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Abstract. Snow models are usually evaluated at sites pro-

viding high-quality meteorological data, so that the uncer-

tainty in the meteorological input data can be neglected when

assessing model performances. However, high-quality input

data are rarely available in mountain areas and, in practical

applications, the meteorological forcing used to drive snow

models is typically derived from spatial interpolation of the

available in situ data or from reanalyses, whose accuracy can

be considerably lower. In order to fully characterize the per-

formances of a snow model, the model sensitivity to errors in

the input data should be quantified.

In this study we test the ability of six snow models to re-

produce snow water equivalent, snow density and snow depth

when they are forced by meteorological input data with grad-

ually lower accuracy. The SNOWPACK, GEOTOP, HTES-

SEL, UTOPIA, SMASH and S3M snow models are forced,

first, with high-quality measurements performed at the ex-

perimental site of Torgnon, located at 2160 m a.s.l. in the

Italian Alps (control run). Then, the models are forced by

data at gradually lower temporal and/or spatial resolution,

obtained by (i) sampling the original Torgnon 30 min time

series at 3, 6, and 12 h, (ii) spatially interpolating neighbour-

ing in situ station measurements and (iii) extracting infor-

mation from GLDAS, ERA5 and ERA-Interim reanalyses at

the grid point closest to the Torgnon site. Since the selected

models are characterized by different degrees of complexity,

from highly sophisticated multi-layer snow models to sim-

ple, empirical, single-layer snow schemes, we also discuss

the results of these experiments in relation to the model com-

plexity.

The results show that, when forced by accurate 30 min res-

olution weather station data, the single-layer, intermediate-

complexity snow models HTESSEL and UTOPIA provide

similar skills to the more sophisticated multi-layer model

SNOWPACK, and these three models show better agree-

ment with observations and more robust performances over

different seasons compared to the lower-complexity models

SMASH and S3M. All models forced by 3-hourly data pro-

vide similar skills to the control run, while the use of 6- and

12-hourly temporal resolution forcings may lead to a reduc-

tion in model performances if the incoming shortwave radi-

ation is not properly represented. The SMASH model gen-

erally shows low sensitivity to the temporal degradation of

the input data. Spatially interpolated data from neighbouring

stations and reanalyses are found to be adequate forcings,

provided that temperature and precipitation variables are not

affected by large biases over the considered period. However,

a simple bias-adjustment technique applied to ERA-Interim
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temperatures allowed all models to achieve similar perfor-

mances to the control run. Regardless of their complexity, all

models show weaknesses in the representation of the snow

density.

1 Introduction

A wide range of snow models with different degrees of com-

plexity have been developed for hydrological applications,

avalanche risk forecasting and climate studies. Some of them

are also integrated within modelling chains for numerical

weather forecasts or climate modelling. The degree of com-

plexity of the snow schemes depends on the specific pur-

pose for which they have been developed (Magnusson et al.,

2015). Simple temperature-index snow models are employed

in applications requiring a coarse estimate of snow depth

or snow water equivalent. Physical, energy-balance, but still

rather simple snow models are often used in complex mod-

elling chains, i.e. in numerical weather prediction systems

and in Earth system models, to limit the computational costs.

Sophisticated multi-layer snow models are typically used to

reconstruct the vertical structure of the snowpack with a high

level of detail and high accuracy, as needed for avalanche

warning applications.

Snow models are generally evaluated at a number of sites

providing high-quality forcing and verification data. Exten-

sive literature documents the underlying physics and the per-

formances of single snow models (e.g. Dutra et al., 2010;

Vionnet et al., 2012; Bartelt and Lehning, 2002), and sev-

eral studies compare a limited number of snow models with

each other (Boone and Etchevers, 2001; Kumar et al., 2013).

A few large intercomparison studies benchmarked multiple

snow models, including the PILPS2d, PILPS2e, Rhone-Agg,

SNOWMIP and SNOWMIP2 coordinated intercomparison

projects.

PILPS2d (Slater et al., 2001; Schlosser et al., 2000) and

PILPS2e (Bowling et al., 2003) aimed at evaluating snow

water equivalent (SWE) simulations provided by different

land surface schemes (LSSs) in Russian and Swedish snow-

dominated catchments respectively. PILPS2d evaluated 21

land surface schemes forced by 18 years of observed me-

teorological data from a grassland catchment in Russia to in-

vestigate the reasons for model scatter in the output snow-

pack variables. Weaknesses in reproducing mid-season abla-

tion were shown to produce systematic scatter between the

models. Albedo and fractional snow cover were both key

variables for an accurate representation of the amount of en-

ergy absorbed by the snowpack. The ablation during the early

snow season is another major source of divergence between

models: in early winter a thin snow cover is highly sensi-

tive to changes in the forcings, and the resulting differences

in snowpack conditions tend to persist throughout the whole

snow season if temperatures remain too cold for melt.

PILPS2e showed the difficulty of reproducing spring melt-

ing. Errors in winter snow sublimation mainly impacted the

runoff simulations, while the retention of meltwater within

the snowpack affected the timing of the peak in runoff rather

than its magnitude. For both PILPS2d and PILPS2e the dif-

ferences in model complexity did not fully explain the differ-

ences in model results.

The Rhône-AGG experiment (Boone et al., 2004) em-

ployed 15 LSSs to address the impact of the model struc-

ture and of the spatial resolution of the forcing data on the

simulations of the water balance. LSSs with an explicit (bulk

or multi-layer) snow scheme provided better SWE simula-

tions than LSSs with a composite snow scheme (i.e. with

a mixed snow–soil–vegetation layer). LSSs with composite

snow schemes showed early snow ablation and early runoff

peaks compared to observations, owing to missing represen-

tation of key processes such as ripening and to inadequate

representation of albedo and thermal conductivity in a mixed

snow–soil–vegetation layer. SWE was strongly affected by

the spatial resolution of the meteorological forcing. In fact,

when high-resolution meteorological forcings were aggre-

gated from 8 km to a coarser grid of 1◦ (about 69 km), the

simulated SWE was reduced by 25 %–60 % in 13 out of

15 LSSs. A single model explicitly considering subgrid el-

evation effects on the forcing was found to minimize the im-

pact of scaling on the simulated snow water equivalent.

SnowMIP (Etchevers et al., 2002, 2004) performed an

intercomparison of snow models of different complexities,

used for different applications, including hydrology, global

circulation models, snow monitoring, snow physics and

avalanche forecasting, with the aim of identifying key pro-

cesses for each application. Model complexity was found to

have a strong impact on the simulation of the net longwave

radiation, which strongly affects snowmelt dynamics. Mod-

els relying on the explicit simulation of the internal snow pro-

cesses represented snow surface temperature and the long-

wave radiation budget more accurately. By contrast, model

complexity had a smaller impact on the net shortwave ra-

diation, whose accuracy was dependent on the simulation

of albedo. Complex models taking into account snow mi-

crostructure were able to properly represent the albedo vari-

ability (as a function of grain size and type), but simple snow

models with an appropriate parameterization of albedo dy-

namics also guaranteed reliable estimates of this variable.

SnowMIP2 (Rutter et al., 2009) built upon SnowMIP and

focused on the simulation of snowpack properties in forested

areas compared to open sites, across different climatic condi-

tions. Single models showed low correlations between differ-

ent years in forested sites and low correlations also between

forested and open sites, suggesting that no single best model

for all years and all sites could be easily identified. Calibra-

tion allowed reduction of root mean square error (RMSE)

in forested sites, but the benefits from calibration at forested

sites did not transfer to nearby non-forested sites.
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The mentioned studies shed light on the critical snow pro-

cesses that produce the largest differences between LSS sim-

ulations. However, they could not clearly define an optimal

set of parameterizations for a given application, such as nu-

merical weather predictions and climate simulations, or the

minimum level of model complexity needed to achieve sat-

isfactory skills in a given application (Slater et al., 2001).

A step forward in this direction was obtained by employ-

ing a single model with several options to represent each

of the most snow-relevant processes and then testing the ef-

fect of parameterizations with different degrees of complex-

ity on the skill of the model (Essery et al., 2013; Clark et al.,

2011). The best results were obtained with models having a

prognostic representation of snow albedo and density, with

at least a simple representation of water retention and re-

freezing in the snowpack. The ongoing coordinated initiative

ESM-SnowMIP (Krinner et al., 2018) is expected to provide

important information on the key snow processes that should

be included in global climate models.

A common characteristic among past model intercompar-

ison initiatives is the interest in testing the skills of the mod-

els in experimental sites where high-quality meteorological

forcings are available, to perform a controlled evaluation of

the model performances. However, such a context does not

represent the typical conditions occurring in practical appli-

cations, where snow models are run over large climate model

grid cells, and they are coupled to atmospheric models that

likely provide biased driving data (Essery et al., 2013). More-

over, reliable modelling of snowpack dynamics in mountain

regions is hindered by the high spatial and temporal variabil-

ity of the meteorological forcings, entailing that observations

and reanalysis data at a given location are scarcely repre-

sentative of the conditions of the surrounding area. A recent

review paper on the European mountain cryosphere (Benis-

ton et al., 2018) states that disentangling the uncertainties

related to the model structure from those related to the mete-

orological input data is one of the major challenges for snow

modelling at the catchment scale relevant for hydrological

applications. A sensitivity analysis performed on a single,

physically based snow model showed that the uncertainty of

snow simulations due to the forcing can be comparable to or

even larger than the uncertainty due to the model structure

(Raleigh et al., 2015). That analysis also showed that biases

in the forcing data have a larger effect than random errors.

Building on the results of previous studies, we now expand

the perspective by considering an ensemble of snow mod-

els with different degrees of complexity, and we investigate

their sensitivity to the quality of the meteorological forcing,

with the aim of providing information on their performances

when they are forced with inputs at gradually lower temporal

and/or spatial resolution.

We devised a set of experiments with six snow models

with different degrees of complexity in the Alpine measure-

ment site of Torgnon, located at 2160 m a.s.l. in the Aosta

Valley, Italy. First, we evaluate each model forced by accu-

rate station measurements at 30 min temporal resolution (we

refer to this as “optimal” forcing). Second, we test the re-

sponse of each model when forced by data at gradually lower

temporal resolution and/or lower accuracy. To this end, we

employ data from spatial interpolation of neighbouring sta-

tion measurements and from three gridded global reanaly-

ses, and we extract the meteorological time series at the grid

point closest to the Torgnon station. The site of Torgnon has

been selected because it provides high-quality meteorolog-

ical measurements, in particular for precipitation which is

usually poorly measured in high-elevation sites, and a de-

tailed characterization of snowpack properties in terms of

depth, mass and surface temperature. Moreover, the Torgnon

site usually experiences low wind speeds, so that the snow-

drift effect is very limited. The combination of these three

conditions is rare in high-elevation measurement sites but

essential to reduce the uncertainties on input and validation

data and to allow for a reliable estimation of the error due to

model structure. Repeating this effort at multiple test sites,

for example in other alpine sites at different elevations and

latitudes, or at non-alpine sites (i.e. in the Arctic), would ex-

pand the results provided by the present paper. Of course, this

would come at the cost of larger uncertainties in the forcings,

which propagate across the modelling exercise and compli-

cate the interpretation and the comparison of the model out-

puts. For this reason, we leave this more complex investi-

gation for a separate paper. Here we employ a multi-model

and multi-forcing framework to (i) assess the performances

of each snow model when forced with inputs at gradually

lower temporal and/or spatial resolution, (ii) discuss the re-

lation between model performances and model complexity,

and (iii) provide model users with information for practical

applications.

This paper is structured as follows: Sect. 2 presents the

snow models employed in the study, while Sect. 3 describes

the station of Torgnon and the datasets employed for the ex-

periments. Section 4 describes in detail the set of 12 devised

experiments and, for each experiment, the method employed

to derive the forcing. Section 5 focuses on the evaluation of

snow model outputs against observations, and finally Sects. 6

and 7 discuss the results and draw the conclusions.

2 Snow models

The six models considered in this study, together with a com-

pact overview of their characteristics, are listed in Table 1 and

summarized in the following.

SNOWPACK is a highly sophisticated, multi-purpose

snow and land-surface model, with a detailed description of

the mass and energy exchange between the snow, the atmo-

sphere and optionally the vegetation cover and the soil. It

provides a detailed description of snow properties, including

weak layer characterization, phase changes and water trans-

port in snow (Hirashima et al., 2010). A particular feature is
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Table 1. Features of snow models in terms of model complexity following Slater et al. (2001), snow albedo (α) parameterization, explicit

representation of meltwater retention and refreezing in the snowpack (Mw) and a main reference.

Snow model Complexity α∗ Mw Reference

SNOWPACK multi-layer 111 Yes Bartelt and Lehning (2002)

GEOTOP multi-layer 011 Yes Endrizzi et al. (2014)

HTESSEL single-layer 110 Yes Dutra et al. (2012)

UTOPIA single-layer 110 Yes Cassardo (2015)

SMASH up to three layers 110 No Piazzi et al. (2018, 2019)

S3M single-layer 010 No Boni et al. (2010)

∗ The three-digit combinations of 1 and 0 represent the dependence or not of the albedo parameterization
respectively on surface temperature, snow age, and grain size. 000 means fixed albedo.

the treatment of soil and snow as a continuum with a choice

of a few up to several hundred layers (Bartelt and Lehning,

2002).

