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Sensitivity of Parameter 

Changes in Structural 

Damage Detection 

Structural damage detection by nondestructive methods is highly desirable. Changes in 
modal parameters such as frequency, damping, and mode shape are particularly inviting. 
Evidence is presented here that reveals that static deflection can, in many cases, be a 
more sensitive predictor of structural damage than frequency. The reasons for this are 
illuminated within, and hinge on very fundamental issues about the very nature of structural 
response. Furthermore, static deflection measurements are often easier to make, with 
higher levels of accuracy than dynamic measurements. Comparisons are made between 
theoretical models and experimental results for simple structures, with extensions given 
to more complex structures. © 1997 John Wiley & Sons, inc. 

INTRODUCTION 

There is currently great interest in nondestructive 
methods for use in structural damage detection. 
Change in dynamic response, which may appear 
as changes in modal parameters like frequency, 
damping, and mode shape, is an inviting option. 
Particularly for structures that receive dynamic 
excitation as a matter of course, e.g., rotating 
machinery, aircraft, bridges, etc., such a method 
would seem fortuitous. However, most results in 
this area published to date have been less than 

promising. 
After review of many of these results, including 

our own, we suggest that for numerous structures, 
a "distributed" phenomenon like frequency re

sponse (distributed due to dependence on inertia 
or mass) is relatively insensitive to localized dam
age, such as that caused by a fatigue crack, notch, 

impact, and the like. Further complications occur 
when damage occurs at or near nodal points. Ex-
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tracting useful data experimentally is not trivial. 
A much simpler method, applicable to many struc
tures, involves changes in static deflection. We 
show that in many cases, static deflection shows 
significantly greater sensitivity to local damage 
than does frequency. 

PREVIOUS WORK 

Table 1 provides a representative sample, com
piled from reported results, of changes in trans
verse fundamental frequency with damage in a 
beam structure. In all cases, damage was induced 
by a crack or saw cut perpendicular to a long edge 
(see Fig. 1), such that the beam was sectioned 
halfway through (alh = 0.5). Clearly, this would 
represent significant damage in a nonredundant 
member, a situation that would lead to (possibly 
catastrophic) failure in real structures. However, 
the reported frequency changes were generally 
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Table 1. Comparison of Reported Maximum Changes in Fundamental Frequency for Beams with Edge Damage 

(alh = 0.5), Calculated and Experimental 

Reference Calculated 11/1 

Gudmundson (1982) :0;10% 

Christides and Barr (1984) :0;10% 

Spyrakos et al. (1990) 

Collins et al. (1992) :0;3% 

Liang et al. (1992) :0;5% 

Davini et al. (1993) :0;10% 

Krawczuk and Ostachowicz (1993) :0;5% 

Kjerengtroen and Jenkins (1994) :0;11% 

10% or less, which is not large considering that 

these results were either from computer models 

or controlled laboratory experiments. Real world 
effects, such as noise, stick -slip friction in joints, 

redundancy of members, etc., quickly overwhelm 

small changes in frequency (see, e.g., Toksoy and 
Aktan, 1993). 

It is instructive to take an edge-damaged beam 

similar to those above and measure changes in 

static deflection versus increasing damage. Such 

changes are compared with those in fundamental 

frequency for the same beam in Fig. 2 (Kjereng
troen and Jenkins, 1994; Oestensen, 1994). [In this 

and the following, we refer to tip deflections 

caused by a tip load. The beam was an 457 mm 
(18 in.) long by 13 mm (0.5 in.) square steel beam, 

damaged by a saw cut approximately 14% in from 

one end.] For this simple structure, static deflec

tion was considerably more sensitive to damage 
than fundamental frequency. 

It should be noted that higher order frequencies 

have been reported to be more sensitive indicators 

of damage than fundamental frequency. While this 

may be true in certain cases, we did not find that 

to be true for the structures discussed herein. For 

example, we show experimental data in Fig. 3 for 

changes in the first five transverse natural frequen

cies of a cantilever beam with increasing damage. 

