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Abstract

Primary production, a key regulator of the global carbon cycle, is highly responsive to variations

in climate. Yet, a detailed, continental-scale risk assessment of climate-related impacts on primary

production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for

primary production, with observations from 1218 climate stations to derive values of ecosystem

sensitivity to precipitation and aridity. For the first time, we produced an empirically-derived map

of ecosystem sensitivity to climate across the conterminous United States. Over this 16-year per-

iod, annual primary production values were most sensitive to precipitation and aridity in dryland

and grassland ecosystems. Century-long trends measured at the climate stations showed intensify-

ing aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the

western US may be particularly vulnerable to reductions in primary production and consequent

degradation of ecosystem services as climate change and variability increase in the future.
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INTRODUCTION

Primary production provides the energetic basis and material

substrate for nearly all heterotrophs, including humans, and is

a critical component of the many services that ecosystems

provide (Millennium Ecosystem Assessment 2005; Haberl

et al. 2014). Variation in primary production over time thus

has important consequences for overall ecosystem functioning,

and for the stability and value of production-derived ecosys-

tem services. In particular, primary production is a key regu-

lator of the global carbon cycle (Melillo et al. 1993), yet we

do not have a reliable benchmark for assessing the sensitivity

of terrestrial primary production to year-to-year changes in

precipitation across broad geographic extents. Biomes con-

tribute differentially to global primary production and there-

fore, affect the global carbon budget differentially. For

example, tropical forests dominate the annual global carbon

sink, whereas semi-arid and arid regions contribute the most

to interannual variability of the carbon sink (Ahlstr€om et al.

2015). Additionally, regional- or continental-scale changes in

climate, like prolonged droughts, can potentially impact the

global carbon budget by shifting the regional carbon balance

from a sink to a source (Davidson et al. 2012; Brienen et al.

2015) or vice versa (Poulter et al. 2014). Thus, quantifying the

sensitivity of primary production to climatic variation at large

spatial scales is essential for predicting how the global carbon

cycle will respond to future climatic conditions.

Common measures of primary production, such as gross

primary production (GPP) and net primary production

(NPP), are very responsive to climate. For example, a well-

documented spatial relationship exists between mean annual

precipitation (MAP) and annual NPP (Rosenzweig 1968; Sala

et al. 1988; Knapp & Smith 2001; Huxman et al. 2004a).

However, temporal relationships between annual precipitation

and NPP are less consistent (Lauenroth & Sala 1992; Hsu

et al. 2012; Sala et al. 2012; La Pierre et al. 2016; Knapp

et al. 2017). Climate is becoming increasingly variable, result-

ing in more frequent, longer droughts and more extreme pre-

cipitation events (Fischer et al. 2013; Singh et al. 2013), and

models predict that these trends will continue into the future

(Diffenbaugh et al. 2008; Intergovernmental Panel on Climate

Change 2013; Wuebbles et al. 2014). Furthermore, precipita-

tion amounts are increasing in some regions of the contermi-

nous United States (US) and decreasing in others, whereas

temperatures are increasing across the continent (Wilbanks &

Bilello 2014; Anderegg & Diffenbaugh 2015).

Previous analyses have demonstrated differential sensitivity

among terrestrial ecosystems to year-to-year changes in pre-

cipitation, or to measures of aridity that also include tempera-

ture (Knapp & Smith 2001; Huxman et al. 2004a; Hsu et al.

2012; Sala et al. 2012; Ponce Campos et al. 2013; Biederman

et al. 2016). Therefore, the impacts of climate change on

ecosystem processes such as primary production will be the

product of year-to-year changes in precipitation and tempera-

ture, and ecosystem sensitivity to these drivers. Previous stud-

ies of ecosystem sensitivity to climate have typically used

isolated ground-based observations of primary production

(Knapp & Smith 2001; Huxman et al. 2004a; Hsu et al. 2012;
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Sala et al. 2012) or experimental manipulations (Heisler-White

et al. 2009; Plaut et al. 2013; Rowland et al. 2018) over rela-

tively short spatial and temporal scales. These efforts, while

valuable, do not yield detailed, spatially distributed, measures

of ecosystem sensitivity to climate that can be used for conti-

nental-scale comparisons or for the validation of distributed

biome and carbon cycle models.

Here, we present a comprehensive analysis that, for the first

time, integrates precipitation, temperature, and proxies for

primary production to understand ecosystem sensitivity to cli-

mate across the conterminous U.S. We used 1218 century-

long weather station records from the U.S. Historical Climate

Network (USHCN; Menne et al. 2009) to measure long-term

trends in climate across the continent. We paired the latter

portion of these climate records with sixteen years of recent

satellite-derived proxies for primary production, including the

Normalised Difference Vegetation Index (NDVI) from the

Moderate Resolution Imaging Spectroradiometer (MODIS)

sensor, a robust and widely used surrogate for primary pro-

duction (Huete et al. 2002; Running et al. 2004; Pettorelli

et al. 2005; Nestola et al. 2016). With these data, we were able

to calculate the sensitivity of primary production to interan-

nual variation in climate at broad spatial and temporal scales.

We hypothesised that trends towards a more arid and variable

climate, particularly in the western US, would intersect with

high ecosystem sensitivity to precipitation and aridity, thus

highlighting ecosystems with greater potential vulnerability to

climate change. We interpolated the climatic trends and

ecosystem sensitivity values calculated at the USHCN stations

across the conterminous US, and grouped our analyses within

the ecoregions defined by the National Ecological Observatory

Network (NEON, see Fig. S1 for reference), which are simi-

larly sized and defined by biophysical and climatic characteris-

tics (Hargrove & Hoffman 2004; Keller et al. 2008). With this

analysis, we can identify which regions of the US are experi-

encing the greatest changes in climate, those that are most

responsive to climate variation, and thus, which regions may

be more vulnerable to climate change.

MATERIAL AND METHODS

Selection of a primary production proxy and justification

In this study, we focus on the NDVI spectral vegetation index

as our main proxy for primary production, and for this, we

used a 16-year (2000–2015) NDVI data set from the satellite-

based MODIS sensor (Running et al. 2004; Spruce et al.

2016). Vegetation indices like NDVI are highly correlated to

primary production across spatial scales and are commonly

used to estimate quantities such as vegetation biomass, pro-

ductivity and phenology (Pettorelli et al. 2005). For example,

satellite NDVI has been used for decades as an estimator of

biomass accumulation and aboveground NPP in grassland

ecosystems (Tucker et al. 1985; Paruelo et al. 1997; Nestola

et al. 2016; Chen et al. 2019). The strong relationship between

NDVI, which is calculated as the ratio of red to near-infrared

reflectance, and absorbed photosynthetically active radiation

(fPAR) is also well supported in the literature (Pettorelli et al.

