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Abstract—The accuracy of supervised land cover classifications
depends on factors such as the chosen classification algorithm,
adequate training data, the input data characteristics, and the se-
lection of features. Hyperspectral imaging provides more detailed
spectral and spatial information on the land cover than other
remote sensing resources. Over the past ten years, traditional and
formerly widely accepted statistical classification methods have
been superseded by more recent machine learning algorithms,
e.g., support vector machines (SVMs), or by multiple classifier
systems (MCS). This can be explained by limitations of statistical
approaches with regard to high-dimensional data, multimodal
classes, and often limited availability of training data. In the pre-
sented study, MCSs based on SVM and random feature selection
(RFS) are applied to explore the potential of a synergetic use of
the two concepts. We investigated how the number of selected
features and the size of the MCS influence classification accuracy
using two hyperspectral data sets, from different environmental
settings. In addition, experiments were conducted with a vary-
ing number of training samples. Accuracies are compared with
regular SVM and random forests. Experimental results clearly
demonstrate that the generation of an SVM-based classifier system
with RFS significantly improves overall classification accuracy as
well as producer’s and user’s accuracies. In addition, the ensemble
strategy results in smoother, i.e., more realistic, classification maps
than those from stand-alone SVM. Findings from the experiments
were successfully transferred onto an additional hyperspectral
data set.

Index Terms—Classifier ensembles, hyperspectral data, multi-
ple classifier systems (MCSs), random feature selection (RFS),
support vector machines (SVMs).

I. INTRODUCTION

R EMOTE sensing applications, such as land cover clas-
sification, provide a variety of important information

for decision support and environmental monitoring systems.
When complex environments are mapped or when very detailed
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analyses are performed, the spectral and spatial resolution
requirements can be very high, e.g., in urban area mapping,
the characterization of mineral composition, or in plant-type
differentiation [1], [2]. In such situations, airborne hyperspec-
tral sensors are—at the moment—probably the most valuable
single data source. Data from these sensors provide detailed and
spectrally continuous spatial information on the land surface,
ranging from the visible to the short-wave infrared regions
of the electromagnetic spectrum. They enable discriminating
between spectrally similar land cover classes that occur at
highly frequent spatial patterns [3].

However, it is well known that increasing data dimensionality
and high redundancy between features might cause problems
during data analysis, e.g., in the context of supervised classi-
fication: The overall map accuracy can decrease when only a
limited number of training samples are available [4]. Against
this background, machine learning algorithms such as support
vector machines (SVMs) and concepts like multiple classifier
systems (MCSs) have emerged over the past decade [5]–[9].
SVMs construct an optimal separating hyperplane between
training samples of two classes within the multidimensional
feature space. In linear nonseparable cases, the data are mapped
using a kernel function into a higher dimensional feature space.
This enables the definition of a separating hyperplane, which
appears nonlinear in the original feature space. Based on this
so-called kernel trick, SVM can describe complex classes with
multimodal distributions in the feature space. Despite their
relatively good performance when high-dimensional data are
classified with only small training sets, a sufficient number of
samples should be considered to ensure that adequate train-
ing samples are included during supervised classification [7].
Recent studies discuss the use of SVM for spectral–spatial
classification of urban hyperspectral data [10]–[12] and multi-
source classification [13]–[15] and extend the supervised SVM
techniques by semisupervised concepts [16], [17].

The concept of MCS, on the other hand, does not refer to
a specific algorithm but to the idea of combining outputs from
more than one classifier to enhance classification accuracy [18].
These outputs may result from either a set of different classi-
fication algorithms or independent variants of the same algo-
rithms (i.e., the so-called base classifier). The latter are achieved
by modifying aspects of the input data, to which the base classi-
fier is sensitive during separate training processes. This includes
the following: the generation of training sample subsets, named
bagging [19], the sequential reweighting of training samples,
boosting [20], and the generation of feature subsets, e.g., by
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random feature selection (RFS) [21]. Afterward, outputs from
the various instances of the same base classifier are combined to
create the final class decision [18]. Many MCS applications em-
ploy base classifiers of relatively little computational demand,
usually self-learning decision trees (DTs), which construct
many rather simple decision boundaries that are parallel to the
feature axis. MCSs were recently reviewed in the context of
remote sensing [22] and yield excellent results when dealing
with hyperspectral and multisource data sets [8], [9], [23]–[25].