~R 
L 

'1 ~ 

Experiment 11j; Notes 

:0;10% ML = 0.2 
:0;10% ML = 0.5 

:0;5% f11L = 0.4 

filL = 0.0 
0.1 :0; f11 L :0; 0.3 

:0;10% ML = 0.35 

filL = 0.3 
:0;12% filL = 0.4 

Furthermore, the decreased amplitudes and in

creased nodal points that accompany higher 

modes complicates their use in real situations. 

PARAMETER PERTU RBA TION 

Consider a structural system modeled simply as 

an assemblage of coupled spring-mass dashpot os

cillators (Fig. 4). The equation of motion for vibra

tions of such a system is given in indicial notation 
as (e.g., see Meirovitch, 1986; Chondros and Di

marogonas, 1989) 

2: [mjjxj(t) + CjjXj(t) + kjjXlt)] = 0, (1) 
ij 

where m, c, and k are the lumped mass, damping, 

and stiffness of the system, respectively, i, j = 1, 

2, . . . , n, and n is the number of degrees of 

freedom x. This is written in matrix notation in 

the usual way as, 

[M]{x(t)} + [C]{x(t)} + [K]{x(t)} = {O}. (2) 

In the limit as n ~ 00, the response of the discrete 

model should converge to that of the continuous 

model. 

1ll h 

I 1"-

l' 
FIGURE 1 Definition sketch of damaged cantilever beam. 
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Transverse motion of fixed-free beam 
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FIGURE 2 Experimental comparison of frequency and deflection sensitivity with increasing 

damage for a cantilever beam. 

For the undamped case, solution by modal su

perposition results in the eigenvalue problem 

Natural frequencies can also be found via the 

Rayleigh quotient with suitable trial choices for 

the modal vectors {X}i' 
[K - ,\M]{Xh = {O}, (3) 

with natural circular frequencies Ai = WT given by 

{X}T[K]{Xh 

Ai = {X}T[ M]{X}i' 
(5) 

(4) where the superscript T indicates transposition. If 

Transverse motion of a fixed-free beam 
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FIGURE 3 Comparison of mode number in frequency sensitivity with increasing damage. 
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111/1 

FIGURE 4 Definition sketch for lumped-parameter model (after Meirovitch, 1986). 

the choices for modal vectors are exact, the natural 
frequencies are identical to those found from (4) 
above. 

For a small change in the stiffness matrix, [~.K], 
and mass matrix, [~M], the perturbed natural fre
quency can be found from Ai + ~Ai by the Ray
leigh quotient, 

{X*}T[K + ~K]{X*}i 
Ai + ~Ai = {X*}T[M + ~M]{X*};' (6) 

where {X*}; is the modal vector resulting from 
reduced stiffness ( damaged springs) and mass. 
Now using (5), and regarding effects of changes 
in the mass matrix [~M] and modal vectors {X*} 

to be an order of magnitude or more smaller than 
changes in [K], the relationship between change 
in stiffness and change in frequency is given ap
proximately by, 

{X}T[ ~K]{X}i 

~Ai = {X}T[ M]{Xh . 

The frequency sensitivity is found from 

(7) 

~Wi = wi" _ 1 = J Ai + ~Ai - 1. (8) 
Wi Wi Ai 

The static deflection sensitivity, i.e., the percent 

change in static deflection 8 due to local damage, 
is found from 

where as before, * quantities represent damaged 
values. In (8) and (9) the reduction in frequency 

and stiffness is correctly accounted for by resultant 
negative values. 

SENSITIVITY TO LOCAL DAMAGE: 
LONGITUDINAL MOTION 

To investigate the relative sensitivity of deflec
tion and vibration frequency to local damage, we 
first consider longitudinal motion of a fixed-free 
beam, represented initially by only 2 degrees of 

freedom (DOF; Fig. 5). For the undamaged 
beam, let kl = k2 = k, 1111 = 1112 = 111. Natural 
frequencies for the 2 DOF system are given by, 
say, (5) as Ai = 0.382 kim and A2 = 2.62 kim, 

where {X}T = {I ± 1.618}. (To match the eigen
values for the limiting case of the continuous 
system, which are 1.57 and 3.14, respectively, the 
discrete eigenvalues must be multiplied by (2n 

+ 1)/2; this is shown in the Appendix.) For 
purposes of calculating static deflection sensitiv
ity, the equivalent spring constant is given by 

keq = k12. 