GEOTOP 2.0 is a sophisticated snow and hydrological

process-based model. Its strength is an integrated approach

that takes into account the interactions between hydrological,

cryospheric and geomorphological processes (Endrizzi et al.,

2014). The snowpack evolution is dynamically managed by

the model through a snow layering scheme which splits and

merges the layers depending on their mass. The model also

takes into account snow metamorphism and water percola-

tion into the snowpack.

HTESSEL is the land-surface model of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) Inte-

grated Forecasting System (IFS), controlling the evolution

of the snow and soil fields and the exchanges of heat and

moisture between the land surface and the atmosphere above

(Balsamo et al., 2009). HTESSEL includes a process-based

single-layer snow scheme to represent the grid cell fraction

(tile) that is covered by snow (Dutra et al., 2010). In this

scheme, the snowpack is characterized by a prognostic tem-

perature, mass, density and albedo, updated at each time step.

The liquid water content is diagnosed based on the other

snow fields (temperature, density and mass), allowing repre-

sentation of the interception of rainfall by the snowpack and

internal melting/refreezing processes (Dutra et al., 2012).

UTOPIA is a land-surface process model representing the

physical processes at the interface between surface, vegeta-

tion and soil layers, including a scheme which accounts for

the main processes occurring in the snowpack (Cassardo,

2015). The snowpack is considered a single homogenous

layer placed on the land surface, and its mass, thermal and

hydrological balances are analysed. The model takes into ac-

count the partition of soil coverage fractions (bare soil, veg-

etated soil, soil or vegetation covered by snow) and is able to

simulate snow water equivalent, depth, density, albedo and

coverage. Snow metamorphism is parameterized.

SMASH is a two-layer snow model that reproduces some

of the main physical processes occurring within the snow-

pack, including accumulation, density dynamics, melting,

sublimation, radiative balance, heat and mass exchange (Pi-

azzi et al., 2019). The model can be coupled with multivari-

able data assimilation schemes (Piazzi et al., 2018, 2019)

allowing the joint assimilation of several snow-related ob-

servations to produce SWE and runoff estimates. To facili-

tate the implementation of the assimilation algorithms, the

complexity of the modelling scheme is limited (e.g. liquid

water storage and refreezing process are neglected). In the

present study no assimilation scheme has been implemented

in SMASH (open-loop configuration).

S3M is a spatially distributed, empirical snow model re-

quiring only a few input variables (precipitation, tempera-

ture, incoming shortwave radiation and air humidity) to com-

pute the water mass conservation equation and to produce

a first estimate of SWE (Boni et al., 2010). A second, op-

tional, independent estimate of the SWE field, obtained by

combining spatial interpolation of surface snow depth obser-

vations and MODIS snow cover, is assimilated into the snow

model using a nudging scheme. The result of the data assimi-

lation is an updated SWE map exploiting different sources of

information, modelling, remote sensing and surface station

network measurements. In the use of the model for the ex-

periments proposed in this paper the assimilation scheme is

switched off and the model runs in open-loop configuration.

In the proposed experiment all the models are used in their

default configurations, so no special tuning of the model pa-

rameters is made to improve the results over the Torgnon site.

All the models calculate snow water equivalent and snow

density as primary variables, while snow depth is derived

from them.

3 Study site and data

3.1 Torgnon station data

Meteorological forcing data are provided by a fully

equipped weather observation station located at Torgnon,

2160 m a.s.l. (45◦50′ N, 7◦34′ E) in the Aosta Valley,

western Italian Alps. The experimental site belongs to

the ICOS (IT-Tor, https://www.icos-cp.eu/, last access:

20 June 2020) and LTER (lter_eu_it_077, https://lter-europe.

Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020 https://doi.org/10.5194/hess-24-4061-2020
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net/lter-europe, last access: 20 June 2020) networks, and it is

described in detail by Galvagno et al. (2013), Filippa et al.

(2015) and Piazzi et al. (2019). The location is a subalpine

grassland, an abandoned pasture located a few kilometres

from the village of Torgnon. The site is characterized by

an intra-Alpine semi-continental climate, with mean annual

temperature and precipitation of 3.1 ◦C and 880 mm respec-

tively (Galvagno et al., 2013). During the cold season most

precipitation falls as snow and, on average, from the end of

October to late May, the site is snow covered with snow

depths reaching 90–120 cm (Galvagno et al., 2013). Wind-

induced phenomena are limited in this site, since it experi-

ences low winds, with an average half-hourly wind speed of

1.6 ± 1.3 m s−1 over the 2012–2014 period.

The station measures all the input variables needed to

force the snow models, including air temperature, total pre-

cipitation, shortwave (SWIN) and longwave (LWIN) incom-

ing radiation, wind speed, relative humidity, surface pres-

sure and ground temperature at 2 cm depth (the last variable

is employed by the SNOWPACK model only). These vari-

ables are measured at high frequency and then aggregated

at 30 min temporal resolution. Precipitation measurements

are performed with an OTT Pluvio2 Weighing Rain Gauge,

which employs a weight-based technique to measure both

liquid and solid fractions (i.e. the total precipitation amount).

This is a consolidated technique that provides higher confi-

dence in the reliability of precipitation data than standard rain

gauges (Kochendorfer et al., 2017a). Despite the station be-

ing equipped with a reliable pluviometer and being exposed

to low wind speeds, possible issues of precipitation under-

catch can be present. The uncertainty associated with pre-

cipitation measurement has been estimated and the impact

of the uncertainty of the precipitation input on snow model

simulations is assessed and discussed in Appendix A. As the

OTT pluviometer has been operational since mid-2012, in

our analysis we consider the dataset spanning the period from

1 October 2012 to 30 June 2017, covering five complete snow

seasons.

The Torgnon station also provides snow-related variables

useful for model evaluation, including snow depth measure-

ments, obtained by an ultrasonic distance sensor, surface

temperature, snow and soil temperatures at different depths,

and outgoing shortwave and longwave radiation, all of them

available at 30 min resolution. Snow density and snow water

equivalent are measured manually in snow pits several times

per snow season during dedicated field campaigns. During

the analysis period 20 manual measurements of snow density

and snow water equivalent are available. Additionally, since

January 2016 snow water equivalent has been automatically

monitored by a Campbell CS725 sensor that passively mea-

sures the attenuation of naturally existing electromagnetic

radiation (potassium-40 and thallium-208) emitted from the

soil or bedrock below the sensor. The higher the water con-

tent of the snowpack, the higher the attenuation of the radia-

tion. The measurement is performed every 6 h and averages

the SWE over an area of about 100 m2. Combining automatic

snow water equivalent measurements and the corresponding

snow depth measurements, additional daily snow density es-

timates useful for model validation have been derived for the

last two snow seasons.

3.2 Spatial interpolation of meteorological forcings

from neighbouring stations

The spatial interpolation of ground meteorological observa-

tions represents one of the most commonly used practices in

the operational applications of hydrological models. In order

to test the performances of the models in this condition, an

interpolated dataset has been generated for the Torgnon mon-

itoring site by using the MeteoIO library (Bavay and Egger,

2014). Meteorological data from six neighbouring stations

have been interpolated over a squared digital elevation model

of 16 km2 with a grid resolution of 50 m centered on the co-

ordinates of Torgnon (Appendix B Fig. B1 and Table B1).

The algorithm used for the interpolation is the inverse dis-

tance weight (IDW) as the first choice for all the meteoro-

logical variables. The interpolation accounts also for verti-

cal gradients of both temperature and precipitation, assuming

constant lapse rates of −6.5 ◦C km−1 for air temperature and

+8.5mm km−1 for precipitation. Further details are provided

in Appendix B.

3.3 Reanalysis data

In many remote mountain areas, in situ observations to force

snow models are unavailable. In this study we explore the use

of reanalysis datasets extracted at the Torgnon grid point.

GLDAS (Global Land Data Assimilation System) is a

global dataset exploiting satellite and ground-based obser-

vational data combined with advanced modelling and data

assimilation techniques in order to generate optimal fields

of surface variables (Rodell et al., 2004). In particular, the

GLDAS-2.1 archive used in this study contains 36 land sur-

face fields from January 2000 and is updated regularly at

0.25◦ (long–lat) spatial and 3 h temporal resolutions (Rui and

Beaudoing, 2018).

ERA-Interim (Dee et al., 2011) is a global reanalysis in-

cluding a variety of 3-hourly surface parameters describ-

ing atmospheric and land-surface conditions, and 6-hourly

upper-air parameters covering the troposphere and strato-

sphere. ERA-Interim has a spatial resolution of 0.75◦, at

the latitude of Torgnon corresponding to about 59 km in the

zonal and 83 km in the meridional direction. This coarse grid,

which is comparable to those of state-of-the-art global cli-

mate models, implies a smooth representation of the topog-

raphy and coarse information on climate variables.

ERA5 (Hersbach and Dee, 2016) is the latest ECMWF

global reanalysis product, providing data at higher resolu-

tion than ERA-Interim, both in space (30 km) and in time

(1 h). ERA5 uses one of the most recent versions of the

https://doi.org/10.5194/hess-24-4061-2020 Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020
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Earth system model and data assimilation methods applied at

ECMWF and modern parameterizations of Earth processes

compared to older versions used in ERA-Interim. With re-

spect to ERA-Interim, ERA5 also has an improved global

hydrological and mass balance, reduced biases in precipita-

tion, and refinements of the variability and trends of surface

air temperature (Hersbach and Dee, 2016).

4 Experimental design

We devised a set of 12 experiments at the Torgnon site em-

ploying snow models in stand-alone mode, i.e. in which the

meteorological forcing is prescribed. The list of experiments

is summarized in Table 2. The first experiment is a control

run (CTL) in which the models are forced by optimal input

data provided by the Torgnon station at 30 min temporal res-

olution. This run allows testing of the accuracy of the mod-

els in describing the temporal evolution of the snow-related

variables in optimal conditions, namely when high-quality,

high-frequency point measurements are available.

Experiments RAD-ERAI and SWIN-CLS assess the sen-

sitivity of the models to the radiation input. As most stations,

the Torgnon site is equipped with an unheated radiation sen-

sor, which is likely to provide unreliable measurements when

obstructed by snow during snowfall events. Therefore, in ex-

periment RAD-ERAI we take into account the shading of the

radiation sensor in case of snowfall by replacing radiometer

measurements with ERA-Interim reanalysis data. In the third

experiment, SWIN-CLS, we employ external SWIN data re-

sulting from the clear-sky radiation (Yang et al., 2001, 2006)

attenuated through the cloud masks from the Meteosat Sec-

ond Generation (MSG) satellite in the following way. For

each of the 34 radiometers in the Aosta Valley, an averaged

attenuation factor F is computed as

F =
1

N

N∑

i=1

Ri
st

SWINi
, (1)

where N is the number of cloud-covered stations determined

from the MSG cloud mask, Ri
st is the measured radiation at

the ith station and SWINi is the corresponding modelled ra-

diation in clear-sky conditions. The incident solar radiation

in cloudy conditions at location j is given by

Rj
= SWINjF. (2)

Experiments TIME-3h, TIME-6h and TIME-12h investi-

gate the sensitivity of the models to the temporal resolution

of the meteorological forcing, since the temporal resolution

of many available datasets is coarser than that employed in

the CTL run. We have employed the Torgnon data every 3,

6 and 12 h since 1 October 2012, time 00:00 UTC+1, and

linearly interpolated them at the 30 min time step for all

variables except for total precipitation. Precipitation is ac-

cumulated over 3, 6 or 12 h time periods and the totals are

equally distributed among the corresponding 30 min subpe-

riods. Incoming shortwave radiation is linearly interpolated

at the 30 min time step for all experiments, i.e. TIME-3h,

TIME-6h and TIME-12h. However, when we apply linear

interpolation to derive the forcing for the TIME-12h exper-

iment, we obtain poor SWIN estimates, with a large differ-

ence between the estimated and CTL average SWIN fluxes

(+97 W m−2). In order to better estimate the SWIN forcing

for the TIME-12h experiment, we employ a method based

on the potential (clear-sky) radiation at 30 min temporal res-

olution (Knauer et al., 2018) at the site of Torgnon. For

each day of the year, the 48 values of potential radiation are

rescaled according to the observed SWIN at 12:00 UTC+1.