In summary, the concepts of SVM and MCS are based on
different ideas: While the first focuses on optimizing a single
processing step, i.e., the fitting of the presumably optimal
separating hyperplane, the latter relies on an ideally positive in-
fluence of a combined decision derived from several suboptimal
yet sometimes computationally simple outputs. Nevertheless,
the two approaches are not exclusive, and it appears desirable
to combine them in a complementary approach. Studies trying
to employ computationally more complex classifiers such as
neural networks [26] and SVMs [27] in MCSs exist, but they
are very limited, particularly in the remote sensing context. In
[28], the use of an SVM ensemble for the spectral–contextual
classification of a single high-spatial resolution remote sensing
image was shown to increase the accuracy of individual results.
Results in a non-remote-sensing context are more controversial,
though: Whereas bagging and boosting were successfully used
with SVMs in [27], the results of an empirical analysis in [29]
demonstrate that ensembles based on bagging and boosting are
not generally better than a single SVM in terms of accuracy.
Given these discrepancies and the significantly higher compu-
tational demand of SVM compared to DT, the idea of an MCS
based on SVM requires well thought and systematic approaches
to develop an SVM ensemble concept that leads to a general
trend of increasing accuracy and to give appropriate guidelines
to achieve efficient processing, i.e., reliable default parameters.

We present an SVM ensemble that uses RFS to generate
independent variants of SVM results. This novel combination
of the two classifier concepts appears particularly useful with
regard to the high dimensionality and redundancy of hyperspec-
tral information. We expect the results of this MCS to show
clearer trends than those reported in previous studies that use
bagging or boosting [27]–[29]. In order to evaluate the potential
of such a concept, we focus on three main research questions.

1) Is there a significant increase in accuracy compared to
regular SVM and advanced DT classification, when RFS
is performed to construct SVM ensembles?

2) What is the impact of the two parameters, namely, feature
subset size and ensemble size, on the accuracy and stabil-
ity of ensembles in terms of the classification result?

3) Is it possible to derive default values or recommendations
for the parameters in (2) in order to make the use of SVM
ensembles with RFS feasible?

To answer these three research questions, the specific objec-
tive of our study is the classification of two different hyper-
spectral data sets, i.e., an urban area from the city of Pavia,
Italy, and a volcanic area from Hekla volcano, Iceland, with
various SVM ensembles. These are generated by systematically
increasing the number of randomly selected features before
SVM classification as well as the number of repetitions that are
combined for the final class decision. Moreover, the size of the

training sets is varied to investigate the possible influences of
the number of training samples on the classification accuracy.

This paper is organized as follows. Section II introduces the
conceptual and algorithmic framework of SVM and MCS.
The used SVM ensemble strategy is explained in Section III.
The experimental setup and experimental results are presented
in Section IV. Section V discusses results, followed by the
conclusion in Section VI.

II. BACKGROUND

A. SVMs

The SVM is a universal learning machine for solving binary
classification problems and can be seen as an approximate
implementation of Vapnik’s Structural Risk Minimisation prin-
ciple, which has been shown superior to traditional Empirical
Risk Minimisation principle [30]. SVMs are able to sepa-
rate complex (e.g., multimodal) class distributions in high-
dimensional feature spaces by using nonlinear kernel functions
and to deal with noise and class confusion via a regularization
technique. A detailed introduction on the general concept of
SVM is given in [31]; an overview in the context of remote
sensing can be found, e.g., in [5] and [6].

In this paper, a Gaussian radial basis function (RBF) kernel
function is used, which is widely accepted in remote sensing
applications. A one-against-one (OAO) strategy is used to
handle multiclass problems with the originally binary SVM.
The OAO class decision is determined by a majority vote using
classwise decisions [6], [7].