2005). To test our assumption that NDVI is correlated to

primary production across our study area, we fit a regression

relationship between the multi-year mean of ground-observed

NPP data from 11 of the sites in Huxman et al. (2004a), and

the average of 16 years (2000–2015) of satellite-derived NDVI

for these same sites, and found a highly significant linear cor-

relation (R2
= 0.72; Fig. S2), indicating that MODIS NDVI

values adequately represent ground-based measurements of

NPP.

The generally reliable relationship between remotely sensed

vegetation indices and primary production has led to the cre-

ation of algorithmic data products that combine spectral mea-

surements with models of vegetation light-use efficiency and

climate data to yield estimates of GPP and NPP (Running

et al. 2004; Kolby Smith et al. 2015) and their response to cli-

matic variability (Nemani et al. 2003). These products, how-

ever, show bias in low- and high-biomass ecosystems (Turner

et al. 2006a), and dampen the interannual variability observed

in many biome types. This is particularly evident in drylands,

which are known to be highly sensitive to year-to-year

changes in precipitation (Turner et al. 2006b; Anav et al.

2015; Verma et al. 2015; Biederman et al. 2017). In fact,

MODIS satellite vegetation indices, in raw, seasonally-inte-

grated or annually-integrated form, are more direct measures

of vegetation activity, and therefore, frequently estimate pri-

mary production metrics (such as NPP, GPP and NEE) as

well or better than algorithmic MODIS NPP and GPP prod-

ucts (Rahman et al. 2005; Sims et al. 2006; Verma et al.

2014).

Satellite vegetation indices do have drawbacks, however.

MODIS NDVI is known to asymptotically saturate at values

greater than 0.9 (Huete et al. 2002). This phenomenon is

important in forests with high fractions of evergreen foliage,

such as the Amazon basin, and may reduce observed interan-

nual variability in NDVI, which in turn may lead to underes-

timation of ecosystem sensitivity to climate (Sims et al. 2006).

When we examined the distribution of raw MODIS NDVI

values across our study area, we found that only 0.03% of all

values were greater than 0.9, so we do not believe our esti-

mates of variability in primary production are biased by

NDVI saturation in regions with high biomass or productiv-

ity. For these reasons, along with the strong correlation with

ground-based measurements of NPP within our study area

(Fig. S2), we opted to focus on annually integrated NDVI

(NDVIint, described below) as a proxy for primary production

in this study.

To confirm the generality of our NDVI results, we con-

ducted analyses of three additional MODIS satellite proxies

for primary production: MOD17 NPP and GPP (Robinson

et al. 2018), and annually-integrated values of the Enhanced

Vegetation Index (EVI; Didan 2015). The NPP and GPP data

sets are algorithmic primary production products, while EVI

is a vegetation index with a more linear response that is less

susceptible to saturation at high biomasses compared to

NDVI (Huete et al. 2002; Rahman et al. 2005). These three

data sets were examined for sensitivity to precipitation vari-

ability using the same methods as for MODIS NDVI. Addi-

tional methodological details are described in the

“Confirmatory analysis with other MODIS proxies” section of

the Supporting Information.
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NDVI time series

We extracted time series of NDVI from a smoothed and gap-

filled MODIS NDVI data set distributed by the Oak Ridge

National Lab DAAC service (Spruce et al. 2016). This data

set provides 250 m resolution NDVI data for the contermi-

nous US every 8 days from 2000 through 2015. Quality con-

trol procedures for this data set have reduced the impact of

clouds and other radiometric aberrations. The NDVI vegeta-

tion index is unitless, ranging from 0 to 1, with higher values

indicating greater leafy biomass and photosynthetic potential.

From this data set, we calculated the mean NDVI value of

a 100 square km area surrounding each of the 1218 USHCN

stations (1681 pixels centred around station coordinates) at

each observation time, yielding an 8-day mean NDVI time

series for each station across the full 16-year period. This spa-

tial averaging scheme incorporates natural, agricultural, and

urban areas surrounding each station, allowing us to correlate

NDVI with climate across the full range of existing vegetation

and land-use. These 8-day time series were reduced to

monthly frequency using the mean of all observations per

month. For comparison to standardised aridity indices, we

also generated a standardised monthly NDVI data set by cal-

culating the z-score of 8-day NDVI time series (zNDVI;

z ¼ x�lð Þ
r

, where x = NDVI observed at a given time, l = the

station mean of NDVI, and r = the standard deviation of

NDVI) for each station before reducing to monthly frequency.

Both NDVI and zNDVI were further reduced to annually

integrated values (by calendar year) when calculating primary

production sensitivity metrics.

Long-term and interannual climate variation

We retrieved USHCN data from the publicly available data

archive of the U.S. National Oceanic and Atmospheric

Administration (NOAA; ftp://ftp.ncdc.noaa.gov/pub/data/

ushcn/v2.5/). The USHCN network is a subset of the Cooper-

ative Observer Program weather station network with long,

bias-corrected surface temperature and precipitation records

that are suitable for assessing continental-scale climatic

change (Menne et al. 2009). We found that the USHCN net-

work had a minimum record length of 106 years, spanning

from 1912, or earlier, to 2017, with a maximum of 22.67 years

missing (< 15.26% missing data). We reduced these daily data

to monthly values of mean daily air temperature and monthly

cumulative precipitation for our analyses.

Primary production responds to available water from pre-

cipitation and atmospheric demand for water, the latter of

which is partly a function of temperature (Park Williams

et al. 2012). Consequently, we calculated an aridity index that

integrates both precipitation and temperature, the Standard-

ised Precipitation Evapotranspiration Index (SPEI; Vicente-

Serrano et al. 2010), and examined its relationship to primary

production in our study. The full, 100 + year, monthly climate

records from all USHCN stations were used to calculate SPEI

with a 12-month integration period. We then examined long-

term trends and variability in aridity across the conterminous

US using SPEI. Long-term trends in SPEI were estimated by

linear regression using the ‘tslm’ function in the forecast

package in R (R Core Team 2018), which estimates trend

coefficients matching the frequency of the data. Similarly, to

quantify long-term trends in SPEI variability at each station,

we fit ‘tslm’ models to the 5-year moving-window coefficient

of variation (CV) of its SPEI time series. Trends in SPEI and

SPEI CV were interpolated across the conterminous US (in

Fig. 4a and b) using the ‘autoKrige’ function in the automap

package in R (R Core Team 2018).