With this method the estimated average SWIN flux is com-

parable to that of the CTL forcing, with a difference of

−0.87 W/m−2, showing a remarkable improvement with re-

spect to the use of the linear method (more details are pro-

vided in Appendix C). We run the TIME-12h experiment

twice, either employing the SWIN derived from the linear

interpolation method (TIME-12h-LIN) or that derived from

the potential radiation method (TIME-12h-SWINPOT)

Four additional experiments, namely MeteoIO, GLDAS,

ERA5 and ERAI, test the case in which no surface station

measurement is available and one has to rely on external

data. The MeteoIO experiment employs a forcing dataset ob-

tained through the spatial interpolation of data provided by

the neighbouring stations (see Sect. 3.2 and Appendix B).

GLDAS, ERA5 and ERAI experiments use different reanal-

ysis products described in Sect. 3.3, namely GLDAS-2.1,

ERA5 and ERA-Interim. Both MeteoIO and reanalysis data

had to be rearranged and interpolated to 30 min resolution

in order to be used as forcings for snow models. In the case

of ERA-Interim, for example, forecasts are initialized only

twice a day at 00:00 and 12:00 UTC, and accumulated fluxes

of total precipitation, surface solar and thermal downward

radiation are available as forecasts at 3 h intervals for the

following 12 h. From these forecasts we derive the average

fluxes over 3 h intervals and we assume the fluxes to be con-

stant during each interval. For the other ERA-Interim param-

eters, namely 2 m temperature, dew-point temperature, sur-

face pressure, and 10 m U and V wind components, we con-

sider the analyses at 00:00, 06:00, 12:00, and 18:00 UTC and

the forecasts at +3 h. These data are linearly interpolated in

time to the integration time step (30 min) of the snow models.

Some calculations are necessary to obtain all the variables

required by the models. For example, ERA-Interim does not

directly provide relative humidity, which we derive using the

Magnus formula from the dew-point temperature and the 2 m

air temperature (Lawrence, 2005).

The last two experiments, ERAI-LR and ERAI-BIAS,

investigate whether bias-correcting (some of) the reanaly-

sis drivers improves the snow model performance. To this

end, we bias-correct air temperature (and indirectly the ratio

of solid to total precipitation that depends on temperature)

while keeping all other variables unchanged. The idea is to
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Table 2. Overview of the experiments and their characteristics in terms of forcing data, temporal and spatial resolutions and gap-filling data

employed where necessary. For reanalysis datasets, the elevation of the grid point closest to the Torgnon station is reported.

Experiment Forcing Temporal Spatial Gap filling

resolution resolution

CTL Torgnon station (2160 m a.s.l.) 30′ Point ERAI∗

RAD-ERAI CTL except SWIN and LWIN from ERAI in case of snowfall 30′ Point ERAI

SWIN-CLS CTL except SWIN from the Clearsky algorithm 30′ Point ERAI

TIME-3h Torgnon station 3 h Point ERAI

TIME-6h Torgnon station 6 h Point ERAI

TIME-12h Torgnon station 12 h Point ERAI

MeteoIO Six stations close to Torgnon (see Appendix A) 1 h Point None

GLDAS GLDAS-2.1 (2297 m a.s.l.) 3 h 25 km None

ERA5 ERA5 (2302 m a.s.l.) 1 h 30 km None

ERAI ERA-Interim(1480 m a.s.l.) 3 h 80 km None

ERAI-LR ERAI, lapse-rate correction of air temperature 3 h 80 km None

ERAI-BIAS ERAI, bias adjustment of air temperature 3 h 80 km None

∗ % of missing values for each variable: air temperature 0.24 %; surface air pressure 1 %; wind speed 1.65 %; total precipitation 0.25 %; shortwave
incoming radiation 0.33 %; relative humidity 0.24 %; longwave incoming radiation 0.31 %.

test whether (i) the adjustment of air temperature (and the

rainfall–snowfall partition) only can improve model perfor-

mances and to what extent and whether (ii) very simple bias-

correction methods can be sufficient or more sophisticated

ones are necessary.

In the ERAI-LR experiment we take into account the fact

that ERA-Interim has a smoothed topography and the alti-

tude of the grid point closest to the Torgnon station is 680 m

lower than the actual elevation of the station. In the ERAI-LR

experiment we adjust the temperature data assuming a fixed

moist lapse rate of −6.5 ◦C km−1. This correction results in

a cooling of 4.4 ◦C with respect to the original temperature

data. In the ERAI-BIAS experiment we correct ERA-Interim

air temperature using the difference in the climatological av-

erages between ERA-Interim data and the Torgnon station

observations, which was found to be 2 ◦C. This bias is as-

sumed to be constant in time, and it is subtracted from the

original ERA-Interim temperature time series.

A desirable feature of each experiment is that the differ-

ences in the model outputs are mainly due to the internal

model characteristics rather than to the different parameteri-

zations used by the models to derive the solid and liquid pre-

cipitation fractions from the total precipitation input. To this

end, for each experiment, we estimate externally the rainfall

and the snowfall amounts using a fixed threshold on wet-bulb

temperature. Specifically, precipitation is considered snow-

fall when the wet-bulb temperature is lower than or equal to

1 ◦C and as rainfall otherwise. A slightly different approach

was used for GEOTOP which requires precipitation totals

(rather than solid and liquid precipitation separately), and

then it separates rainfall and snowfall through an internal pa-

rameterization based on a fixed threshold on dew-point tem-

perature. In this case the dew-point temperature threshold has

been calibrated to obtain approximately the same seasonal

accumulated snowfall as that obtained with the method based

on wet-bulb temperature. This condition is satisfied with a

dew-point temperature threshold of 1.2 ◦C. Both approaches

rely on the fact that the temperature interval where rain and

snow coexist is narrower for wet-bulb temperature and dew-

point temperature than for air temperature. Using the wet-

bulb or dew-point temperature allows reduction of the range

for which the precipitation phase is uncertain (Sims and Liu,

2015; Endrizzi et al., 2014). With this procedure all the mod-

els are driven with the same rainfall and snowfall inputs and

the differences in the model simulations are assumed to de-

pend mainly on the model structure and on the estimated

snow ablation through melting, evaporation and direct air–

snow sublimation (Slater et al., 2001). This procedure is ap-

plied to the total precipitation forcing of each experiment,

and so also to the reanalyses, even though they provide sep-

arate snowfall and rainfall among their output variables.

5 Results

5.1 CTL – impacts of the snow model structure

We run the six models driven by the best forcing available for

the Torgnon site, namely the station measurements at 30 min

resolution. Figure 1 shows the simulated SWE, snow den-

sity (ρ) and snow depth (SD) time series provided by each

model compared to the observations, over the period 2012–

2017.

All the models are able to reproduce the overall variabil-

ity of snow characteristics, although with different accuracy.

The agreement between simulations and observations is eval-

uated in terms of centered pattern root mean square error,

standard deviation and temporal correlation, and the result-

ing statistics are summarized through Taylor diagrams (Tay-
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Figure 1. Results of the CTL experiment: (a) snow water equivalent (SWE), (b) snow density and (c) snow depth simulated by the six models

considered in the analysis, driven by optimal forcing, i.e. Torgnon station measurements at 30 min resolution, over the period 2012–2017,

compared to observations (black).

lor, 2001) in Fig. 2. Taylor diagrams display observations as

an open circle on the x axis; the centered root mean square

error between the simulated and observed variables is propor-

tional to the distance to observations; the standard deviation

of the simulated variable is proportional to the radial distance

from the origin; the temporal correlation between the simu-

lated and observed variables is shown by the angular coor-

dinate. Evaluation metrics are calculated over simulated and

observed pairs when at least one of the two values exceeds a

minimum threshold, namely SWE > 0.005 m, SD > 0.01 m.

Snow density pairs are compared if the corresponding values

of SWE are greater than 0.005 m. Fig. 2a–c refer to the period

1 January 2016 to 30 June 2017, when continuous measure-

ments of all three variables are available. Fig. 2d–e refer to

the full period of analysis (since 1 October 2012) for which

continuous observations are available for snow depth only.

Snow water equivalent simulations are in good agree-

ment with observations over the period 2016–2017 (Fig. 2a),

although with some differences between the models. The

best agreement is found with the SNOWPACK, HTES-

SEL, UTOPIA and GEOTOP models, showing the low-

est errors (below 0.04 m SWE) and the highest correlations

(above 0.85) with observations. SMASH and S3M are char-

acterized by higher RMSE and lower correlation with obser-

vations with respect to the best-performing models.

Snow density is simulated with lower skills compared

to SWE for all models (Fig. 2b). The agreement between

model simulations and observations is rather low for all

models, with limited added value from highly sophisticated

models. A weak correlation (lower than 0.6) and large er-

rors (above 70 kg m−2) are found for both SNOWPACK and

S3M, namely the most sophisticated model and the simplest

model respectively. The GEOTOP model has clear deficien-

cies in representing spring snow density: in fact, it exhibits

an overestimation error increasing with time till the end of

the snow season.

The ability of the models to reproduce the temporal evo-

lution of snow depth is related to their skills in reproducing

both snow mass and density. The SNOWPACK model re-

produces all three variables, namely SWE, snow density and

snow depth, with high scores. In the case of GEOTOP, the

overestimation of spring snow density is reflected in over-

all lower skills in reproducing snow depth compared to the

other intermediate-complexity models (Fig. 2c). In the case

of HTESSEL, instead, small errors in SWE and snow density

are compensated for and the model skill in reproducing snow

depth is slightly higher than that of the SNOWPACK model.

The high- and intermediate-complexity models SNOW-

PACK, HTESSEL and UTOPIA show similar and good per-

formances in the simulation of SWE and snow depth, and

they can be considered the best-performing models. SMASH
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Figure 2. Taylor diagrams of the modelled vs. observed (a) snow water equivalent, (b) snow density and (c) snow depth in the control

experiment (CTL) for the period 1 January 2016 to 30 June 2017. Bottom panels represent the statistics of snow depth (d) for the whole

period 2012–2017 and (e) for each snow season in the same period. Differently from the other panels, in (e) model standard deviations are

normalized with respect to the observed ones.

and S3M are characterized by higher RMSE and lower cor-

relation with the observations, and the simplest model, S3M,

shows the lowest agreement with the observations. In this

experiment the model complexity is broadly reflected in the

model performances, with the most sophisticated model per-

forming best and the simplest model performing worst, likely

owing to difficulties of the latter in representing snowmelt

(Fig. 1a). HTESSEL and UTOPIA, which are single-layer

intermediate-complexity snow models performing almost as

well as the most sophisticated model, SNOWPACK, seem a

good trade-off between model complexity and model accu-

racy when accurate meteorological forcing is employed.

We extend this analysis to a longer period of five complete

snow seasons, from 2012 to 2017, limited to the snow depth

variable. The relative skills of the models in reproducing

snow depth over the full five-season period are very similar

to those found for the last two-season period (Fig. 2c and d).

The RMSE of the models remains almost unchanged, while

the correlation with observations slightly improves over the

longer period. The behaviour of the models is robust whether

considering all five seasons or only the last two seasons.

Figure 2e allows investigation of the variability of the

model performances in the different snow seasons compared

to the whole period. SNOWPACK, HTESSEL and UTOPIA

show similar skills across different snow seasons, implying

robustness in reproducing a variety of conditions. Common

simulation errors for several models are a positive SWE and

a positive snow depth bias in the season 2015–2016 (Fig. 1a

and c), when several challenging conditions occurred. First,

in autumn there were isolated snowfall events separated by
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snowfall-free periods: mainly the SNOWPACK model, and

to a lesser extent UTOPIA, failed to reproduce the rapid melt-

ing, and they continued accumulating snow. Second, at the

end of the snow season a very rapid melting occurred, which

was not captured by any of the models. All models simu-

late a meltout date delayed by several days with respect to

the observations. Di Mauro et al. (2018) demonstrated that

the accelerated snowmelt, observed in the 2015–2016 sea-

son, was caused by the deposition of mineral dust from the

Sahara: light-absorbing impurities in snow, resulting from

several dust deposition events, induce albedo reduction that

alters the melting dynamics of the snowpack, hence favour-

ing snowmelt. As none of the models used in this study ac-

counts for the impact of impurities on snow dynamics (and

in any case no information on dust deposition is provided

to the models), simulated snowmelt dates in 2016 were, not

surprisingly, significantly delayed.

The GEOTOP, SMASH and S3M models show different

skills depending on the snow season (Fig. 2e) and they pro-

vide a wider range of variability in their agreement with

the observations compared to SNOWPACK, HTESSEL and

UTOPIA. For example, a season which is relatively simple

to reproduce by all models is 2013–2014. An abundant but

ephemeral snow cover was properly accumulated and melted

by all models. After a snow-free period, the onset of a persis-

tent snow cover was sustained by heavy snowfalls which led

to the highest snow peak in the study period. After this peak,

the melting has been quite steady, with few spring snow-

fall events. These conditions allow all models, even the sim-

plest one, to accurately reproduce the snowpack evolution in

terms of snow mass and depth. As a result, for this season

the differences between the models in terms of RMSE, stan-

dard deviation and temporal correlation with observations are

smaller than for other seasons. By contrast, the season 2012–

2013 is more difficult to reproduce for some models, namely

GEOTOP, SMASH and S3M, than for SNOWPACK, HTES-

SEL and UTOPIA. This season was characterized by many

snowfall episodes of moderate and light intensity, with mod-

erate melting in-between. In the second half of May 2013

a series of late snowfalls restored a temporary snow cover

with more than 0.5 m depth that gradually melted in a cou-

ple of weeks. In these conditions, SNOWPACK, HTESSEL

and UTOPIA are able to accurately represent the changes in

the snow depth, while GEOTOP, SMASH and S3M generally

tend to overestimate snow depth.