Let the beam now incur some damage such 
that, say, the first spring element, kJ, is reduced in 
stiffness to kt = kl - ekl = (1 - e )k, where e is 
a small number. We back out the value of e by 

setting the "damage ratio" k"tc/keq equal to some 
arbitrary measure of damage, i.e., a value less than 
one, say 0.9: in that case, e = 0.25. 

The only nonzero term in [~K] is ~kl1 = - ek. 

The frequency and deflection sensitivities given by 
(8) and (9), respectively, are ~wl/wi = -0.0681 

and ~818 = -0.111. Note that damaging one out 
of two springs is roughly equivalent to damaging 

one-half the length of the beam (excluding mass 
effects); static deflection is roughly the same for a 
crack of small width as it is for one of larger width. 

For the continuous model, k*lk = (EA*IL)I 

(EAIL) = A*IA = 1 - e, and sensitivities are 
given by, 

~WI = W[ _ 1 = V(AIA*E)/(JLV) _ 1 

WI WI V(A1AE)/(JLV) 

=~-1 
(10) 
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FIGURE 5 Two DOF lumped parameter model for longitudinal vibration of a fixed
free beam. 

and 

flo = 1 _ 0* = 1 _ FLlA*E = _E_ (11) 
o 0 FLiAE E - 1 ' 

where IL = mass/length, E is the tensile modulus, 
and A and A * are the undamaged and damaged 
cross-sectional areas, respectively. For the contin
uous model, flwj/wj is an upper limit because it 
assumes a uniform decrease in area A *; in the 
longitudinal case, static deflection is insensitive to 
local or global reductions in area. With a damage 
ratio of 0.9, (10) and (11) give -0.0513 and 
-0.111, respectively. 

To have the discrete model approach the 
continuous model, we increased the number of 
DOF (n). In Table 2 we provide results for 
frequency and deflection sensitivities as the 
number of DOF is increased for two damage 

ratios: k~/ keq = 0.9 and 0.5 (equivalent to a 

crack halfway through the thickness), and for 
damage to spring' k{. Table 3 gives similar results 
for damage to spring 'k~. Note that as n becomes 
large, the fundamental frequency of the discrete 

model approaches that of the continuous model, 
and the frequency sensitivity tends to zero, while 

deflection sensitivity remains constant. Also note 
that a single spring damaged among 10,000 
springs roughly represents a crack of width 1/ 

10,000 or 0.01 mm in 0.1 m. Frequency sensitivity 
results are plotted in Fig. 6 for the discrete 
fixed-free case, and similar results are plotted 
in Fig. 7 for the fixed-fixed case. Both figures 
also show for reference the static deflection sensi
tivity and continuous model frequency sensitivity 
limit for a damage ratio equal to 0.9. 

For the case of longitudinal motion, deflection 
was more sensitive to local damage than fre
quency. This is easily verified if we rewrite (10) 
and (11) as 

Table 2. Frequency and Deflection Sensitivities for Longitudinal Motion of Fixed-Free Beam for Two Values of 

Damage Ratio, kt/keq = 0.9 and 0.5; Spring kl Damaged 

(ct. 1.571) 
k':qlkeq = 0.9 k~./ keq = 0.5 

DOF [(2n + 1)/2]AI /1w1/wl MI8 /1w1lwl /1818 

2 1.545 -0.0681 0.111 -0.281 1.0 
3 1.545 -0.0704 0.111 -0.230 1.0 
4 1.563 -0.0687 0.111 -0.191 1.0 
5 1.569 -0.658 0.111 -0.161 1.0 

10 1.571 -0.0512 0.111 -0.0902 1.0 
20 1.571 -0.0342 0.111 -0.0475 1.0 
50 1.571 -0.0169 0.111 -0.0196 1.0 

100 1.571 -0.00917 0.111 -0.0099 1.0 
200 1.571 -0.00478 0.111 -0.00498 1.0 
500 1.571 -0.00196 0.111 -0.002 1.0 