B. MCSs

The concept of classifier ensembles or MCSs is based on
the hypothesis that independent classifiers generate individual
errors, which are not produced by the majority of the other
classifiers within the ensemble. The basic aim in MCS is
therefore to generate a diverse set of classifiers, making each
individual classifier as unique as possible [18].

Among MCS approaches based on iterative and independent
variations of a base classifier, bagging and boosting are perhaps
the widest used concepts for the construction of classifier en-
sembles. Boosting [20] consecutively modifies the training data
by adaptively weighting the training samples after each individ-
ual iteration. Accurately classified samples are assigned a lower
weight than those samples classified incorrectly. Bagging, on
the other hand, randomly generates a set of training sample
subsets. Each sample subset is used to train an individual base
classifier, and the outputs are combined to generate a final
class decision. While boosting is performed in series, bagging
[19] can be performed in parallel and may result in lower
computation time.

The generation of classifier ensembles by RFS—also known
as the random subspace method or attribute bagging—is an-
other method used to train an MCS [21], [32]. Each base
classifier is trained on randomly generated and independently
drawn feature subsets. The diverse outputs are combined to
define the final MCS class decision, often by a majority vote.
In [33], the concept was successfully applied to a set of multi-
temporal SAR images using a DT as a base classifier.

Breiman [34] introduced random forests (RF) which is a
DT-based classifier concept based on training sample and
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feature subsets. Each tree within the ensemble is trained on
bootstraps of the training samples (i.e., the same as in bagging).
In addition, at each internal node of the DT, a randomly
generated feature subset is used.

III. SVM ENSEMBLE STRATEGY

In [29], SVM ensembles were constructed by bagging and
different boosting variants. On average, these ensembles out-
performed a standard SVM in terms of accuracy. Nevertheless,
a general improvement of MCS strategies by incorporating
SVM cannot be stated based on the results in [29], and greater
computational time does not necessarily result in higher clas-
sification accuracies. On the other hand, increased computa-
tions may sometimes, in fact, reduce the accuracy. In [35],
the stability of SVM in terms of classification performance
was investigated following a bagging strategy. The obtained
experimental results underline that bagging does not improve
nor even slightly decrease the classification results of SVM.
Thus, Buciu et al. [35] consider SVM as a stable classifier with
regard to bagging. However, the instability of the base classifier,
i.e., a small change in the training samples leads to varying
classification results, is an important requirement for a bagging
ensemble. Boosting, on the other hand, is computationally very
demanding, because it must be processed in series and performs
less efficient than bagging in the context of SVM [29]. In regard
to these findings and the fact that ensembles generated by RFS
can outperform bagging and boosting in terms of accuracy [21],
[32], the construction of SVM ensembles by RFS seems more
adequate.

Whereas bagging is based on the selection of training sam-
ples, RFS modifies the d-dimensional feature space ℜd, and
each classifier within the ensemble is generated by randomly
choosing a feature subspace ℜd′

of user-defined size d′. Ho [21]
recommends the selection of d′ ≈ d/2, features for a DT-based
classifier system, where d is the total number of features.

By using RFS for generating an ensemble of size z for solv-
ing a classification problem with n classes, each classifier with
class decision Yk(x) ∈ {1, . . . , n} and 1 ≤ k ≤ z is trained
on a randomly generated feature subset. The feature subsets
are usually generated without replacement, and d′ features are
selected out of the whole feature set of size d. As in bagging,
the different classifications are often combined to the final class
decision Y (x) by a simple majority vote using classwise scores

Y (x) = arg max
i∈{1,...,n}

Si(x) (1)

Si(x) =
z

∑

k=1

{

1, if Yk(x) = i
0, otherwise.