GEOTOP systematically overestimates snow density with

increasing errors from late winter to the end of the snow sea-

son. These errors are reflected in the snow depth simulations:

spring snow depth and the snow depth peak are underesti-

mated in each snow season of the study period. SMASH, for

the 2012–2013 and the 2015–2016 seasons, delays the timing

of the snow depth and snow mass peaks. The delay in the rep-

resentation of the snow peaks is almost fully compensated by

an excessively rapid spring melting which keeps the date of

ablation relatively close to the observed one. S3M systemati-

cally underestimates both snow depth and snow water equiv-

alent during all the snow seasons, while the snow density is

within the range of variability of the model ensemble. It fol-

lows that for S3M the critical variable to improve is SWE.

In conclusion, an added value of sophisticated and

intermediate-complexity models compared to lower-

complexity models emerges, especially during snow seasons

that have a more complex temporal behaviour.

5.2 RAD-ERAI, SWIN-CLS – model sensitivity to the

radiation input

A typical problem occurring in case of snowfall is that when

the radiation sensors get covered with snow, they record in-

accurate data. To take into account this issue and test how it

affects snow simulations, in experiment RAD-ERAI we use

incoming longwave and shortwave radiation data from the

Torgnon station except in case of snowfall, when we employ

external LWIN and SWIN data derived from ERA-Interim.

In the other experiment, SWIN-CLS, we replace observed

incoming shortwave radiation data with the external data de-

scribed in Sect. 4. The results of these simulations are re-

ported in Table 4. Although the difference between external

data and Torgnon data can be high at the time step of the

model (not shown), their overall impact on snow simulations

is low. In fact, for each model we obtain values of RMSE

close to those obtained in the CTL experiment. In particular,

model skills do not improve using ERA-Interim or interpo-

lated incoming radiation forcing.

5.3 TIME-3h, TIME-6h, TIME-12h – model sensitivity

to the temporal resolution of the forcing

A common condition when modelling snowpack evolution

in data-sparse areas is the unavailability of meteorological

forcings with high temporal resolution, as high as 30 min,

like those employed in the CTL experiment. In this section

we assess the sensitivity of the models to the temporal res-

olution of the forcing. To this aim, the original meteorolog-

ical observations at Torgnon, with 30 min resolution, have

been sampled every 3, 6 and 12 h and then linearly interpo-

lated at the finer (30 min) time step, with the only exception

of total precipitation that has been accumulated over the 3,

6, and 12 h periods and then equally distributed among the

30 min sub-periods. Incoming shortwave radiation for the

TIME-12h experiment has been derived with two different

methods, i.e. by linearly interpolating the measurements at

00:00 and 12:00 UTC+1 and by rescaling the potential ra-

diation at 30 min temporal resolution to the observed radia-

tion at 12:00 UTC+1 (see Sect. 4 for details). As expected,

the longer the sampling period, the smoother the input time

series. For these three (and the other remaining six) experi-

ments, we show in Fig. 3 the biases of air temperature, to-

tal precipitation, rainfall and snowfall forcings with respect

to the reference forcing of the CTL experiment. Given the
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Table 3. RMSE, bias, and Pearson correlation of snow depth simulations with respect to observations for each model and each snow season

in the control experiment (CTL).

Model 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 Avg. SD

RMSE

SNOWPACK 0.08 0.12 0.10 0.12 0.08 0.10 0.02

GEOTOP 0.21 0.14 0.18 0.13 0.15 0.16 0.03

HTESSEL 0.11 0.13 0.07 0.08 0.15 0.11 0.03

UTOPIA 0.11 0.14 0.07 0.12 0.13 0.11 0.03

SMASH 0.19 0.19 0.12 0.23 0.12 0.17 0.05

S3M 0.28 0.20 0.28 0.21 0.24 0.24 0.04

BIAS

SNOWPACK −0.04 −0.03 −0.05 0.10 0.01 0.00 0.06

GEOTOP −0.05 −0.11 −0.11 −0.06 −0.01 −0.07 0.04

HTESSEL 0.04 0.04 0.01 0.06 0.11 0.05 0.04

UTOPIA 0.03 −0.01 −0.01 0.09 0.06 0.03 0.04

SMASH −0.04 −0.09 −0.04 0.05 0.04 −0.02 0.06

S3M −0.08 −0.12 −0.21 0.01 −0.10 −0.10 0.08

Pearson correlation

SNOWPACK 0.98 0.98 0.97 0.98 0.94 0.97 0.01

GEOTOP 0.79 0.99 0.92 0.97 0.81 0.90 0.09

HTESSEL 0.95 0.96 0.98 0.98 0.93 0.96 0.02

UTOPIA 0.94 0.96 0.98 0.96 0.87 0.94 0.04

SMASH 0.81 0.95 0.96 0.69 0.91 0.86 0.11

S3M 0.57 0.95 0.84 0.74 0.45 0.71 0.20

method employed to derive TIME-3h, TIME-6h, and TIME-

12h forcings, we expect no bias for total precipitation, while

some differences can arise in the rainfall–snowfall partition

owing to possible differences in air temperature. According

to Fig. 3, TIME-3h and TIME-6h air temperature biases are

close to zero, while TIME-12h air temperature bias is about

0.5 ◦C, with the effect of reducing the amount of the solid

precipitation by 10 %. We investigate the impact of these bi-

ases on the snow simulations in the following.

Figure 4 represents, for all the models, the simulated snow

depth and SWE when input data are sampled (or accumu-

lated, in the case of total precipitation) at 3, 6 and 12 h

and then interpolated (or equally distributed for precipita-

tion) over 30 min time steps, compared to the simulated

snow depth obtained with the original 30 min resolution forc-

ing (CTL) and compared to observations. The TIME-12h

experiment employs the incoming shortwave radiation esti-

mated with the potential radiation method; Appendix C re-

ports the corresponding experiment employing the incoming

shortwave radiation estimated with linear interpolation of the

station measurements. In addition, Table 4 reports the RMSE

associated with all these simulations.

The model response to the degradation of the temporal res-

olution of the forcing depends on the model and season. A

common feature of the models is the small (or null) differ-

ence in terms of RMSE between TIME-3h and CTL simula-

Figure 3. Temperature, total precipitation, rainfall and snowfall av-

erage seasonal biases in the forcings employed in each experiment

with respect to the Torgnon station measurements.
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Figure 4. Model simulations of snow depth and SWE when the input is sampled at 3, 6 and 12 h, compared to the CTL run and to the

observations. The TIME-12h experiment employs the incoming shortwave radiation estimated with the potential radiation method.

tions, indicating that using forcing data at 3 h temporal res-

olution generates snow depth simulations almost as accurate

as in the case of 30 min resolution input data.

A second common feature is the general worsening of

model performances when using input data at 6 h tempo-

ral resolution, reflected in an increase in the RMSE values.

TIME-6h simulations are usually very close to the CTL in

the accumulation period up to the snow peak. Afterwards,

in the melting period, some models, mainly SNOWPACK,

UTOPIA and, to a lesser extent HTESSEL and SMASH,

slightly overestimate snow mass/depth in selected seasons,

contributing to an increase in the model RMSE. Com-

pared to the TIME-6h experiment, the TIME-12h experi-

ment with incoming shortwave radiation interpolated with

the linear method (TIME-12h-LIN) shows higher RMSE on

snow depth and a clear worsening of model performances

(Table 4). In the TIME-12h-LIN experiment the overestima-

tion of the incoming shortwave radiation (see Sect. 4) causes

an underestimation of the surface snow depth. By contrast,

the TIME-12h experiment with SWIN estimated with the po-

tential radiation method (TIME-12h-SWINPOT) shows im-

proved model performances compared to both the TIME-

12h-LIN and TIME-6h experiments for SNOWPACK, HT-

ESSEL and UTOPIA, with the former two models showing

an RMSE comparable with that of the CTL run. GEOTOP

and S3M show similar skills in the TIME-12h experiments

and a higher RMSE in the TIME-12h experiments com-

pared to the TIME-6h experiment and the CTL run. Finally,

the SMASH model shows little or no difference between

the TIME-12h experiments and the TIME-6h, TIME-3h and

CTL experiments.

In conclusion, the six models show different sensitivities

to the bias in the forcing. Models with high and intermedi-

ate complexity (SNOWPACK, HTESSEL and UTOPIA) are

sensitive to both the time degradation of the forcing and the

method used to interpolate the 12-hourly SWIN. GEOTOP

and S3M are sensitive to the time degradation of the forc-

ing but not to the method used to interpolate the 12-hourly

SWIN, and finally SMASH shows low sensitivity to both the

time degradation of the forcing and to the method used to

interpolate the 12-hourly SWIN.

From these experiments an added value of the most sophis-

ticated model (SNOWPACK) emerges. SNOWPACK forced

by the 12 h resolution forcings still provides lower errors than

the simplest model S3M forced by the best available forcing

at 30 min temporal resolution (Table 4).

Concerning the TIME-12h experiment, the SWIN forcing

derived with the potential radiation method provides overall

better results compared to that derived from linear interpola-

tion of the station measurements. In the following the TIME-
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Table 4. RMSE values associated with snow depth and snow water equivalent simulations for all models and all experiments over the

periods 2012–2017 and 2016–2017 respectively.

Exp SNOWPACK GEOTOP HTESSEL UTOPIA SMASH S3M

RMSE snow depth (m)

CTL 0.10 0.17 0.11 0.12 0.17 0.25

RAD-ERAI 0.12 0.17 0.14 0.13 0.17 0.25

SWIN-CLS 0.11 0.21 0.12 0.13 0.18 0.24

TIME-3h 0.12 0.19 0.11 0.12 0.16 0.26

TIME-6h 0.17 0.26 0.15 0.18 0.19 0.27

TIME-12h-LIN (SWINPOT) 0.21 (0.11) 0.37 (0.35) 0.44 (0.12) 0.38 (0.26) 0.17 (0.17) 0.38 (0.39)

MeteoIO 0.23 0.20 0.38 0.40 0.19 0.31

GLDAS 0.67 0.41 0.79 0.49 0.63 0.84

ERA5 0.74 0.34 0.76 0.80 0.71 0.85

ERAI 0.18 0.45 0.20 0.20 0.27 0.32

ERAI-LR 0.54 0.20 0.58 0.67 0.36 0.46

ERAI-BIAS 0.18 0.27 0.20 0.26 0.13 0.16

RMSE SWE (m)

CTL 0.04 0.04 0.04 0.04 0.06 0.08

RAD-ERAI 0.06 0.04 0.05 0.04 0.06 0.08

SWIN-CLS 0.05 0.04 0.04 0.03 0.06 0.07

TIME-3h 0.06 0.03 0.04 0.03 0.06 0.08

TIME-6h 0.09 0.05 0.05 0.05 0.07 0.07

TIME-12h-LIN (SWINPOT) 0.05 (0.03) 0.07 (0.07) 0.13 (0.04) 0.13 (0.03) 0.05 (0.05) 0.10 (0.10)

MeteoIO 0.10 0.04 0.13 0.13 0.07 0.11

GLDAS 0.38 0.22 0.38 0.16 0.33 0.38

ERA5 0.28 0.12 0.22 0.24 0.26 0.24

ERAI 0.05 0.12 0.05 0.05 0.08 0.08

ERAI-LR 0.19 0.04 0.18 0.19 0.13 0.15

ERAI-BIAS 0.05 0.05 0.03 0.05 0.03 0.05

12h experiment with SWIN forcing derived with the potential

radiation method will be referred to as TIME-12h.

5.4 MeteoIO, GLDAS, ERA5, and ERA-Interim –

model sensitivity to the spatial resolution and bias

in the forcing

We consider a rather standard case for which no station mea-

surements are available for the area of interest, and one has

to rely on gridded datasets, which are generally character-

ized by lower resolution and lower accuracy with respect to

station measurements. To explore a representative range of

possible alternatives, we employ datasets with different char-

acteristics: the MeteoIO dataset, based on the interpolation of

data from neighbouring stations, and the GLDAS, ERA5 and

ERA-Interim reanalyses at 25, 30 and 80 km respectively.

An overview of the comparison between the meteorological

forcing provided by these datasets and the observations in

Torgnon is shown in Fig. 3.