Ecosystem sensitivity metrics

Monthly time series of NDVI, zNDVI, precipitation and SPEI

overlapped between 2000 and 2015, which allowed us to

derive two ecosystem sensitivity metrics using linear mixed-

effects models. The first of these metrics relates NDVI to pre-

cipitation, while the second relates zNDVI to aridity (as

SPEI). To derive the first metric, we summed monthly NDVI

and precipitation, by calendar year, for each year from 2000

to 2015 and assigned them to be the dependent and indepen-

dent variables, respectively, in a linear mixed-effects model

(the NDVIint:Precip model; Table S1). We used the indepen-

dent variable coefficients (the sum of fixed and random

slopes) from this model as our metric of ecosystem sensitivity

to precipitation (e.g. Huxman et al. 2004a; Knapp et al.

2015a). The units of this sensitivity metric are, therefore, the

change in annually integrated primary production (NDVIint)

per unit of change in annual precipitation. We derived the sec-

ond metric, ecosystem sensitivity to aridity, in a similar man-

ner, but first z-transformed the NDVI measurements (zNDVI)

for each USHCN station. Because SPEI is a standardised

measure of the variability in climate at each USHCN site,

transformation of NDVI to zNDVI was necessary to calculate

sensitivity values with a comparable range of variability across

all sites. The relationship between zNDVI and SPEI, was then

estimated with annually integrated zNDVI (by calendar year)

as the dependent variable and annual 12-month SPEI as the

independent variable in another linear mixed-effects model

(the zNDVIint:SPEI model; Table S2). The units of zNDVIint
sensitivity to aridity derived from these models (the SPEI

coefficients in the model) are, therefore, the change in annu-

ally integrated primary production (zNDVIint), per unit of

change in annual SPEI.

After being fit to the data, each sensitivity model had uncer-

tainty (residual variance) indicating how well year-to-year

changes in precipitation or aridity explain variation in pri-

mary production. We quantified this uncertainty at the ran-

dom effects level, i.e. by USHCN station, using the root mean

square error (RMSE) statistic. Model estimates of ecosystem

sensitivity to precipitation and aridity, and the corresponding

uncertainty of these estimates, were then interpolated among

sites and mapped across the conterminous US in Fig. S4. To

yield uncertainty statistics comparable across locations and

models, RMSE statistics for all USHCN stations were first

normalised by the range in observed sensitivity values

(NRMSE = RMSE/ ymax�yminð Þ). All spatial interpolations

were done with the ‘autoKrige’ function in the automap pack-

age for R (R Core Team 2018).

The NDVIint: Precip model and the zNDVIint:SPEI model

were each selected from a separate pool of 18 candidate

© 2020 John Wiley & Sons Ltd/CNRS
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models (Tables S1 and S2). Each of the 18 candidate models

for both sensitivity metrics contained all possible combina-

tions of a set of fixed effects, random effects, and correlation

structures. Candidate models always included the independent

variable (precipitation or aridity) as a fixed effect. Candidate

models that included NEON domain as a fixed additive and/

or interactive effect were included in the model selection.

Independent variables and the y-intercept were allowed to

have random effects varying by weather station, NEON

domain, or weather station nested within NEON domain.

Candidate models with and without autoregressive (AR1) cor-

relation structures were included. The models we selected as

our two ecosystem sensitivity models had the lowest Bayesian

Information Criterion (BIC) statistic among the candidates

(Tables S1 & S2).

RESULTS

At the regional scale, primary production increased with mean

annual precipitation (MAP), reaching a plateau at around

1000 mm MAP (NDVIint ¼ c � 1� ek�Pann
� �

, Efron’s

R2
= 0.55, P < 0.001 for c and k; Fig. 1). We also found that

temporal relationships between primary production and pre-

cipitation within NEON domains were weaker (i.e. explain a

smaller fraction of the variability) and shallower (i.e. have

lower slopes) than the overall spatial relationship between pri-

mary production and precipitation across domains (Fig. 1).

These temporal relationships, however, were related to MAP.

Across the conterminous US, the sensitivity of primary pro-

duction to precipitation decreased nonlinearly from deserts

and grasslands to savannahs and forested domains (Efron’s

R2
= 0.52, P < 0.001; Fig. 2). Primary production not only

responds to precipitation, but also to changes in temperature

that alter atmospheric demand for water. Indeed, we found

that primary production was sensitive to annual variation in

aridity, quantified as SPEI, and that this sensitivity declined

nonlinearly with MAP in a pattern similar to precipitation

sensitivity (Sensitivity ¼ c � e�MAP
� �

, Efron’s R2
= 0.39,

P < 0.001; Fig. S3).

We used a simple spatial interpolation technique (i.e. krig-

ing) to map the 1218 ecosystem sensitivity estimates, and their

corresponding uncertainty values, as a continuous surface

across the conterminous US (Fig. 3). Ecoregions in which pri-

mary production showed the highest sensitivity to variations

in precipitation included the Central Great Plains and the

Desert Southwest followed by the Great Basin and the South-

ern Rockies/Colorado Plateau regions that had somewhat

more moderate sensitivity to precipitation (Fig. 3; Table S3).

Sensitivity of NDVI to precipitation and aridity were near

zero for most of the eastern US as well as the Pacific North-

west (Figs. 3 and S3; Table S3). In most of the study area,

uncertainties for both sensitivity metrics, estimated as

NRMSE, were inversely related to the sensitivity values them-

selves (Fig. S4), meaning that estimates of primary production

sensitivity to precipitation and aridity were more uncertain in

mesic regions of the continental U.S. Spatial patterns of

ecosystem sensitivity to precipitation were generally consistent

within the Great Plains and Desert Southwest domains, and

there were steep boundaries in the degree of sensitivity at the

borders of these domains (Fig. 3).

The three additional satellite-derived proxies for primary pro-

duction largely confirmed continental-scale patterns in sensitivity

to precipitation that were observed with MODIS NDVI

(Fig. S5a–c). MODIS EVI, NPP and GPP were all generally

more sensitive to year-to-year precipitation variation in the west-

ern US. The MODIS NPP and GPP data sets reported lower sen-

sitivity in regions with low plant biomass and productivity when

compared with the spectral vegetation indices (NDVI and EVI).
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represents primary production and precipitation data for one year at one station. Points are coloured by the NEON domain (see Fig. S1). Linear models
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� �

, Efron’s R2 = 0.55, P < 0.001 for c and k).
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Sensitivity estimates from NPP and GPP were especially low in

the arid Desert Southwest domain, and high in the Central and

Northern Plains. Conversely, MODIS EVI showed high sensitiv-

ity in the Desert Southwest, Central and Southern Plains, and

comparatively low sensitivity in the Northern Plains ecoregion.