1000 1.571 -9.9IE-4 0.111 -9.99E-4 1.0 
5000 1.571 -2.0E-4 0.111 -2.0E-4 1.0 

10,000 1.571 -9.99E-5 0.111 -9.99E-5 1.0 
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Table 3. Frequency and Deflection Sensitivities for Longitudinal Motion of Fixed-Free Beam for Two Values of 

Damage Ratio, k'trlkeq = 0.9 and 0.5; Spring k2 Damaged 

(cf. 1.571) 

DOF [(2n + 1)/2]AI 

2 1.545 

3 1.545 

4 1.563 

5 1.569 

10 1.571 

20 1.571 

50 1.571 

100 1.571 

200 1.571 

500 1.571 

1000 1.571 

5000 1.571 

10,000 1.571 

Llwl = f -1 
WI k ' 

Ll8 k 
8"=l- k*· 

k;q/keq = 0.9 k;q/ keq = 0.5 

/1WI/WI 

-0.0255 

-0.0447 

-0.0527 

-0.0553 

-0.0488 

-0.0338 

-0.0169 

-0.00917 

-0.00478 

-0.00196 

-9.9IE-4 

-2.0E-4 

-9.99E-5 

(12) 

(13) 

/18/8 /1WI/WI /1818 

0.111 -0.0968 1.0 

0.111 -0.141 1.0 

0.111 -0.144 1.0 

0.111 -0.134 1.0 

0.111 -0.086 1.0 

0.111 -0.047 1.0 

0.111 -0.0196 1.0 

0.111 -0.0099 1.0 

0.111 -0.00497 1.0 

0.111 -0.002 1.0 

0.111 -9.99E-4 1.0 

0.111 -2.0E-4 1.0 

0.111 -9.99E-5 1.0 

(Llw/w)/(Ll8/8) versus [1 - (k*/k)] for the continu
ous model. At best, frequency is seen to be only 
about half as sensitive as deflection, becoming 
even less so as damage increases. 

In Fig. 8 we plot the "relative sensitivity ratio" 

It is clear from the above that frequency is a 
"distributed" phenomenon in the sense that the 
dynamical system properties are distributed with 

LONGITUDINAL VIBRATION OF A FIXED-FREE BEAM 
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FIGURE 6 Frequency sensitivity for the longitudinal vibration of a lumped parameter 

fixed-free beam for various damage ratios and damaged springs, and extended in the limit 

toward the continuous model. 
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LONGITUDINAL VIBRATION OF A FIXED-FIXED BEAM 
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FIGURE 7 Frequency sensitivity for the longitudinal vibration of a lumped parameter 
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the mass; hence frequency is relative insensitive 

to local damage. On the other hand, deflection is 

a "local" property, independent of mass distribu

tion. Local reductions in stiffness affect deflections 

globally, in a "weak-link" sense; hence, deflection 

has a relatively high sensitivity to local damage. 

[See also Springer et al. (1987) for a discussion of 

damage in longitudinally vibrating beams.] 

SENSITIVITY TO LOCAL DAMAGE: 

TRANSVERSE MOTION 

A crack in a beam undergoing transverse motion 

can be simulated mathematically by a rotational 
spring. For such a model, the frequency and de

flection sensitivities can be given as (Chondros and 

Dimarogonas, 1980; Dimarogonas and Paipetis, 

1983; Kjerengtroen and Jenkins, 1994), 

LlWl = 10.7!!:.. G (ll) 1 (~) (14) 
WI L L h 

and 

where G(l)/ L) is a function that accounts for crack 

location, lea/h) is a dimensionless local compli

ance function, and we take the sensitivities in an 

absolute value sense for convenience. [It should 
be noted that (14) is restricted to specific boundary 

conditions.] Figure 9 shows Eqs. (14) and (15) 

replotted on the experimental data of Fig. 2 dis

cussed earlier. Again we note the relatively higher 

sensitivity of deflection versus fundamental fre

quency. 

Further verification is possible through use of 

finite element analysis. A cantilever beam 457 mm 
(18 in.) long with a 12.7 mm (0.5 in.) square cross 

section, and having a rotational spring at the fixed 

end to simulate damage, was modeled using 

Images® software. The rotational stiffness was de

termined from linear elastic fracture mechanics 

(Liang et aI., 1992). A tip load was applied to 

determine deflection sensitivities, while eigen

value analysis was employed for frequency sensi

tivity. Both sensitivities are plotted in Fig. 9. 