The MeteoIO forcing is in fairly good agreement with ob-

servations. Compared to the meteorological measurements

at the Torgnon station, MeteoIO shows an average bias of

−1 ◦C per snow season and about 20 % overestimation of

the seasonal total precipitation. However, the effect of these

biases on the solid precipitation is weak, and the average sea-

sonal snowfall is very close to the observations. When the

MeteoIO forcing is used, the best agreement between simu-

lated and observed SWE and snow depth is obtained with the

GEOTOP and SMASH models. Both models provide similar

RMSE values to the CTL runs. The S3M model exhibits a

moderate decrease in the model performance when driven by

MeteoIO compared to CTL, with lower RMSE than the HT-

ESSEL and UTOPIA models. Conversely, the SNOWPACK,

HTESSEL and UTOPIA model errors are respectively more

than 2 and 3 times the corresponding errors in the CTL run.

Despite a relatively small average error in the temperature

input (−1 ◦C), the daily differences are generally stronger

in winter, and they can reach values exceeding −4 ◦C. The

main issue in snow model simulations is the overestimation

of snow depth in winter (in selected snow seasons) and in

spring (always). A plausible explanation for these errors is

that colder-than-observed winter temperatures might favour

the development of a cold snowpack which melts too slowly.

Consequently, the models tend to overestimate the snow at

the surface and to predict a delayed ablation date.
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The GLDAS forcing is affected by a strong cold bias, with

average temperature differences of −3.8 ◦C compared to the

observations, and by a moderate total precipitation bias of

+32 % on average over the considered seasons (Fig. 3). As

expected, the large errors in the GLDAS temperature forcing

lead to large errors in the simulated snow water equivalent

and depth for all models, as confirmed by RMSEs in Table 4

and Fig. 6a, c, d. The magnitude of the error in snow depth

shows large variations from season to season: snow depth

estimates are relatively close to the observations in the first

three snow seasons, while a large overestimation occurs in

the last two snow seasons. This behaviour can be linked to

the error in the total precipitation, up to +129 % and +102 %

relative to observations in the last two snow seasons.

ERA5 has a large temperature bias (−3.3 ◦C) and a mod-

erate precipitation bias (+35 %), similarly to GLDAS. The

combined effect on the snowfall input is an excess of more

than 50 % compared to observations (Fig. 3), which clearly

affects the snow model output. As expected, all models over-

estimate snow depth and the duration of the snow cover.

The models tend to reproduce a similar evolution of snow

depth to the CTL experiment, but with thicker snowpacks. In

detail, SNOWPACK, HTESSEL and UTOPIA give similar

snow depth outputs, consistent with the behaviour found in

the CTL run. GEOTOP provides the lowest RMSEs for snow

water equivalent and snow depth, but this is mainly due to a

compensation between the error in the ERA5 forcing (lead-

ing to overestimation) and the model error identified in the

CTL experiment (leading to underestimation). In general, the

difference in performance between models of different com-

plexities is reduced when the ERA5 forcing is used. For ex-

ample, the RMSE is similar for the relatively simple model

SMASH and the most sophisticated model, SNOWPACK, as

it is for S3M and HTESSEL or UTOPIA.

The ERA-Interim forcing (ERAI) shows a +2 ◦C tem-

perature bias and a snowfall deficit of about 30 % com-

pared to the Torgnon observations. When forced by ERA-

Interim data, GEOTOP, SMASH and S3M underestimate

snow depth in all seasons, while SNOWPACK, HTESSEL

and UTOPIA underestimate snow depth mainly during the

season 2014–2015, when the ERA-Interim snowfall is con-

siderably lower than the observations throughout this snow

season (Fig. 5a). In other snow seasons, for example 2013–

2014, 2015–2016 and 2016–2017, SNOWPACK, HTESSEL

and UTOPIA snow depth simulations are in fairly good

agreement with the observations (see for example Fig. 5b).

Overall, SNOWPACK, HTESSEL and UTOPIA provide rel-

atively good results when forced by ERA-Interim, with a

moderate loss of accuracy with respect to the case of opti-

mal forcing (CTL). In the following we explore the possi-

bility of reducing the RMSE of the other intermediate- and

low-complexity models by correcting the main biases in the

meteorological forcings.

5.5 Impact of the bias adjustment of ERA-Interim air

temperatures

We test the effect of two very simple bias-correction tech-

niques applied to the ERA-Interim air temperature. In the

first approach, in the ERA-LR experiment, we take into ac-

count the difference in elevation between the ERA-Interim

grid point at Torgnon and the true elevation of this site, ap-

plying a lapse rate correction, i.e. subtracting 4.4 ◦C from the

original ERAI data. Alternatively, in the ERAI-BIAS exper-

iment, we remove the average bias of ERA-Interim data at

the Torgnon site with respect to the station measurements,

i.e. subtracting 2 ◦C from the original ERAI data.

The lapse rate correction excessively reduces ERA-

Interim temperatures: the average temperature bias shifts

from +2 to −2.4 ◦C and the snowfall bias increases from

−32 % to +15 % (Fig. 3).

The net effect on the model outputs (ERAI-LR experi-

ment) is an overestimation of snow water equivalent and

snow depth. With respect to the ERAI experiment, the RMSE

values increase for all models except for GEOTOP, which

actually shows a good agreement with observations during

the seasons 2013–2014 and 2015–2016, while it overesti-

mates snow depth in the first half of the other seasons. The

GEOTOP underestimation error observed in the ERAI ex-

periment is compensated by excessively cold input air tem-

perature, which favours the development and duration of the

snowpack.

The correction based on the adjustment of the mean ERAI

temperature bias (ERAI-BIAS experiment) almost removes

the snowfall bias. Therefore, this approach guarantees the

most effective correction to improve the agreement of the

forcing data with the Torgnon station measurements. Clearly

this approach requires knowing at least the average temper-

ature at the site of interest. This correction successfully re-

duces the RMSE in snow water equivalent and snow depth

simulations with respect to the corresponding runs driven by

the raw ERA-Interim data for GEOTOP, SMASH and S3M.

For the most sophisticated SNOWPACK model, the correc-

tion applied to ERA-Interim data has no effects on the RMSE

values of snow water equivalent and snow depth simulations,

which remain unchanged. While the simulated snow depth

is generally close to observations, improvements gained in

selected seasons (i.e. 2014–2015) are compensated by lower

performances in other (i.e. 2012–2013) seasons (Fig. 5d), so

that, on average, the overall effect on the RMSE is negligi-

ble. For the UTOPIA model, the correction applied to ERA-

Interim data has no effects on the snow water equivalent;

however, it slightly increases the error in snow density (lower

correlation with available observations) and thus the error in

snow depth simulations.
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Figure 5. (a) ERA-Interim air temperature, total precipitation, and snowfall (derived as explained in Sect. 4) at the Torgnon site, compared to

the station measurements (black) for each snow season of the period 2012–2017; (b) example of ERA-Interim-driven snow depth simulations

(ERAI, ERA-LR, and ERAI-BIAS experiments), obtained using the SNOWPACK model, compared to CTL run and snow depth observations.

6 Discussion

While much work has been done to characterize the perfor-

mances of snow models when driven by accurate input data

(e.g. Vionnet et al., 2012; Boone and Etchevers, 2001; Bartelt

and Lehning, 2002; Dutra et al., 2010), model responses de-

pending on different degrees of accuracy of the input data

still need to be explored in detail. This study sheds light on

this research topic by assessing the simulations of six state-

of-art snow models driven by input data with varying accu-

racy, focusing on the fully instrumented Torgnon site in the

north-western Italian Alps. The snow models selected for the

analysis are characterized by different degrees of complexity,

from highly sophisticated multi-layer snow models to rather

simple single-layer models, with the aim of exploring rela-

tions and trade-offs between model complexity and model

performances in reproducing snowpack dynamics.

In our experiment, in the case of optimal forcing, namely

Torgnon station data at 30 min resolution, the most sophisti-

cated model SNOWPACK and the intermediate-complexity

models HTESSEL and UTOPIA show the best agreement

with observations. In particular, HTESSEL and UTOPIA,

with their single-layer, simpler snow schemes compared to

SNOWPACK, can be considered a good trade-off between

model complexity and model accuracy. When considering

snow depth simulations, for which validation data are avail-

able for a longer period than for SWE, an added value of

these high- and intermediate-complexity models compared

to lower-complexity models is evident, especially in the

snow seasons that are more difficult to reproduce. SNOW-

PACK, HTESSEL and UTOPIA show similar and good per-
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formances across different seasons, revealing robustness in

reproducing a variety of conditions, while the simpler snow

models SMASH and S3M show larger dispersion of the sea-

sonal scores.

Snow density is more difficult to simulate than SWE and

snow depth for all models. The correlation between model

simulations and observations is quite low for all models,

with no clear added value from highly sophisticated ones

(Fig. 2b). GEOTOP provides a much larger error compared

to the other models, especially in the spring season, suggest-

ing further checks on the snow density parameterization.

The response of the snow models forced by gradually

lower accuracy data is summarized in Fig. 6, showing the

model RMSE for all experiments and all variables (upper

panels) and the complementary information on the model

ranking (bottom panels). No remarkable differences can be

detected in the model skills when using alternative radia-

tion data instead of the Torgnon station measurements, as

done in experiments RAD-ERAI and SWIN-CLS. The sub-

stantially equivalent results obtained by replacing measured

data with ERA-Interim data in case of snowfall (RAD-ERAI

experiment) can be explained by the combination of two

conditions: the intermediate elevation of 2160 m a.s.l. and

the orientation of the Torgnon site, both likely contributing

to a rapid melting of the snow obstructing the radiometer.

This adjustment does not affect model performances. Sim-

ilar results are found by employing SWIN radiation esti-

mated as clear-sky radiation attenuated by a factor based on

MSG cloud mask and neighbouring station radiation mea-

surements (SWIN-CLS, Sect. 4). Each model shows similar

RMSE in snow depth in the CTL, RAD-ERAI and SWIN-

CLS experiments.

The use of accurate meteorological inputs but at lower

temporal resolution, for instance Torgnon station data sam-

pled at a 3-hourly time step and then interpolated to the

model time step, does not affect model performances. Sim-

ilar results were obtained in a previous study in which the

original forcing was averaged in time over 3 h and the result-

ing time series was interpolated to the model time step (Mé-

nard et al., 2015). Therefore we can conclude that the typical

3 h temporal resolution of the climate and weather forecast

model outputs, as well as reanalysis data, can be suitable for

driving snowpack models. The use of input data with tem-

poral resolution lower than 3 h requires more in-depth con-

sideration as we observe a gradual decay of the snow model

skills for most models. With 12-hourly resolution input, for

example, the incoming shortwave radiation is found to be a

key variable affecting the model performances. While the

simple linear interpolation of the 12-hourly radiation data

to the model time step provides poor SWIN estimates and

poor snow model performances, a slightly more sophisticated

method based on the scaling of the potential radiation on

the SWIN measurements at 12:00 UTC+1 allows improve-

ment of the snow simulations and model skills, comparable

to or even better than the TIME-6h experiment. With this

second method the bias in the incoming shortwave radiation

flux is almost completely cancelled out. A residual negative

bias (−7 W m−2) of the incoming shortwave radiation in the

TIME-6h experiment contributes to the overestimation of the

snow depth at the end of the snow season. For SNOWPACK

and HTESSEL the 12-hourly forcing with improved SWIN

input allows surprisingly good performances, as shown by

the comparable RMSEs in the TIME-12h experiment and in

the CTL run.

Where meteorological station data are not available, spa-

tial interpolation of neighbouring stations’ data or reanaly-

ses can be a valid alternative. In our experiment the best

results are obtained with ERA-Interim forcing. Despite the

coarse spatial resolution, ERA-Interim satisfactorily repro-

duces the meteorological conditions at the Torgnon grid point

(Fig. 3), and the model errors in terms of snow depth and

snow water equivalent are only slightly higher than in the

CTL experiment (Fig. 6a, c, d). SNOWPACK, HTESSEL

and UTOPIA again provide the lowest errors compared to

intermediate- and low-complexity snow models (GEOTOP,

SMASH, S3M). However, the latter can also be an interest-

ing option after applying a simple adjustment of the average

ERA-Interim temperature bias with respect to the Torgnon

station data and consequently also adjusting the snowfall

amount. In this way the performances of the intermediate-

and lower-complexity snow models (GEOTOP, SMASH,

S3M) can be substantially improved. The temperature ad-

justment based on the lapse rate (ERAI-LR), accounting for

the difference in elevation between the ERA-Interim grid

point and the real elevation of the Torgnon station, is found

to worsen the model performance. In fact, this correction is

blind to the local climatic features and might not be suitable

in all situations. For example, in this case the lapse-rate cor-

rection is too large, and it causes a temperature bias of sim-

ilar amplitude but opposite sign with respect to the original

ERA-Interim data. As a general remark, it is preferable to

apply a temperature correction based on local temperature

observations or even just climatology, when available, as the

correction based on the lapse rate does not ensure a better

agreement with the reference data.