These three proxies also confirmed greater uncertainty in more

mesic, less sensitive NEON domains (Fig. S5d–f). Patterns of sen-

sitivity in Pacific Northwest and northeastern US domains were

similar between MODIS EVI and NDVI data (Figs 3 and

Fig. S5, panel A), suggesting that NDVI saturation was minimal

in high-biomass regions of our study area.

Based on temporal patterns of SPEI at the 1218 USHCN

stations, aridity has increased significantly since the early 20th

century across the western portion of the conterminous US.

(Fig. 4a; Table S3). These changes were largest in the Desert

Southwest, Southern Rockies and Colorado Plateau and

Great Basin domains. During the same period, variability in

SPEI (the 5-year CV of SPEI) increased significantly in many

regions of the western US. (Fig. 4b; Table S3). In contrast,

variability in SPEI has decreased in the eastern US during the

past century. Thus, regions where primary production is most

sensitive to climate have become more arid and more variable
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Figure 2 Sensitivity of primary production (NDVIint) to precipitation derived from a mixed-effects model relating the two variables at USHCN stations

from years 2000 through 2015 (model P-value for annual precipitation < 0.001). The y-axis units represent the change in annual primary production
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Figure 3 A map of the sensitivity of primary production to precipitation across the conterminous US sensitivity index was calculated for each USHCN

station as the temporal relationship between annual primary production (NDVIint) and annual precipitation, as described in Fig. 2. These values were then

interpolated between stations using kriging. All USHCN station locations are plotted as small black points, with the boundaries of NEON domains

outlined in black.
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over time, whereas climate in the eastern US, where the sensi-

tivity of primary production is generally lower, has become

more mesic and more stable over time (Table S3).

DISCUSSION

Overall, we found a nonlinear spatial relationship between

MAP and NDVI (Fig. 1), consistent with prior analyses based

on smaller numbers of observations of ground-based NPP

(Rosenzweig 1968; Huxman et al. 2004a; Sala et al. 2012) or

net ecosystem production (NEP; Biederman et al. 2016), both

of which provide an important source of empirical support

for our satellite-derived estimates of productivity. In addition,

we found that within site relationships between annual precip-

itation and primary production were weaker than the spatial

relationship across sites (Fig. 2). Decreased sensitivity to pre-

cipitation change observed within sites, relative to the spatial

model, results from multiple causes, including lags in NPP

response as a function of species composition (Sala et al.

2012; Isbell et al. 2013) and legacy effects (Reichmann et al.

2013). Collectively, our results demonstrate that ecosystems

exhibit systematic increases in the magnitude of primary pro-

duction and decreases in the sensitivity of primary production

to year-to-year changes in precipitation, along continental-

scale precipitation gradients. Together, these observations

reinforce previous studies made across ecosystems (Huxman

et al. 2004a; Biederman et al. 2016), but include a much

broader range of individual sites and ecosystem types, many

of which are representative of ecosystems globally (e.g. decid-

uous forest, grasslands, drylands, conifer forests).

Some of the most sensitive ecoregions, such as the Central

Great Plains and the Desert Southwest, overlap with conti-

nental climate change hotspots previously identified in climate

model studies (Diffenbaugh et al. 2008; Anderegg & Diffen-

baugh 2015). These ecoregions are predicted to experience

increases in aridity (Seager et al. 2007; Gutzler & Robbins

2010) leading to more frequent, longer and more severe

droughts (Cook et al. 2015) by the end of the 21st century.

Consistent with recent studies of continental US warming and

drying trends (Anderegg & Diffenbaugh 2015; Lehner et al.

Figure 4 Aridity trends across the conterminous US since 1900. Panel (a) shows trends in SPEI and panel (b) shows trends in SPEI coefficient of variation

(CV; 5-year rolling window calculation). Individual trends, that is, the slope coefficients of linear models fit to the time series data, were calculated at each

USHCN station and were then interpolated between stations using kriging. Note that negative trends in SPEI indicate intensifying aridity, and positive

trends in SPEI CV indicate increasing climatic variability. Significance of trends varied among USHCN stations and only stations with significant trends

are indicated by points on the map. NEON domain boundaries are outlined in black.
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2018), our analysis identified several ecoregions, including the

Desert Southwest, Great Basin and Southern Rockies/Color-

ado Plateau, where high sensitivity of primary production

converges with strong trends in aridity in the past century

(Figure S6). If climatic shifts towards greater aridity and vari-

ability continue throughout the rest of the 21st century, as is

predicted by global climate models, these ecoregions will be at

risk of significant declines in both productivity and vegetation

cover. Indeed, climate-driven ecosystem transitions involving

shifts in dominant vegetation type and overstory tree mortal-

ity are already evident and predicted to continue across the

Desert Southwest (Breshears et al. 2005; van Mantgem et al.

2009; Scott et al. 2010; Park Williams et al. 2012).

Changes in annual precipitation explain a larger fraction of

the variability in primary production (Efron’s R2
= 0.52) than

does SPEI (Efron’s R2
= 0.39). We suggest that the somewhat

higher explanatory power of precipitation over SPEI is related

to differences in the range and scale of variation of precipita-

tion and temperature from one year to the next (Mowll et al.

2015). Indeed, precipitation exhibits higher interannual vari-

ability than abiotic drivers such as temperature or wind speed

(Okin et al. 2018). Nevertheless, it is critical to consider future

changes in aridity, which are driven by increases in global sur-

face temperature in response to elevated levels of atmospheric

CO2. Over long timescales, precipitation exhibits limited

trends across many regions, while warming trends are wide-

spread and consistent (Diffenbaugh & Field 2013; Anderegg

& Diffenbaugh 2015). This is particularly evident across the

southwestern US, where warming temperatures have increased

atmospheric demand for water, and thus aridity (Fig. 4a),

despite no change in mean annual precipitation (Gutzler &

Robbins 2010).

In addition to mean precipitation and aridity, changes in

climatic variability over time are likely to have significant

effects on primary production. Several observational studies

demonstrate that the timing and magnitude of precipitation

events, or variability in aridity, are important controls on

NPP (Huxman et al. 2004b; Heisler-White et al. 2009; Hsu

et al. 2012; Rudgers et al. 2018). For example, Rudgers et al.