(2)

Our proposed strategy for the MCS is shown in Fig. 1. As a
first step after preprocessing, an RFS is performed to perform
various sets of feature subspaces of size d′ (the feature subset
size). Afterward, an individual SVM is applied on the feature
subset, providing an individual classification result. These steps
are performed z times, either parallel or in series, with z being
the number of classifiers within the ensemble (i.e., ensemble
size). The z classification outputs are combined with a majority
vote, according to (1). The proposed fusion strategy has been
compared to alternative approaches, e.g., majority vote on
binary decision and class probability values, which, in no case,

Fig. 1. Schematic diagram of the RFS using z iterations and selecting d
′ out of

d available features. It should be noted that the classification of each individual
SVM already requires a voting strategy (Section II-A). This is not shown in the
diagram, and the individual outputs refer to a land cover map containing class
labels between 1 and c.

further improved the results. We believe that a detailed analysis
of more sophisticated fusion strategies may be worthwhile. It
requires a separate analysis that goes beyond the scope of this
paper, however.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Two hyperspectral data sets from study sites with different
environmental setting were used in this study. Both classifi-
cation problems are set up in ways that require hyperspectral
information for an appropriate description of target surface
types, i.e., lava types from different mineral composition and
age as well as urban surfaces. The latter study also requires a
very high spatial resolution in order to avoid a high fraction of
mixed pixels.

The first study site lies around the central-volcano Hekla, one
of the most active volcanoes in Iceland (Fig. 2). The image was
collected by Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) on a cloud-free day (June 17, 1991). AVIRIS operates
from the visible to the short-wave infrared regions of the
electromagnetic spectrum, ranging from 0.4 to 2.4 µm. Due to a
malfunction, spectrometer 4 operating in the wavelength range
from 1.84 to 2.4 µm was working incorrectly. Thus, the bands
from spectrometer 4 were deleted from the image data along
with the first channels of each of the three spectrometers, which
contained noise. Finally, 157 data channels were left. The image
strip is 2048 × 614 pixels, with a spatial resolution of 20 m
[36]. The classification aims on 22 land cover classes, mainly
lava flows from different eruptions and older hyaloclastites.

The second data set was acquired by the ROSIS-3 (Reflective
Optics System Imaging Spectrometer) sensor over the city
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Fig. 2. AVIRIS data, Hekla, Iceland. False-color composite and correspond-
ing ground truth areas representing 22 land cover classes.

Fig. 3. ROSIS-3 data, Pavia, Italy. False-color composite and corresponding
ground truth areas representing nine land cover classes.

of Pavia, Italy (Fig. 3). The 115 bands of the sensor cover
the 0.43–0.86-µm range of the electromagnetic spectrum. The
spatial resolution of the data set is 1.3 m per pixel. The image
strip is 610 × 340 pixels, sounding the University of Pavia.
Some bands have been removed due to noise; the remaining 103
channels have been used in the classification. The classification
is aiming nine land cover classes.

For both data sets, ground truth information was used for
generating training and validation sample sets, using expert
knowledge in image interpretation. An equalized random sam-
pling was performed, guaranteeing that all classes are equally
included in the sample set. To investigate the possible influence
of the number of training samples on the performance of the
proposed method, training sets with different size were gener-
ated, containing 25, 50, 100, and 200 training samples per class,
respectively (from now on referred to as tr#25, tr#50, . . .). For
each data set, an independent test set was available, containing
14 966 and 40 002 samples, respectively. Several experiments
were conducted to investigate the sensitivity of SVM classifiers
to RFS. Diverse SVM ensembles were generated for the two
data sets using the following: 1) feature subsets of differ-
ent sizes (10%, 20%, . . . , 90% of all available features) and

TABLE I
DATA SET 1—HEKLA. OVERALL ACCURACY (IN PERCENT) USING

DIFFERENT METHODS AND NUMBER OF TRAINING SAMPLES. THE

SVM ENSEMBLES ARE BASED ON THE RANDOMLY SELECTION OF

30% OF ALL FEATURES. ∗INDICATES A SIGNIFICANT DIFFERENCE

(α = 0.01) IN COMPARISON TO THE REGULAR SVM

2) different numbers of classifiers within the ensemble (10, 25,
and 50). Aside from this, a standard SVM, which is based on
the whole data set, and an RF classifier [34] were applied to the
images using the same training sets.