Spatial interpolations of neighbouring station data, such as

the MeteoIO interpolation used here, can be another valid al-

ternative in the absence of in situ observations. In our exper-

iment the models’ RMSE values for snow water equivalent

and snow depth are generally higher than those obtained us-

ing the Torgnon data at lower temporal resolution. GLDAS

and ERA5 are affected, on average, by a large temperature

bias and a moderate precipitation bias at the Torgnon grid

point, probably owing to difficulties of these datasets in sim-

ulating processes in high-elevation regions. ERA5 provides

slightly better performances than GLDAS. The latter has a

precipitation bias that varies strongly from season to sea-

son, with large overestimation errors in the last two snow

seasons (−22 %, −25 %, −25 %, +129 %, +102 % respec-

tively). By contrast, the ERA5 precipitation bias has smaller
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Figure 6. Root mean square error associated with (a) snow water equivalent, (b) snow density, and (c) snow depth simulations for each

experiment and each model over the period 2016–2017. (d) shows the same statistics as (c) but on the whole period 2012–2017. For each

plot (a, b, c, d) upper panels represent the boxplot statistics and bottom panels represent the model rank (1: best model; 5: worst model).

https://doi.org/10.5194/hess-24-4061-2020 Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020



4078 S. Terzago et al.: Snow model sensitivity to input accuracy

fluctuations from season to season (+34 %, +16 %, +38 %,

+47 %, +41 %), resulting in better and more stable perfor-

mances compared to GLDAS.

The present analysis allows straightforward evaluation of

the performances of each model with data of gradually lower

accuracy. While, as expected also from previous studies (e.g.

Jin et al., 1999; Boone and Etchevers, 2001; Luo et al., 2003;

Feng et al., 2008), with accurate forcing the most sophis-

ticated model provides the best agreement with SWE and

snow depth observations and the simplest models provide

the worst (Fig. 6d), more heterogeneous model responses are

obtained when lower-accuracy data are employed. The most

sophisticated model SNOWPACK is not the best-performing

model throughout all experiments, even though it usually

ranks among the best-performing ones, especially in repro-

ducing snow depth. The simplest snow model considered

in the analysis, S3M, is not always the worst model, espe-

cially when low-accuracy forcings are employed. SMASH

shows an interesting behaviour, with no brilliant perfor-

mances with optimal forcing but outperforming many other

models when using lower-accuracy inputs. SMASH ranks

among the best-performing models in the TIME-12h, Me-

teoIO, ERA5, ERAI-LR and ERAI-BIAS experiments, sug-

gesting that it can be employed in data-sparse conditions with

results that are comparable to those of the more sophisticated

models.

The GEOTOP model provides the best snow depth esti-

mates when forced by MeteoIO, ERA5 and ERAI-LR. How-

ever, all these forcing datasets have a cold temperature bias,

and GEOTOP is affected by a systematic underestimation er-

ror in snow depth. These errors offset each other, with the ef-

fect that the RMSE in snow depth simulations is smaller than

for the other models. Conversely, when using ERA-Interim

forcing, GEOTOP performances are the worst owing to the

positive temperature bias of the reanalysis dataset, which in-

creases the underestimation of snow depth simulations. In

this set of experiments GEOTOP shows weaknesses in repro-

ducing the snow density and depth, thus calling for a check

of its snow scheme.

The UTOPIA and HTESSEL models perform as well as

the most sophisticated SNOWPACK with optimal forcing,

but they require fewer input data: for example, they do not

need ground temperature. These models can be employed

when no information on snowpack internal structure and

stratification is needed. UTOPIA and HTESSEL provide

good performances also with low temporal resolution forc-

ings up to 6 h and with ERA-Interim forcing. However, lower

skills are found when employing the MeteoIO low-accuracy

input dataset, suggesting that UTOPIA and HTESSEL can

be sensitive to the bias in the meteorological forcing.

In agreement with former studies (e.g. Essery et al., 2013),

also in our analysis the best-performing models have (i) an

explicit representation of the meltwater retention and refreez-

ing in the snowpack and (ii) an intermediate-complexity rep-

resentation of the snow albedo as a function of at least the

surface temperature and snow age. According to our results,

the representation of the snowpack as a medium with mul-

tiple layers alone does not guarantee improved results com-

pared to models with single-layer snow schemes but is able to

take into account meltwater infiltration and refreezing within

the snowpack.

This intercomparison exercise has been performed at a sin-

gle mountain site, Torgnon, which provides ideal conditions

(high-quality input and validation data, low wind speeds) to

perform the sensitivity study which we aimed for. Further

analysis at other sites would be useful to explore the ex-

tent to which our results could be generalized to different

situations or models. We can hypothesize that the effect of

the degradation in time of the forcing is probably not site-

specific and that similar results could be obtained in other

sites (see e.g. Ménard et al., 2015). In order to assess the

exportability of the results obtained in the reanalysis-driven

experiments, in Appendix D we evaluate the biases of the re-

analyses considered in this study (GLDAS, ERA5 and ERA-

Interim) in reproducing the main drivers of the snowpack

processes, i.e. temperature and total precipitation, compared

to reference datasets (e.g. E-OBS version 13, Haylock et al.,

2008) over the entire greater Alpine region (GAR, 4–19◦ E,

43–49◦ N). The time-averaged biases found at the Torgnon

site are spatially consistent with those found at the mountain

range scale, with the magnitude of the bias slightly varying

across the region and with elevation. This analysis broadens

the perspective beyond the specific case of the Torgnon site

and provides guidance on the exportability of our experiment

results to other areas in the Alpine region.

7 Conclusions

Relevant issues in snow modelling are the sparseness of me-

teorological stations providing all the variables required to

drive and validate snow models and the large uncertainties

affecting the available measurements. Moreover, in mountain

areas the spatial variability of the meteorological parameters

is high, and in situ stations could be scarcely representative

of the conditions in the surrounding areas.

Currently available snow models cover a wide range of

complexities, from the most sophisticated schemes that re-

solve the internal structure of the snowpack to the simplest

ones that only provide a coarse estimate of snow depth and

snow water equivalent. While several studies evaluate snow

models when driven by accurate meteorological data, efforts

are still needed to investigate how the models perform when

forced by lower-accuracy meteorological data, as are those

typically used in mountain areas.

This study evaluates snow models of different complexi-

ties, assessing their sensitivity to the accuracy of the input

data. An interesting result is that some of the simplest models

perform equally well or even better than sophisticated mod-

els when input data are poor. For example, the intermediate-
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complexity model SMASH provides lower RMSE values in

snow depth simulations than many other higher-complexity

models when driven by 12-hourly data, MeteoIO spatially

interpolated data, GLDAS, ERA5, or the bias-adjusted ERA-

Interim reanalysis. The lowest-complexity model considered

in this study, S3M, provides performances that are compara-

ble to those of the most sophisticated snow model analysed

here, SNOWPACK, when it is driven by bias-adjusted ERA-

Interim data.

On the other hand, this study also shows that sophisti-

cated snow models such as SNOWPACK can successfully

reproduce snowpack variability across a wider spectrum of

conditions compared to simpler snow models, outperforming

them in case of isolated snowfall followed by rapid ablation.

Sophisticated models provide good and more stable perfor-

mances across different seasons. It is worth stressing that the

most detailed snow model considered here, SNOWPACK,

though not the best-performing model throughout all the ex-

periments with lower-accuracy forcings, always ranks among

the best-performing models at reproducing snow depth in all

experiments.

Two of the intermediate-complexity snow models, HTES-

SEL and UTOPIA, in the case of optimal forcing provide

skills in reproducing SWE and snow depth that are compara-

ble to those of the most sophisticated model, SNOWPACK.

In addition, they show similar skill across different seasons,

thus revealing significant robustness in reproducing a variety

of conditions. HTESSEL and UTOPIA can thus be consid-

ered a good trade-off between model complexity and model

accuracy in case of high-quality forcing data, while they are

found to be sensitive to biases in the forcing.

Some properties which are common to all models can be

highlighted: (i) difficulty in reproducing snow density, espe-

cially in late spring at the end of the snow season; (ii) low

model sensitivity to the use of surrogate radiation input data

instead of the measured ones, at least for the test site con-

sidered here; (iii) comparable performances when driven by

3-hourly or 30 min data, suggesting the possibility of using

lower-frequency data (up to 3 h) without losing accuracy in

the snow output; (iv) decrease in the models’ reliability, but

not uniformly across the different models, when coarse-grid

forcings are employed; and (v) substantial improvement of

the models’ performances, reducing the differences between

models of different complexities after applying a very simple

bias adjustment to temperature (and consistently snowfall)

forcing.

The present study has been conceived to set the basis for

high-resolution modelling of mountain snow resources at the

catchment and regional scales in areas where direct mete-

orological measurements are insufficient or unavailable and

one has to rely on coarse-resolution forcing. Such sensitiv-

ity experiments pave the way for the production of long-

term fine-resolution reanalyses for the Alpine snowpack, cur-

rently identified as a major gap for cryosphere studies (Benis-

ton et al., 2018; Terzago et al., 2017), as well as of high-

resolution future projections of the snowpack conditions. In

this case snow models can be employed to refine the cli-

mate information provided by regional climate models and

achieve information on snowpack characteristics at the scales

required by hydrological applications, typically below 1 km.

This approach, dedicated to the reconstruction of the moun-

tain snowpack variability at fine scales, is complementary to

the one pursued by the ongoing ESM-SnowMIP initiative

(Krinner et al., 2018) aiming at improving the representa-

tion of snow processes and snow-related climate feedbacks

in global climate models. Both approaches address issues

which have been highlighted as important in cryospheric sci-

ences (Beniston et al., 2018; Terzago et al., 2017) and pro-

vide information for a range of applications, including the

estimation of climate change impacts on the relevant socio-

economic and environmental sectors.
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Appendix A: Uncertainty associated with the

precipitation measurements in Torgnon

We discuss here the uncertainty associated with the observed

precipitation and in particular the undercatch of snow, which

is common in mountain areas. The primary cause of snow

precipitation undercatch is related to wind speed, with the

amount of precipitation measured by a precipitation gauge

relative to the actual amount of precipitation decreasing with

increasing wind speed.

We quantified the wind-induced precipitation measure-

ments errors by applying the method described in Kochen-

dorfer et al. (2017a, b). This method, derived by comparing

precipitation measurements from unshielded and shielded

(reference) gauges, consists in calculating a catch effi-

ciency (CE), a function of air temperature and wind speed,

so that the inverse (CE−1) can be used to correct actual pre-

cipitation data. The method has been specifically developed

for OTT Pluvio2 gauges, i.e. of the same type employed at

the Torgnon site.

Figure A1 shows the cumulated total precipitation at the

Torgnon site measured by the precipitation gauge (black)

compared to the precipitation adjusted with the Kochendor-

fer method (blue).

The adjusted cumulated total precipitation exceeds the

measured precipitation by 16 % on average over the

five snow seasons. As the correction of total precipitation di-

rectly affects the amount of solid precipitation, we tested the

effects of such correction on snow model simulations. We

performed an additional experiment (CTL_prc-adj) in which

the model forcing is the same as in the CTL run except for to-

tal precipitation, which is now the adjusted one. The snowfall

fraction is then calculated from the adjusted total precipita-

tion.

Figure A2 shows the results for the SNOWPACK model,

and it displays the simulated snow depth (panel a) and snow

water equivalent (panel b) obtained in the CTL and CTL_prc-

adj runs compared to observations. In all snow seasons the

snow depth and the snow water equivalent are remarkably

overestimated in the CTL_prc-adj experiment compared with

both observations and the CTL run. The additional snowfall

input derived from the precipitation adjustment leads to an

excess of snow accumulation on the ground which can be

quantified in an average snow depth bias of 0.17 m compared

to the −0.001 m bias in the CTL run. The RMSE is double in

the CTL_prc-adj run compared to the CTL run (see Table A1

for details).

As the precipitation adjustment method itself is affected

by its own uncertainties, and given that the application of

the precipitation adjustment leads to a worsening in the snow

model performances, we decided to employ the original pre-

cipitation measurements as forcing in the snow model exper-

iments.

Table A1. SNOWPACK model RMSE and bias for the simulated

snow depth and snow water equivalent variables in the CTL_prc-

adj experiment and in the control run (CTL).

Snow depth SWE

RMSE BIAS RMSE BIAS

(m) (m) (m) (m)

CTL 0.10 −0.001 0.04 0.02

CTL_prc-adj 0.20 0.170 0.10 0.09
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Figure A1. Cumulated total precipitation at the Torgnon site measured by the OTT Pluvio2 precipitation gauge (black) compared to the

precipitation adjusted with the method of Kochendorfer et al. (2017a) for the five snow seasons considered (blue).

Figure A2. Snow depth (a) and snow water equivalent (b) simulated by the SNOWPACK model when the adjusted total precipitation forcing

is employed (CTL_prc-adj) compared to the control run (CTL) and observations.
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Appendix B: Spatial interpolation of meteorological

forcings from neighbouring stations

In hydrological and snow modelling the spatial interpola-

tion of ground meteorological observations is commonly em-

ployed to derive spatially continuous meteorological forcing

to drive the models. In this work, we evaluate the response

of snow models with such forcing. An interpolated dataset

for the Torgnon monitoring site has been prepared using the

MeteoIO library (Bavay and Egger, 2014). The meteorologi-

cal data are interpolated from six neighbouring stations, over

a squared digital elevation model of 16 km2 with a grid res-

olution of 50 m centered on the coordinate of the Torgnon

monitoring site (Fig. B1 and Table B1).