(2018) found that changes in both mean and variability in

SPEI were strongly related to differential, nonlinear responses

of NPP in Great Plains versus Chihuahuan Desert grassland

ecosystems. Under periods of lower aridity, precipitation vari-

ability favoured NPP of Great Plains grassland, whereas vari-

ability favoured Chihuahuan Desert grassland as aridity

increases. Furthermore, a recent global study found that pre-

cipitation variability enhanced above-ground NPP (ANPP)

for ecosystems with MAP less than 300 mm per year, but in

ecosystems with MAP > 300 mm per year, interannual precip-

itation variability decreased ANPP (Gherardi & Sala 2019).

To keep our analysis consistent across sites, and with prior

analyses, we used linear ecosystem sensitivity models that did

not estimate the nonlinear effects of climatic variability on

primary production (see also Felton et al. 2019). However,

residual variance in the sensitivity model we fit to SPEI, which

integrates climatic variability over the prior year, suggests that

nonlinear models might better estimate the response of some

regions to changes in aridity. Importantly, our long-term anal-

ysis of climate trends among 1218 weather stations showed

significant 20th and early 21st century increases in both mean

aridity and climatic variability, including the current ecotone

region between the Central Plains and Desert Southwest

domains (Figs 4a and b).

One of the most striking patterns from our analysis is the

clear differentiation between increasing “mesicness” in the

eastern US and increasing aridity and variability in the west-

ern US over the past century (Figs 4a and b). Interannual

variability and directional change in arid and semi-arid

ecosystems and consequent effects on NPP have clear implica-

tions for the global carbon budget. For example, a recent glo-

bal carbon sink anomaly was driven by semi-arid ecosystems

in the Southern Hemisphere in response to La Ni~na condi-

tions that caused extended periods of increased precipitation

(Poulter et al. 2014; Haverd et al. 2016). Climatic variability

also exacerbates the risk of vegetation mortality. Ecosystems

require time to recover from drought or other extreme cli-

matic events, and as the frequency, severity, or duration of

such events increases, recovery may become unattainable in

many ecosystems (Schwalm et al. 2017). Thus, as the climate

system produces greater and more frequent extremes, the

potential to see nonlinear effects on primary production

increases. Though our study does not specifically address such

nonlinearities, theoretical and experimental studies of NPP

suggest that saturating climate–productivity relationships may

lead to hydraulic limitation or ecosystem state changes under

high or low precipitation extremes, respectively (Knapp et al.

2017; Wilcox et al. 2017). Therefore, increased climatic vari-

ability has the potential to affect both year-to-year variations

in the global carbon budget, as well as the overall size of the

terrestrial carbon sink (Gherardi & Sala 2019).

Historically, limited site-level data on ecosystem functioning

has prevented a comprehensive understanding of which ecosys-

tems are most sensitive to, and potentially vulnerable to, cli-

mate change. Comparative analyses of ecosystem sensitivity to

climate have also been hampered by methodological inconsis-

tencies, including differences in the magnitude of climatic vari-

ability, response metrics and the spatial and temporal scales of

analysis (Knapp et al. 2015b). These data gaps and comparabil-

ity issues create challenges for synthesis and generality regard-

ing how ecosystems have responded to changes in precipitation

and temperature in the past and how those responses can be

used to forecast dynamics under future climate. Global esti-

mates of ecosystem sensitivity to climate using global biome

models and remote-sensing data highlight the sensitivity of bor-

eal, arctic and tropical regions (Nemani et al. 2003; Piao et al.

2009; Seddon et al. 2016), but are coarse in resolution and have

granted little attention to sparsely vegetated arid and semi-arid

regions. Coupling remote-sensing vegetation dynamics with

spatially dense measurements of climate allowed us to generate

an integrative measure of ecosystem sensitivity to climate varia-

tion that we could then map in great detail across a large section

of North America (Fig. 3).

Assessing historical patterns in ecosystem sensitivity to cli-

mate provides a strong foundation for predicting and compar-

ing ecosystem responses to future changes in climate at the

continental scale. Yet, while historical sensitivity is not neces-

sarily the same as future sensitivity due to the limitations of

extrapolating past observations into the climate of the future,
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the work presented here suggests important baseline trends

that can be used as guidelines of future ecosystem responses.

It is also important to note that sensitivity does not always

imply vulnerability since we know that resistance to change

(sensitivity) and the ability to recover from change (resilience)

are not necessarily related (Isbell et al. 2015). Many ecosys-

tems already experience considerable variability in environ-

mental drivers. Moreover, documenting the degree to which

ecosystems differ in their sensitivity to climate does not neces-

sarily elucidate the mechanisms behind those differences.

Hypotheses range from nutrient limitation, time lags, legacy

effects, variation in ecosystem-level hydraulic patterns (e.g.

isohydricity) and variable responses among different vegeta-

tion functional types such as annuals, perennial grasses shrubs

or trees (Sala et al. 2012; Konings et al. 2017). Therefore,

multiple approximations, such as simulation modelling, remo-

tely sensed-derived data (as reported here) and coordinated

distributed experiments are needed to determine mechanisms

driving differential sensitivities of ecosystem processes to cli-

mate variability (Borer et al. 2013; Fraser et al. 2013).

Our study greatly extends the analysis of ecosystem sensitiv-

ity to year-to-year changes in precipitation both within sites

and across the conterminous US, thereby firmly establishing

the generality of these spatial and temporal relationships

between climate and ecosystem primary production. Of

greater significance, we have generated for the first time a

map of ecosystem sensitivity to interannual variability of pre-

cipitation at the continental scale that can be used as a bench-

mark against which models and future mechanistic or

empirical analyses can be based. Sensitivity of primary pro-

duction to climate variability differs substantially among bio-

tic regions, and is the highest in regions that are already

transitioning to a more arid and variable climate. This pattern

is most notable in dryland and grassland ecosystems of the

western US. These same sensitive regions are predicted to

experience severe climate extremes by 2100 (Cook et al. 2015),

likely inhibiting their ability to provide essential ecosystem

services needed by a growing human population (Reynolds

et al. 2007). We suggest that climate change research and miti-

gation efforts identify and focus on areas that are highly sen-

sitive to climate variability and are changing rapidly under

multiple drivers of global environmental change.

ACKNOWLEDGEMENTS

This work was initiated during a Drought-Net Distributed

Graduate Seminar in 2017 and was supported by funding

from the U.S. National Science Foundation Research Coordi-

nation Network for Drought-Net [DEB 1354732]. We thank

Alan Knapp, Jeff Dukes and several anonymous reviewers

whose comments greatly improved the manuscript.