Examination of Fig. 9 reveals that theoretical 

frequency predictions slightly underpredicted ex

perimental values for all cases, while there was a 

mix of slight under- and overprediction for deflec-

tions. In every case, however, deflection was al

ways a better predictor of damage than frequency. 

MORE COMPLEX STRUCTURES 

There has been recent interest in applying dynamic 

response techniques to more complex structures 

such as portal frames (Chondros and Dimarogo

nas, 1989; Akgun and Ju, 1990). The increased 

sensitivity of deflection over frequency is exhibited 

in these types of structures as well. As a simple 
example, we took three 457 X 12.7 X 12.7 mm 

beams and assembled them as a portal frame, with 

a rotational spring simulating damage at the fixed 

end of the left column (Fig. 10). Deflections were 

measured under the action of a point load as 

shown. Frequencies were found for the first sym

metrical in-plane (breathing) mode and the first 

asymmetrical in-plane mode. Results are plotted 

in Fig. 11. Once again, deflection changes outper

formed frequency changes in the prediction of 
structural damage. (Additional results for this and 

more complicated structures are in preparation 

and will be presented in a forthcoming article by 

the authors.) 

CONCLUSIONS 

Robust nondestructive evaluation of structural 

health is a worthy but challenging opponent. It 

may well turn out that no one technique will domi
nate, but that different techniques, or combina

tions of techniques, will be required for different 

situations. At least for the simple structures inves

tigated here, it was shown that static deflection is 

a more sensitive evaluator of structural damage 

than frequency change. This was verified with fun

damental considerations, numerical analysis, and 

an experiment. Static deflection testing may also 

be considerably more tractable in many situations 

than dynamic response testing. The extension to 

more complex structures is currently under investi

gation by the authors. 

What we have attempted to point out in this 

article are two fundamental ideas: first, static de

flection is a local phenomenon, while dynamic re

sponse (frequency in particular) is a global or dis

tributed phenomenon; we used the limit of a 

lumped mass model to demonstrate this effect. 

This leads us to our second point: static deflection 

is fundamentally more sensitive to damage than 

natural frequency, at least for the simple structures 
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Transverse motion of fixed-free beam 
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FIGURE 9 Comparison of frequency and deflection sensitivities, both theoretical and 

experimental, for the transverse motion of a cantilever beam. 

we investigated. This was demonstrated by numer

ical analysis and by experiment. 

This is not to say that static deflection tests 
will always be more robust that dynamic response 

tests. We can think of many cases where static 

deflection tests would be impractical or impossi

ble. What we hope to have shown is that there are 
fundamental reasons not to exclude static deflec

tions tests from the damage detection toolbox. 

/ 

///// ///// 

FIGURE 10 Definition sketch of a damaged portal 

frame. 

APPENDIX 

To compare eigenvalues for the discrete and dis
tributed models, we can simply take the limit of 

the discrete model as the number of DOF (n) goes 

to 00, then compare this to the distributed model 

and adjust for any missing terms. For example, 
in the fixed-free longitudinal case, the discrete 

eigenvalue is given by (Blevins, 1984) 

. [(2i-1)1i] 
2 SIll (2n + 1) 2 ' 

where i is the mode number. 

(A.1) 

In the limit as n ~ 00, the denominator of the 

sine argument becomes large, the argument itself 

becomes small, and we replace the sine function 

by its argument in the usual small angle approxi

mation. We then set twice the sine function 

argument equal to the distributed eigenvalue 

(Blevins, 1984) 

(2i -1)~, (A.2) 

giving 

C 2(2i -1)1i = (2' -1)~ 
(2n+1)2 1 2' 

(A.3) 
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In-plane motion of a portal frame 
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FIGURE 11 Comparison of frequency and deflection sensitivity with increasing damage 
for a portal frame. 

where the constant C has been included to enforce 
the equality. By inspection then, the constant 
C = (Zn + 1)/Z. 

A similar treatment of the fixed-fixed longitu
dinal case would result in C = n + 1. 
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