Figure B1. Locations of the six neighbouring stations used for producing the interpolated dataset for the MeteoIO experiment. The grey

square represents the extent of the digital elevation model used for the interpolation.
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Table B1. Characteristics of the meteorological stations used for the spatial interpolation with the MeteoIO library and measured parameters.

TA: air temperature; PTOT: precipitation (OTT); SWIN: incoming shortwave solar radiation; VW-DW: wind speed and direction; RH: relative

humidity. The stations belong to the regional meteorological network of the Aosta Valley.

Station name Elevation Distance TA PTOT SWIN VW-DW RH

(m a.s.l.) (km)

Cime Bianche 3100 12 x x x x x

Saint-Berthélemy 1675 9.8 x x x x

Place Moulin 1980 9.1 x x x x x

Breuil Cervinia 2000 10.3 x x x

Maen 1310 3.2 x x x

Ayas 1566 11.6 x x x
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Appendix C: The impact of the time interpolation

method for SWIN in the TIME-12h experiment

We test the impact of using two different methods to derive

30 min temporal resolution shortwave incoming radiation in-

put when only measurements at 00:00 and 12:00 UTC+1 are

available (as in the TIME-12h experiment). The first method

is a basic linear interpolation of the available measurements.

The second method is slightly more sophisticated and em-

ploys the potential (clear-sky) incoming shortwave radiation

(Knauer et al., 2018) at 30 min temporal resolution and at

the coordinates of the Torgnon station and the SWIN station

measurements at 12:00 UTC+1. For each day of the year, the

48 daily values of potential radiation are rescaled according

to the observed SWIN value at 12:00, to obtain an “estimated

SWIN” (Fig. C1a).

With the first method, based on the linear interpolation,

the average difference between the estimated and observed

SWIN radiation over the full period is large (+97 W m−2),

while with the second method, based on the scaling of

the potential radiation, the difference is close to zero

(−0.87 W m−2).

In order to test the impact of the method to interpolate

SWIN radiation on snow simulations, we run two experi-

ments in which the forcing is the Torgnon data sampled every

12 h as explained in Sect. 4. The two forcings differ for the

SWIN radiation input: in one case it is obtained by linearly

interpolating SWIN measurements (TIME-12h-LIN) and in

the other case it is obtained by rescaling the potential radia-

tion as explained above (TIME-12h-SWINPOT).

Table C1. Model RMSE for the simulated snow depth in the CTL

run and the TIME-12h-LIN and TIME-12h-SWIN-POT experi-

ments, compared to observations.

RMSE snow depth (m)

Model CTL TIME-12h-LIN TIME-12h-SWIN-POT

SNOWPACK 0.10 0.21 0.11

GEOTOP 0.17 0.37 0.35

HTESSEL 0.11 0.44 0.12

UTOPIA 0.12 0.38 0.26

SMASH 0.17 0.17 0.17

S3M 0.25 0.38 0.39

Figure C1b shows the results of the two experiments,

TIME-12h-LIN and TIME-12h-SWINPOT, compared to the

CTL run and observations, for the SNOWPACK model and

for the snow depth variable. The use of the SWIN forcing de-

rived from the potential radiation leads to a remarkable im-

provement in the agreement with observations compared to

the case when linearly interpolated SWIN is used, with the

model RMSE reduced to a value which is comparable to that

obtained in the CTL run (Table C1). The results for all snow

models are reported in Table C1.
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Figure C1. (a) Measured shortwave incoming radiation (SWIN) at the Torgnon site for the day 27 June 2017 (points), potential SWIN for

that day (solid black line), and “estimated SWIN” from the scaling of the potential SWIN on the value registered at 12:00 UTC+1; (b) snow

depth simulations obtained with the SNOWPACK model for experiment TIME-12h-SWIN-POT compared to TIME-12h-LIN, the CTL run,

and observations.
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Appendix D: Exportability of the results of the

reanalysis-driven experiments

In order to address the issue of the exportability of the meth-

ods and results of the reanalysis-driven experiments to other

areas of the Alps, we evaluated the biases of the reanalyses

in reproducing the main drivers of the snowpack processes,

i.e. temperature and total precipitation, compared to obser-

vational data. The aim is to evaluate the spatial distribution

of the temperature and precipitation biases and their consis-

tency at the mountain range scale.

ERA5, ERA-Interim and GLDAS temperatures have been

averaged over the months October–June and over the

years 1980–2014 (except for GLDAS, which has been avail-

able since 2000 only, so the averages have been calculated

over the period 2000–2014) and then compared to the E-OBS

version 13 observational dataset (Haylock et al., 2008) over

the greater Alpine region (GAR, 4–19◦ E, 43–49◦ N). E-OBS

is a daily gridded dataset at 0.25◦ resolution, based on the

European Climate Assessment and Data set station measure-

ments.

ERA5 and GLDAS temperature biases are large and neg-

ative over the entire GAR (Fig. D1). GLDAS bias is espe-

cially strong, and it exceeds −4 ◦C in most of the region.

ERA5 bias is large at high elevations and decreases towards

the lowlands. Compared to ERA5 and GLDAS, ERA-Interim

temperature is in better agreement with observations, with

mainly negative biases across the region and values close

to zero (both positive and negative values) at the mountain

ridges in the western Alps. All these results are consistent

with those found at the Torgnon site (Fig. 3), so the biases at

the point scale are reflected at the mountain range scale.

Regarding precipitation, it is well known that standard sur-

face station gauges have problems in capturing snowfall, and

thus they underestimate total precipitation in mountain areas.

Similarly, observational-based datasets such as E-OBS have

also been found to suffer from underestimation of precipi-

tation at high elevations (Turco et al., 2013). To overcome

this problem, instead of using observation-based datasets as

a reference, we evaluate precipitation ratios with respect to

one of the reanalyses (ERA-Interim), since reanalyses inher-

ently take into account orographic effects. Figure D2 shows

the ERA5 and GLDAS October-to-June accumulated precip-

itation ratios relative to ERA-Interim over the periods 1980–

2014 and 2000–2014 respectively (GLDAS has been avail-

able since 2000). Also in this case the ERA5 spatial pat-

tern is homogeneous over the Alpine range, with ERA5

showing consistently more precipitation than ERA-Interim

in the mountain areas. GLDAS precipitation is found to be

in slightly better agreement with the ERA-Interim reanalysis

than ERA5, with a relative precipitation bias close to 1 over

the Alpine range.

Overall, this analysis providing information on the spatial

variability of the temperature and precipitation biases in the

reanalysis products over the Alpine region broadens the per-

spective beyond the specific case of the Torgnon site. The

time-averaged biases at the Torgnon site are spatially con-

sistent with those found at the mountain range scale, with

the magnitude of the bias slightly varying across the region

and with the elevation. Similar biases in the forcing suggest

that the methods applied in the reanalysis-driven experiments

could be extended to other sites in the Alps and could lead to

results not too dissimilar from those found at Torgnon.
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Figure D1. BIAS of ERA5, ERA-Interim, and GLDAS air temperatures with respect to EOBS observations over the greater Alpine region.

Temperatures have been averaged over the months from October to June and over the period 1980–2014 in the case of ERA5 and ERA-

Interim, and over the period 2000–2014 in the case of GLDAS.

Figure D2. ERA5 and GLDAS ratios relative to ERA-Interim for the October–June accumulated precipitation over the periods 1980–2014

and 2000–2014 respectively.

https://doi.org/10.5194/hess-24-4061-2020 Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020



4088 S. Terzago et al.: Snow model sensitivity to input accuracy

Data availability. The datasets presented in this study can be ob-

tained upon request to the corresponding author.

Author contributions. ST, AP, CC, EC, SG, UMC, and PP con-

ceived the idea of the experiments. All the authors participated in

the collection of the meteorological datasets for the experiments.

ST, VA, GA, LC, DD, GP, and PP performed the simulations.

ST analysed the simulations and prepared all the figures and all

the authors provided support in the interpretation of the results. ST

wrote the paper with support from all the authors.

Competing interests. The authors declare that they have no conflict

of interest.

Acknowledgements. We thank Richard L. H. Essery and one anony-

mous referee for their comments which helped us to improve the

manuscript.

Financial support. This research has been supported by the Italian

Project of Interest NextData of the Italian Ministry for Education,

University and Research, by the European Union’s Horizon 2020

research and innovation programme under grant agreements

no. 641762 (ECOPOTENTIAL) and no. 641816 (CRESCENDO),

and by the European Union’s ERA4CS project under grant agree-

ment no. 690462 (MEDSCOPE).

Review statement. This paper was edited by Daniel Viviroli and re-

viewed by Richard L. H. Essery and one anonymous referee.

References

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk,

B., Hirschi, M., and Betts, A. K.: A revised hydrology for the

ECMWF model: Verification from field site to terrestrial water

storage and impact in the Integrated Forecast System, J. Hydrom-

eteorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1,

2009.

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the

Swiss avalanche warning: Part I: numerical model, Cold Reg.

Sci. Technol., 35, 123–145, 2002.

Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library

for meteorological data, Geosci. Model Dev., 7, 3135–3151,

https://doi.org/10.5194/gmd-7-3135-2014, 2014.

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Cop-

pola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss,

M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson,

J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Proven-

zale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S.,

and Vincent, C.: The European mountain cryosphere: a review of

its current state, trends, and future challenges, The Cryosphere,

12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.

Boni, G., Castelli, F., Gabellani, S., Machiavello, G., and Rudari, R.:

Assimilation of MODIS snow cover and real time snow depth

point data in a snow dynamic model, in: 2010 IEEE Interna-

tional Geoscience and Remote Sensing Symposium (IGARSS),

25–30 July 2010, Honolulu, Hawaii, USA, 1788–1791, 2010.

Boone, A. and Etchevers, P.: An intercomparison of three snow

schemes of varying complexity coupled to the same land surface

model: Local-scale evaluation at an Alpine site, J. Hydrometeo-

rol., 2, 374–394, 2001.

Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox,

S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Ma-

hanama, S., Mitchell, K., Nasonova, O., Niu, G.-Y., Pitman,

A., Polcher, J., Shmakin, A. B., Tanaka, K., van den Hurk,

B., Vérant, S., Verseghy, D., Viterbo, P., and Yang, Z.-L.: The

Rhone-aggregation land surface scheme intercomparison project:

An overview, J. Climate, 17, 187–208, 2004.

Bowling, L. C., Lettenmaier, D. P., Nijssen, B., Graham, L., Clark,

D. B., El Maayar, M., Essery, R., Goers, S., Gusev, Y. M., Habets,

F., Van Den Hurk, B., Jin, J., Kahan, D., Lohmann, D., Ma, X.,

Mahanama, S., Mocko, D., Nasonova, O., Niu, G.-Y., Samuels-

son, P., Shmakin, A. B., Takata, K., Verseghy, D., Viterbo, P.,

Xia, Y., Xue, Y., and Yang, Z.-L.: Simulation of high-latitude

hydrological processes in the Torne–Kalix basin: PILPS Phase

2 (e): 1: Experiment description and summary intercomparisons,

Global Planet. Change, 38, 1–30, 2003.

Cassardo, C.: UTOPIA: The Manual of Version 2015, Universitã

di Torino, Torino, https://doi.org/10.13140/RG.2.2.29664.38404,

2015.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the

method of multiple working hypotheses for hydro-

logical modeling, Water Resour. Res., 47, W09301,

https://doi.org/10.1029/2010WR009827, 2011.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-

lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,

A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,

Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,

C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The

ERA-Interim reanalysis: configuration and performance of the

data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–

597, https://doi.org/10.1002/qj.828, 2011.

Di Mauro, B., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P.,

Galvagno, M., Morra di Cella, U., Migliavacca, M., Baccolo, G.,

Clemenza, M., Delmonte, B., Maggi, V., Dumont, M., Tuzet, F.,

Lafaysse, M., Morin, S., Cremonese, E., and Colombo, R.: Sa-

haran dust events in the European Alps: role in snowmelt and

geochemical characterization, The Cryosphere, 13, 1147–1165,

https://doi.org/10.5194/tc-13-1147-2019, 2019.

Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M., Bel-

jaars, A., Schär, C., and Elder, K.: An improved snow

scheme for the ECMWF land surface model: descrip-

tion and offline validation, J. Hydrometeorol., 11, 899–916,

https://doi.org/10.1175/2010jhm1249.1, 2010.

Dutra, E., Viterbo, P., Miranda, P. M., and Balsamo, G.: Complexity

of snow schemes in a climate model and its impact on surface

energy and hydrology, J. Hydrometeorol., 13, 521–538, 2012.

Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020 https://doi.org/10.5194/hess-24-4061-2020

https://doi.org/10.1175/2008JHM1068.1
https://doi.org/10.5194/gmd-7-3135-2014
https://doi.org/10.5194/tc-12-759-2018
https://doi.org/10.13140/RG.2.2.29664.38404
https://doi.org/10.1029/2010WR009827
https://doi.org/10.1002/qj.828
https://doi.org/10.5194/tc-13-1147-2019
https://doi.org/10.1175/2010jhm1249.1


S. Terzago et al.: Snow model sensitivity to input accuracy 4089

Endrizzi, S., Gruber, S., Dall’Amico, M., and Rigon, R.:

GEOtop 2.0: simulating the combined energy and water balance

at and below the land surface accounting for soil freezing, snow

cover and terrain effects, Geosci. Model Dev., 7, 2831–2857,

https://doi.org/10.5194/gmd-7-2831-2014, 2014.

Essery, R., Morin, S., Lejeune, Y., and Ménard, C. B.:

A comparison of 1701 snow models using observations

from an alpine site, Adv. Water Resour., 55, 131–148,

https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.

Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile,

E., Boone, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jor-

dan, R., Koren, V., Kowalczyk, E., Pyles, R. D., Schlosser, A.,

Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Ya-

mazaki, T., and Yang, Z.-L.: SnowMIP, an intercomparison of

snow models: first results, in: Proceedings of the International

Snow Science Workshop, Penticton, Canada, 353–360, 2002.

Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile,

E., Boone, A., Dai, Y.-J., Essery, R., Fernandez, A., Gusev, Y.,

Jordan, R., Koren, V., Kowalczyk, E., Nasonova, N. O., Pyles, R.

D., Schlosser, A., Shmakin, A. B., Smirnova, T. G., Strasser, U.,

Verseghy, D., Yamazaki, T., and Yang, Z.-L.: Validation of the

energy budget of an alpine snowpack simulated by several snow

models (SnowMIP project), Ann. Glaciol., 38, 150–158, 2004.

Feng, X., Sahoo, A., Arsenault, K., Houser, P., Luo, Y., and Troy, T.

J.: The impact of snow model complexity at three CLPX sites, J.

Hydrometeorol., 9, 1464–1481, 2008.

Filippa, G., Cremonese, E., Galvagno, M., Migliavacca, M.,

Di Cella, U. M., Petey, M., and Siniscalco, C.: Five years of

phenological monitoring in a mountain grassland: inter-annual

patterns and evaluation of the sampling protocol, Int. J. Biome-

teorol., 59, 1927–1937, 2015.

Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M.,

Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco,

C., and Morra di Cella, U.: Phenology and carbon dioxide

source/sink strength of a subalpine grassland in response to an

exceptionally short snow season, Environ. Res. Lett., 8, 025008,

https://doi.org/10.1088/1748-9326/8/2/025008, 2013.

Haylock, M., Hofstra, N., Klein Tank, A., Klok, E., Jones,

P., and New, M.: A European daily high-resolution grid-

ded data set of surface temperature and precipitation

for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119,

https://doi.org/10.1029/2008JD010201, 2008.

Hersbach, H. and Dee, D.: ERA5 reanalysis is in production,

ECMWF Newsletter, ECMWF, 147 pp., available at: https://

www.ecmwf.int/node/16299 (last access: August 2020) 2016.

Hirashima, H., Yamaguchi, S., Sato, A., and Lehning, M.: Numer-

ical modeling of liquid water movement through layered snow

based on new measurements of the water retention curve, Cold

Reg. Sci. Technol., 64, 94–103, 2010.

Jin, J., Gao, X., Yang, Z.-L., Bales, R., Sorooshian, S., Dickinson,

R. E., Sun, S., and Wu, G.: Comparative analyses of physically

based snowmelt models for climate simulations, J. Climate, 12,

2643–2657, 1999.

Knauer, J., El-Madany, T. S., Zaehle, S., and Migli-

avacca, M.: Bigleaf – An R package for the calcula-

tion of physical and physiological ecosystem proper-

ties from eddy covariance data, PloS one, 13, e0201114,

https://doi.org/10.1371/journal.pone.0201114, 2018.

Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R.,

Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D.,

Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno,

J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Lan-

dolt, S., Jachcik, A., and Poikonen, A.: Analysis of single-Alter-

shielded and unshielded measurements of mixed and solid pre-

cipitation from WMO-SPICE, Hydrol. Earth Syst. Sc., 21, 3525–

3542, https://doi.org/10.5194/hess-21-3525-2017, 2017a.

Kochendorfer, J., Rasmussen, R., Wolff, M., Baker, B., Hall, M.

E., Meyers, T., Landolt, S., Jachcik, A., Isaksen, K., Brækkan,

R., and Leeper, R.: The quantification and correction of wind-

induced precipitation measurement errors, Hydrol. Earth Syst.

Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017,

2017b.

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S.,

Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Mé-

nard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G.,

Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin,

J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A.,

Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V.,

Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke,

T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano,

M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V.,

Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov,

D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.:

ESM-SnowMIP: assessing snow models and quantifying snow-

related climate feedbacks, Geosci. Model Dev., 11, 5027–5049,

https://doi.org/10.5194/gmd-11-5027-2018, 2018.

Kumar, M., Marks, D., Dozier, J., Reba, M., and Winstral, A.: Eval-

uation of distributed hydrologic impacts of temperature-index

and energy-based snow models, Adv. Water Resour., 56, 77–89,

2013.

Lawrence, M. G.: The Relationship between Relative Humidity

and the Dewpoint Temperature in Moist Air: A Simple Con-

version and Applications, B. Am. Meteorol. Soc., 86, 225–233,

https://doi.org/10.1175/bams-86-2-225, 2005.

Luo, L., Robock, A., Vinnikov, K. Y., Schlosser, C. A., Slater, A. G.,

Boone, A., Etchevers, P., Habets, F., Noilhan, J., Braden, H., Cox,

P., de Rosnay, P., Dickinson, R. E., Dai, Y., Zeng, Q.-C., Duan,

Q., Schaake, J., Henderson-Sellers, A., Gedney, N., Gusev, Y. M.,

Nasonova, O. N., Kim, J., Kowalczyk, E., Mitchell, K., Pitman,

A. J., Shmakin, A. B., Smirnova, T. G., Wetzel, P., Xue, Y., and

Yang, Z.-L.: Effects of frozen soil on soil temperature, spring

infiltration, and runoff: Results from the PILPS 2 (d) experiment

at Valdai, Russia, J. Hydrometeorol., 4, 334–351, 2003.

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and

Jonas, T.: Evaluating snow models with varying process repre-

sentations for hydrological applications, Water Resour. Res., 51,

2707–2723, 2015.

Ménard, C. B., Ikonen, J., Rautiainen, K., Aurela, M., Arslan, A.

N., and Pulliainen, J.: Effects of meteorological and ancillary

data, temporal averaging, and evaluation methods on model per-

formance and uncertainty in a land surface model, J. Hydrome-

teorol., 16, 2559–2576, 2015.

Piazzi, G., Thirel, G., Campo, L., and Gabellani, S.: A particle fil-

ter scheme for multivariate data assimilation into a point-scale

snowpack model in an Alpine environment, The Cryosphere, 12,

2287–2306, https://doi.org/10.5194/tc-12-2287-2018, 2018.

https://doi.org/10.5194/hess-24-4061-2020 Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020

https://doi.org/10.5194/gmd-7-2831-2014
https://doi.org/10.1016/j.advwatres.2012.07.013
https://doi.org/10.1088/1748-9326/8/2/025008
https://doi.org/10.1029/2008JD010201
https://www.ecmwf.int/node/16299
https://www.ecmwf.int/node/16299
https://doi.org/10.1371/journal.pone.0201114
https://doi.org/10.5194/hess-21-3525-2017
https://doi.org/10.5194/hess-21-1973-2017
https://doi.org/10.5194/gmd-11-5027-2018
https://doi.org/10.1175/bams-86-2-225
https://doi.org/10.5194/tc-12-2287-2018


4090 S. Terzago et al.: Snow model sensitivity to input accuracy

Piazzi, G., Campo, L., Gabellani, S., Castelli, F., Cremonese, E.,

di Cella, U. M., Stevenin, H., and Ratto, S. M.: An EnKF-based

scheme for snow multivariable data assimilation at an Alpine

site, J. Hydrol. Hydromech., 67, 4–19, 2019.

Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Explor-

ing the impact of forcing error characteristics on physi-

cally based snow simulations within a global sensitivity anal-

ysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179,

https://doi.org/10.5194/hess-19-3153-2015, 2015.

Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell,

K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J.,

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll,

D.: The global land data assimilation system, B. Am. Meteorol.

Soc., 85, 381–394, 2004.

Rui, H. and Beaudoing, H.: README Document for NASA

GLDAS Version 2 Data Products, Goddard Earth Sciences Data

and Information Services Center (GES DISC), Greenbelt, USA,

2018.

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K.,

Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Dou-

ville, H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan,

A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R.,

Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A.,

Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,

O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M.,

Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli,

R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K.,

Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., Xia, K.,

Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes

models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111,

https://doi.org/10.1029/2008JD011063, 2009.

Schlosser, C. A., Slater, A. G., Robock, A., Pitman, A. J., Vinnikov,

K. Y., Henderson-Sellers, A., Speranskaya, N. A., and Mitchell,

K.: Simulations of a boreal grassland hydrology at Valdai, Rus-

sia: PILPS Phase 2 (d), Mon. Weather Rev., 128, 301–321, 2000.

Sims, E. M. and Liu, G.: A parameterization of the probability of

snow–rain transition, J. Hydrometeorol., 16, 1466–1477, 2015.

Slater, A. G., Schlosser, C. A., Desborough, C., Pitman, A.,

Henderson-Sellers, A., Robock, A., Vinnikov, K. Y., Entin, J.,

Mitchell, K., Chen, F., Boone, A., Etchevers, P., Habets, F., Noil-

han, J., Braden, H., Cox, P. M., de Rosnay, P., Dickinson, R. E.,

Yang, Z.-L., Dai, Y.-J., Zeng, Q., Duan, Q., Koren, V., Schaake,

S., Gedney, N., Gusev, Y. M., Nasonova, O. N., Kim, J., Kowal-

czyk, E. A., Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wet-

zel, P., and Xue, Y.: The representation of snow in land surface

schemes: Results from PILPS 2 (d), J. Hydrometeorol., 2, 7–25,

2001.

Taylor, K. E.: Summarizing multiple aspects of model performance

in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,

2001.

Terzago, S., von Hardenberg, J., Palazzi, E., and Provenzale, A.:

Snow water equivalent in the Alps as seen by gridded data

sets, CMIP5 and CORDEX climate models, The Cryosphere, 11,

1625–1645, https://doi.org/10.5194/tc-11-1625-2017, 2017.

Turco, M., Zollo, A. L., Ronchi, C., De Luigi, C., and Mercogliano,

P.: Assessing gridded observations for daily precipitation ex-

tremes in the Alps with a focus on northwest Italy, Nat. Hazards

Earth Syst. Sci., 13, 1457–1468, https://doi.org/10.5194/nhess-

13-1457-2013, 2013.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne,

P., Martin, E., and Willemet, J.: The detailed snowpack scheme

Crocus and its implementation in SURFEX v7.2, Geosci.

Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-

2012, 2012.

Yang, K., Huang, G., and Tamai, N.: A hybrid model for estimating

global solar radiation, Sol. Energy, 70, 13–22, 2001.

Yang, K., Koike, T., and Ye, B.: Improving estimation of hourly,

daily, and monthly solar radiation by importing global data sets,

Agr. Forest Meteorol., 137, 43–55, 2006.

Hydrol. Earth Syst. Sci., 24, 4061–4090, 2020 https://doi.org/10.5194/hess-24-4061-2020

https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.1029/2008JD011063
https://doi.org/10.5194/tc-11-1625-2017
https://doi.org/10.5194/nhess-13-1457-2013
https://doi.org/10.5194/nhess-13-1457-2013
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/gmd-5-773-2012

	Abstract
	Introduction
	Snow models
	Study site and data
	Torgnon station data
	Spatial interpolation of meteorological forcings from neighbouring stations
	Reanalysis data

	Experimental design
	Results
	CTL – impacts of the snow model structure
	RAD-ERAI, SWIN-CLS – model sensitivity to the radiation input
	TIME-3h, TIME-6h, TIME-12h – model sensitivity to the temporal resolution of the forcing
	MeteoIO, GLDAS, ERA5, and ERA-Interim – model sensitivity to the spatial resolution and bias in the forcing
	Impact of the bias adjustment of ERA-Interim air temperatures

	Discussion
	Conclusions
	Appendix A: Uncertainty associated with the precipitation measurements in Torgnon
	Appendix B: Spatial interpolation of meteorological forcings from neighbouring stations
	Appendix C: The impact of the time interpolation method for SWIN in the TIME-12h experiment
	Appendix D: Exportability of the results of the reanalysis-driven experiments
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