DATA ACCESSIBILITY STATEMENT

All raw data used in this study are public. Weather station data

came from NOAA’s public USHCN archive at ftp://ftp.ncdc.

noaa.gov/pub/data/ushcn/v2.5/ on 2017-05-21 (ushcn.v2.5.5.

20170521). The MODIS NDVI and EVI data sets are available

at https://dx.doi.org/10.3334/ORNLDAAC/1299 and https://doi.

org/10.5067/MODIS/MOD13Q1.006 respectively. MODIS NPP

and GPP products (Robinson et al. 2018) are available as Google

Earth Engine ImageCollection IDs UMT/NTSG/v2/MODIS/

NPP and UMT/NTSG/v2/MODIS/GPP. The R code used in

data processing, formal analysis, statistics, and figure creation is

published, along with key-derived data sets, at Figshare (https://d

oi.org/10.6084/m9.figshare.c.4780313).

AUTHORSHIP

All authors conceived of the research. GM, AH and RB

assembled the data and performed exploratory data analysis.

GM performed formal analysis with input from other authors.

SC, OS and GM wrote the manuscript with direct contribu-

tions from other authors. All authors reviewed and edited the

manuscript.

REFERENCES

Ahlstr€om, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung,

M. et al. (2015). Carbon cycle. The dominant role of semi-arid ecosystems

in the trend and variability of the land CO₂ sink. Science, 348, 895–899.

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.

et al. (2015). Spatiotemporal patterns of terrestrial gross primary

production: A review. Rev. Geophys., 53(3), 785–818.

Anderegg, W.R.L. & Diffenbaugh, N.S. (2015). Observed and projected

climate trends and hotspots across the National Ecological Observatory

Network regions. Front. Ecol. Environ., 13, 547–552.

Biederman, J.A., Scott, R.L., Goulden, M.L., Vargas, R., Litvak, M.E.,

Kolb, T.E. et al. (2016). Terrestrial carbon balance in a drier world: the

effects of water availability in southwestern North America. Glob.

Chang. Biol., 22, 1867–1879.

Biederman, J.A., Scott, R.L., Bell, T.W., Bowling, D.R., Dore, S.,

Garatuza-Payan, J. et al. (2017). CO exchange and evapotranspiration

across dryland ecosystems of southwestern North America. Glob.

Chang. Biol., 23, 4204–4221.

Borer, E.T., Stanley Harpole, W., Adler, P.B., Lind, E.M., Orrock, J.L.,

Seabloom, E.W. et al. (2013). Finding generality in ecology: a model

for globally distributed experiments. Methods Ecol. Evol., 5, 65–73.

Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice,

R.G. et al. (2005). Regional vegetation die-off in response to global-

change-type drought. Proc. Natl Acad. Sci. USA, 102, 15144–15148.

Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R.,

Lloyd, J. et al. (2015). Long-term decline of the Amazon carbon sink.

Nature, 519, 344–348.

Chen, M., Parton, W.J., Hartman, M.D., Del Grosso, S.J., Smith, W.K.,

Knapp, A.K. et al. (2019). Assessing precipitation, evapotranspiration,

and NDVI as controls of U.S. Great Plains plant production.

Ecosphere, 10, e02889.

Cook, B.I., Ault, T.R. & Smerdon, J.E. (2015). Unprecedented 21st

century drought risk in the American Southwest and Central Plains. Sci

Adv, 1, e1400082.

Davidson, E.A., de Ara�ujo, A.C., Artaxo, P., Balch, J.K., Brown, I.F.,

Bustamante, C. et al. (2012). The Amazon basin in transition. Nature,

481, 321–328.

Didan, K. (2015). MOD13Q1 MODIS/Terra Vegetation Indices 16-Day

L3 Global 250m SIN Grid V006. distributedby NASA EOSDIS Land

Processes DAAC.

Diffenbaugh, N.S. & Field, C.B. (2013). Changes in ecologically critical

terrestrial climate conditions. Science, 341, 486–492.

Diffenbaugh, N.S., Giorgi, F. & Pal, J.S. (2008). Climate change hotspots

in the United States. Geophys. Res. Lett., 35, L16709.

Felton, A.J., Zavislan-Pullaro, S. & Smith, M.D. (2019). Semiarid

ecosystem sensitivity to precipitation extremes: weak evidence for

vegetation constraints. Ecology, 100, e02572.

© 2020 John Wiley & Sons Ltd/CNRS

534 G. E. Maurer et al. Letter

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5/
ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2.5/
https://dx.doi.org/10.3334/ORNLDAAC/1299
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.6084/m9.figshare.c.4780313
https://doi.org/10.6084/m9.figshare.c.4780313


Fischer, E.M., Beyerle, U. & Knutti, R. (2013). Robust spatially

aggregated projections of climate extremes. Nat. Clim. Chang., 3, 1033–

1038.

Fraser, L.H., Henry, A.L.H., Carlyle, C.N., White, S.R., Beierkuhnlein,

C., Cahill, J.F. et al. (2013). Coordinated distributed experiments: an

emerging tool for testing global hypotheses in ecology and

environmental science. Front. Ecol. Environ., 11, 147–155.

Gherardi, L.A. & Sala, O.E. (2019). Effect of interannual precipitation

variability on dryland productivity: A global synthesis. Glob. Change

Biol., 25(1), 269–276.

Gutzler, D.S. & Robbins, T.O. (2010). Climate variability and projected

change in the western United States: regional downscaling and drought

statistics. Clim. Dyn., 37, 835–849.

Haberl, H., Erb, K.-H. & Krausmann, F. (2014). Human appropriation

of net primary production: Patterns, trends, and planetary boundaries.

Annu. Rev. Environ. Resour., 39, 363–391.

Hargrove, W.W. & Hoffman, F.M. (2004). Potential of multivariate

quantitative methods for delineation and visualization of ecoregions.

Environ. Manage., 34(Suppl 1), S39–60.

Haverd, V., Smith, B. & Trudinger, C. (2016). Process contributions of

Australian ecosystems to interannual variations in the carbon cycle.

Environ. Res. Lett., 11, 054013.

Heisler-White, J.L., Blair, J.M., Kelly, E.F., Harmoney, K. & Knapp, A.K.

(2009). Contingent productivity responses to more extreme rainfall

regimes across a grassland biome. Glob. Chang. Biol., 15, 2894–2904.

Hsu, J.S., Powell, J. & Adler, P.B. (2012). Sensitivity of mean annual

primary production to precipitation. Glob. Chang. Biol., 18, 2246–2255.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira,

L.G. (2002). Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ., 83, 195–213.

Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik,

M.E. et al. (2004a). Convergence across biomes to a common rain-use

efficiency. Nature, 429, 651–654.

Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K.,

Pockman, W.T. et al. (2004b). Precipitation pulses and carbon fluxes in

semiarid and arid ecosystems. Oecologia, 141, 254–268.

Intergovernmental Panel on Climate Change (2013). Climate Change

2013: The Physical Science Basis: Working Group I Contribution to the

Fifth Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge University Press, Cambridge, UK and New York,

New York, USA.

Isbell, F., Reich, P.B., Tilman, D., Hobbie, S.E., Polasky, S. & Binder, S.

(2013). Nutrient enrichment, biodiversity loss, and consequent declines in

ecosystem productivity. Proc. Natl Acad. Sci. USA, 110, 11911–11916.

Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B.,

Beierkuhnlein, C. et al. (2015). Biodiversity increases the resistance of

ecosystem productivity to climate extremes. Nature, 526, 574–577.

Keller, M., Schimel, D.S., Hargrove, W.W. & Hoffman, F.M. (2008). A

continental strategy for the National Ecological Observatory Network.

Front. Ecol. Environ., 6, 282–284.

Knapp, A.K. & Smith, M.D. (2001). Variation among biomes in temporal

dynamics of aboveground primary production. Science, 291(5503), 481–

484.

Knapp, A.K., Carroll, C.J.W., Denton, E.M., La Pierre, K.J., Collins,

S.L. & Smith, M.D. (2015a). Differential sensitivity to regional-scale

drought in six central US grasslands. Oecologia, 177(4), 949–957.

Knapp, A.K., Hoover, D.L., Wilcox, K.R., Avolio, M.L., Koerner, S.E.,

La Pierre, K.J. et al. (2015b). Characterizing differences in precipitation

regimes of extreme wet and dry years: implications for climate change

experiments. Glob. Change Biol., 21, 2624–2633

Knapp, A.K., Ciais, P. & Smith, M.D. (2017). Reconciling inconsistencies

in precipitation-productivity relationships: implications for climate

change. New Phytol., 214, 41–47.

Kolby Smith, W., Reed, S.C., Cleveland, C.C., Ballantyne, A.P.,

Anderegg, W.R.L., Wieder, W.R. et al. (2015). Large divergence of

satellite and Earth system model estimates of global terrestrial CO2

fertilization. Nat. Clim. Chang., 6, 306–310.

Konings, A.G., Williams, A.P. & Gentine, P. (2017). Sensitivity of

grassland productivity to aridity controlled by stomatal and xylem

regulation. Nat. Geosci., 10, 284–288.

La Pierre, K.J., Blumenthal, D.M., Brown, C.S., Klein, J.A. & Smith,

M.D. (2016). Drivers of variation in aboveground net primary

productivity and plant community composition differ across a broad

precipitation gradient. Ecosystems, 19, 521–533.

Lauenroth, W.K. & Sala, O.E. (1992). Long-term forage production of

north american shortgrass steppe. Ecol. Appl., 2, 397–403.

Lehner, F., Deser, C., Simpson, I.R. & Terray, L. (2018). Attributing

the U.S. Southwest’s recent shift into drier conditions. Geophys. Res.

Lett., 45, 6251–6261.

van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D.,

Franklin, J.F., Ful�e, P.Z. et al. (2009). Widespread increase of tree

mortality rates in the western United States. Science, 323, 521–524.

Melillo, J.M., David McGuire, A., Kicklighter, D.W., Moore, B.,

Vorosmarty, C.J. & Schloss, A.L. (1993). Global climate change and

terrestrial net primary production. Nature, 363, 234–240.

Menne, M.J., Williams, C.N. & Vose, R.S. (2009). The U.S. historical

climatology network monthly temperature data, Version 2. Bull. Am.

Meteorol. Soc., 90, 993–1008.

Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-

being. Synthesis. Island Press, Washington D.C.

Mowll, W., Blumenthal, D.M., Cherwin, K., Smith, A., Symstad, A.J.,

Vermeire, L.T. et al. (2015). Climatic controls of aboveground net

primary production in semi-arid grasslands along a latitudinal gradient

portend low sensitivity to warming. Oecologia, 177, 959–969.

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C.,

Tucker, C.J. et al. (2003). Climate-driven increases in global terrestrial

net primary production from 1982 to 1999. Science, 300, 1560–1563.

Nestola, E., Calfapietra, C., Emmerton, C., Wong, C., Thayer, D. &

Gamon, J. (2016). Monitoring grassland seasonal carbon dynamics, by

integrating MODIS NDVI, proximal optical sampling, and eddy

covariance measurements. Remote Sens., 8, 260.

Okin, G., Sala, O.E., Vivoni, E., Zhang, J. & Bhattachan, A. (2018). The

interactive role of wind and water in functioning of drylands: what

does the future hold? Bioscience, 68, 670–677.

Park Williams, A., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse,

C.A., Meko, D.M. et al. (2012). Temperature as a potent driver of

regional forest drought stress and tree mortality. Nat. Clim. Chang., 3,

292–297.

Paruelo, J.M., Epstein, H.E., Lauenroth, W.K. & Burke, I.C. (1997).

ANPP estimates from NDVI for the central grassland region of the

United States. Ecology, 78, 953.

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J. &

Stenseth, N.C. (2005). Using the satellite-derived NDVI to assess

ecological responses to environmental change. Trends Ecol. Evol., 20,

503–510.

Piao, S., Ciais, P., Friedlingstein, P., de Noblet-Ducoudr�e, N., Cadule, P.,

Viovy, N. et al. (2009). Spatiotemporal patterns of terrestrial carbon

cycle during the 20th century. Global Biogeochem. Cycles, 23, GB4026.

Plaut, J.A., Duncan Wadsworth, W., Pangle, R., Yepez, E.A., McDowell,

N.G. & Pockman, W.T. (2013). Reduced transpiration response to

precipitation pulses precedes mortality in a pi~non-juniper woodland

subject to prolonged drought. New Phytol., 200, 375–387.

Ponce Campos, G.E., Moran, M.S., Huete, A., Zhang, Y., Bresloff, C.,

Huxman, T.E. et al. (2013). Ecosystem resilience despite large-scale

altered hydroclimatic conditions. Nature, 494, 349–352.

Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J. et al.

(2014). Contribution of semi-arid ecosystems to interannual variability

of the global carbon cycle. Nature, 509, 600–603.

