:10.5194/acp-6-5225-2006, 2006. - Sheridan, P. J., Andrews, E., Ogren, J. A., Tackett, J. L., and Winker, D. M.: Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements, Atmos. Chem. Phys., 12, 11695–11721, doi:10.5194/acp-12-11695-2012, 2012. - Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939–2974, doi:10.5194/acp-13-2939-2013, 2013. - Sofen, E. D., Alexander, B., and Kunasek, S. A.: The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core $\Delta^{17}O(SO_4^{2-})$, Atmos. Chem. Phys., 11, 3565–3578, doi:10.5194/acp-11-3565-2011, 2011. - Song, C. H. and Carmichael, G. R.: Gas-Particle Partitioning of Nitric Acid Modulated by Alkaline Aerosol, J. Atmos. Chem., 40, 1–22, doi:10.1023/A:1010657929716, 2001. - Stelson, A. W. and Seinfeld, J. H.: Relative humidity and temperature dependence of the ammonium nitrate dissociation constant, Atmos. Environ., 16, 983–992, doi:10.1016/0004-6981(82)90184-6, 1982. - Strong, J. D. O., Vecchi, G. A., and Ginoux, P.: The Response of the Tropical Atlantic and West African Climate to Saharan Dust in a Fully Coupled GCM, J. Clim., 28, 7071–7092, doi:10.1175/JCLI-D-14-00797.1, 2015. - Tang, I. N. and Munkelwitz, H. R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res.-Atmos., 99, 18801– 18808, doi:10.1029/94JD01345, 1994. - Tie, X., Emmons, L., Horowitz, L., Brasseur, G., Ridley, B., Atlas, E., Stround, C., Hess, P., Klonecki, A., Madronich, S., Talbot, R., and Dibb, J.: Effect of sulfate aerosol on tropospheric NOx and
ozone budgets: Model simulations and TOPSE evidence, J. Geophys. Res.-Atmos., 108, 8364, doi:10.1029/2001JD001508, 2003. - Tie, X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald, N., Zhang, R., Lou, C., and Brasseur, G.: Assessment of the global impact of aerosols on tropospheric oxidants, J. Geophys. Res.-Atmos., 110, D03204, doi:10.1029/2004JD005359, 2005. - Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y., Nelson, D. L., and Diner, D. J.: Smoke injection heights from fires in North America: analysis of 5 years of satellite observations, Atmos. Chem. Phys., 10, 1491–1510, doi:10.5194/acp-10-1491-2010, 2010. - Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905–2922, doi:10.5194/acp-14-2905-2014, 2014a. - Van Damme, M., Wichink Kruit, R. J., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P.-F., Dammers, E., Dolman, A. J., - and Erisman, J. W.: Evaluating 4 years of atmospheric ammonia (NH₃) over Europe using IASI satellite observations and LOTOS-EUROS model results, J. Geophys. Res.-Atmos., 119, 9549–9566, doi:10.1002/2014JD021911, 2014b. - Van Oss, R., Duyzer, J., and Wyers, P.: The influence of gasto-particle conversion on measurements of ammonia exchange over forest, Atmos. Environ., 32, 465–471, doi:10.1016/S1352-2310(97)00280-X, 1998. - van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S., and Rose, S.: The representative concentration pathways: an overview, Clim. Change, 109, 5–31, doi:10.1007/s10584-011-0148-z, 2011. - Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, A. M., Öztürk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from ambient wintertime measurements, J. Geophys. Res.-Atmos., 118, 9331–9350, doi:10.1002/jgrd.50653, 2013. - Walker, J. M., Philip, S., Martin, R. V., and Seinfeld, J. H.: Simulation of nitrate, sulfate, and ammonium aerosols over the United States, Atmos. Chem. Phys., 12, 11213–11227, doi:10.5194/acp-12-11213-2012, 2012. - Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453– 12473, doi:10.5194/acp-11-12453-2011, 2011. - West, J. J., Pilinis, C., Nenes, A., and Pandis, S. N.: Marginal direct climate forcing by atmospheric aerosols, Atmos. Environ., 32, 2531–2542, doi:10.1016/S1352-2310(98)00003-X, 1998. - Whitburn, S., Van Damme, M., Kaiser, J., van der Werf, G., Turquety, S., Hurtmans, D., Clarisse, L., Clerbaux, C., and Coheur, P.-F.: Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories, Atmos. Environ., 121, 42–54, doi:10.1016/j.atmosenv.2015.03.015, 2015. - Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, doi:10.5194/gmd-4-625-2011, 2011. - Wolff, V., Trebs, I., Foken, T., and Meixner, F. X.: Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy, Biogeosciences, 7, 1729–1744, doi:10.5194/bg-7-1729-2010, 2010. - Wyers, G. P. and Duyzer, J. H.: Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest, Atmos. Environ., 31, 333–343, doi:10.1016/S1352-2310(96)00188-4, 1997. - Xu, L. and Penner, J. E.: Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479–9504, doi:10.5194/acp-12-9479-2012, 2012. - Ying, Q., Wu, L., and Zhang, H.: Local and inter-regional contributions to PM2.5 nitrate and sulfate in China, Atmos. Environ., 94, 582–592, doi:10.1016/j.atmosenv.2014.05.078, 2014. - Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder, R. W., Bash, J. O., and Jeong, G.-R.: Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model, J. Geophys. Res.-Atmos., 118, 3355–3368, doi:10.1002/jgrd.50166, 2013. - Zhu, L., Henze, D., Bash, J., Jeong, G.-R., Cady-Pereira, K., Shephard, M., Luo, M., Paulot, F., and Capps, S.: Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes, Atmos. Chem. Phys., 15, 12823–12843, doi:10.5194/acp-15-12823-2015, 2015. - Zhuang, H., Chan, C. K., Fang, M., and Wexler, A. S.: Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong, Atmos. Environ., 33, 843–853, doi:10.1016/S1352-2310(99)00186-7, 1999.