R Core Team, (2018). R: A Language and Environment for Statistical

Computing. {R Foundation for Statistical Computing}, Vienna,

Austria.

Rahman, A.F., Sims, D.A., Cordova, V.D. & El-Masri, B.Z. (2005).

Potential of MODIS EVI and surface temperature for directly

estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett., 32.

© 2020 John Wiley & Sons Ltd/CNRS

Letter Climate sensitivity of US primary production 535



Reichmann, L.G., Sala, O.E. & Peters, D.P.C. (2013). Precipitation

legacies in desert grassland primary production occur through previous-

year tiller density. Ecology, 94, 435–443.

Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L. 2nd,

Mortimore, M., Batterbury, S.P.J. et al. (2007). Global desertification:

building a science for dryland development. Science, 316, 847–851.

Robinson, N.P., Allred, B.W., Smith, W.K., Jones, M.O., Moreno, A.,

Erickson, T.A. et al. (2018). Terrestrial primary production for the

conterminous United States derived from Landsat 30 m and MODIS

250 m. Remote Sensing in Ecology and Conservation, 4, 264–280

Rosenzweig, M.L. (1968). Net primary productivity of terrestrial

communities: prediction from climatological data. Am. Nat., 102, 67–

74.

Rowland, L., da Costa, A.C.L., Oliveira, A.A.R., Almeida, S.S., Ferreira,

L.V., Malhi, Y. et al. (2018). Shock and stabilisation following long-

term drought in tropical forest from 15 years of litterfall dynamics. J.

Ecol., 106, 1673–1682.

Rudgers, J.A., Chung, Y.A., Maurer, G.E., Moore, D.I., Muldavin, E.H.,

Litvak, M.E. et al. (2018). Climate sensitivity functions and net

primary production: A framework for incorporating climate mean and

variability. Ecology, 99, 576–582.

Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M. &

Hashimoto, H. (2004). A continuous satellite-derived measure of global

terrestrial primary production. Bioscience, 54, 547.

Sala, O.E., Parton, W.J., Joyce, L.A. & Lauenroth, W.K. (1988). Primary

production of the central grassland region of the United States.

Ecology, 69, 40–45.

Sala, O.E., Gherardi, L.A., Reichmann, L., Jobb�agy, E. & Peters, D.

(2012). Legacies of precipitation fluctuations on primary production:

theory and data synthesis. Philos. Trans. R. Soc. Lond. B Biol. Sci.,

367, 3135–3144.

Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi,

F., Koch, G. et al. (2017). Global patterns of drought recovery. Nature,

548, 202–205.

Scott, R.L., Hamerlynck, E.P., Darrel Jenerette, G., Susan Moran, M. &

Barron-Gafford, G.A. (2010). Carbon dioxide exchange in a semidesert

grassland through drought-induced vegetation change. J. Geophys. Res.,

115, G03026.

Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G. et al.

(2007). Model projections of an imminent transition to a more arid

climate in southwestern North America. Science, 316, 1181–1184.

Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D. & Willis, K.J.

(2016). Sensitivity of global terrestrial ecosystems to climate variability.

Nature, 531, 229–232.

Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi,

D.D., Flanagan, L.B. et al. (2006). On the use of MODIS EVI to

assess gross primary productivity of North American ecosystems. J.

Geophys. Res: Biogeosciences, 111, G04015.

Singh, D., Tsiang, M., Rajaratnam, B. & Diffenbaugh, N.S. (2013).

Precipitation extremes over the continental United States in a transient,

high-resolution, ensemble climate model experiment. J. Geophys. Res.

D: Atmos., 118, 7063–7086.

Spruce, J.P., Gasser, G.E. & Hargrove, W.W. (2016). MODIS NDVI

Data. Smoothed and Gap-filled, for the Conterminous US, 2000–2015.

Tucker, C.J., Vanpraet, C.L., Sharman, M.J. & Van Ittersum, G. (1985).

Satellite remote sensing of total herbaceous biomass production in the

senegalese sahel: 1980–1984. Remote Sens. Environ., 17, 233–249.

Turner, D.P., Ritts, W.D., Cohen, W.B., Gower, S.T., Running, S.W.,

Zhao, M. et al. (2006a). Evaluation of MODIS NPP and GPP products

across multiple biomes. Remote Sens. Environ., 102, 282–292.

Turner, D.P., Ritts, W.D., Zhao, M., Kurc, S.A., Dunn, A.L., Wofsy,

S.C. et al. (2006b). Assessing interannual variation in MODIS-based

estimates of gross primary production. IEEE Trans. Geosci. Remote

Sens., 44, 1899–1907.

Verma, M., Friedl, M.A., Richardson, A.D., Kiely, G., Cescatti, A., Law,

B.E. et al. (2014). Remote sensing of annual terrestrial gross primary

productivity from MODIS: an assessment using the FLUXNET La

Thuile data set. Biogeosciences, 11, 2185–2200.

Verma, M., Friedl, M.A., Law, B.E., Bonal, D., Kiely, G., Black, T.A.

et al. (2015). Improving the performance of remote sensing models for

capturing intra- and inter-annual variations in daily GPP: An analysis

using global FLUXNET tower data. Agric. For. Meteorol., 214-215,

416–429.

Vicente-Serrano, S.M., Beguer�ıa, S. & L�opez-Moreno, J.I. (2010). A

multiscalar drought index sensitive to global warming: the standardized

precipitation evapotranspiration index. J. Clim., 23, 1696–1718.

Wilbanks, T.J. & Bilello, D. (2014). Climate Change and Energy Supply

and Use: Technical Report for the U.S. Department of Energy in

Support of the National Climate. Assessment. Island Press.

Wilcox, K.R., Shi, Z., Gherardi, L.A., Lemoine, N.P., Koerner, S.E.,

Hoover, D.L. et al. (2017). Asymmetric responses of primary productivity

to precipitation extremes: A synthesis of grassland precipitation

manipulation experiments. Glob. Change Biol., 23, 4376–4385.

Wuebbles, D., Meehl, G., Hayhoe, K., Karl, T.R., Kunkel, K., Santer, B.

et al. (2014). CMIP5 climate model analyses: climate extremes in the

United States. Bull. Am. Meteorol. Soc., 95, 571–583.

SUPPORTING INFORMATION

Additional supporting information may be found online in

the Supporting Information section at the end of the article.

Editor, Tim Coulson

Manuscript received 30 August 2019

First decision made 3 October 2019

Second decision made 11 December 2019

Manuscript accepted 17 December 2019

© 2020 John Wiley & Sons Ltd/CNRS

536 G. E. Maurer et al. Letter