The training and classification were performed using im-
ageSVM [37], which is a freely available IDL/ENVI imple-
mentation. ImageSVM1 is based on the LIBSVM approach by
Chang and Lin [38] for the training of the SVM. A Gaussian
RBF kernel was used, and a regularization parameter C and
a kernel parameter g are determined by a grid search using
a threefold cross validation. Training and grid search are per-
formed for each SVM classifier in the ensemble, i.e., in the
case of an ensemble size of 50, individual SVMs are trained on
50 different feature subsets with each training including its own
grid search.

The RF classification was performed with WEKA [39] using
100 iterations. First experiments have shown that an increased
number of iterations do not significantly improve the total
accuracy. The number of features at each node was set to
the square root of the number of input features. This value is
considered adequate in literature [24] and proved reliable in a
previous studies by the authors [25].

Accuracy assessment was performed, giving overall accu-
racies and confusion matrices that were used to calculate the
producer’s and user’s accuracies. Based on 99% confidence
intervals, a statistical comparison of ensemble-based results and
maps from regular SVM was performed.

B. Results for Data From Hekla, Iceland

The results demonstrate that the SVM ensemble outper-
formed the regular SVM and RF classifier in terms of overall
accuracy for the four training sample sets. The RF achieved an
overall accuracy between 83.3% and 92.7%; a regular SVM,
on the other hand, achieved accuracies between 82.2% and
96.9%. In contrast to this, an SVM ensemble that is based
on RFS achieves overall accuracies between 88.3% and 97.7%
(Table I).

These results clearly underline that the overall accuracy
can be increased by the SVM ensemble. However, a strong

1Software available at http://www.hu-geomatics.de.
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influence of the number of training samples on classification
accuracy can be observed: For all methods, accuracies increase
monotonically with sample set size. The rate of this increase is
highest for the regular SVM (14.7% difference between tr#25
and tr#200) and lowest for SVM ensembles with 50 iterations
(8%). SVM ensembles with ten iterations outperform RF and
a regular SVM in terms of accuracy for all training sample
sets. The overall accuracy was further improved by increasing
the number of iterations from 10 to 25. No significant further
increase takes place for larger ensembles.

Feature subset size significantly affected the overall accuracy
(Fig. 4).

Irrespective of the number of training samples, the use of
only 10% of the features (i.e., 16 bands) was ineffective in
terms of accuracies (e.g., 93.4% accuracy with 50 iterations and
tr#100). In many cases, the accuracies were below the accura-
cies for the regular SVM. In contrast to this, the use of 20% of
the available features increased the accuracy and outperformed
a regular SVM classifier in terms of accuracy, or performed
at last equally well. The maximum accuracy is achieved by
generating an ensemble with 30% of the features (e.g., 96.6%
with 50 iterations and tr#100). The use of additional features
did not further improve the overall accuracy. In the case of tr#25
and tr#50, the overall accuracy decreases significantly when
feature subset size is further increased.

With regard to the class accuracies, the proposed strategy
outperformed the other methods in the majority of the cases.
In Fig. 5, the differences between the producer’s and users’s ac-
curacy, achieved by the SVM ensemble and a regular SVM, are
shown. While some classes show almost no differences, such as
the three vegetation-covered Andesite Lava classes (classes 6, 7,
and 8) as well as Firn and Glacier Ice and Snow (classes 21 and
22), the difference tends significantly toward the positive in the
majority of the classes, i.e., the ensemble achieves higher class
accuracies. As for the overall accuracy, this effect is reduced
with an increasing number of training samples (Fig. 4). In the
case of tr#50, the class accuracies are often improved by 5%
or even more using the ensemble approach. On the other hand,
the improvement in the case of the training set tr#200 is less
significant and usually below 5%. Only the user accuracies for
classes 5 and 14 are improved by more than 5% (Andesite Lava

1991 II and Hyaloclastite Formation III) due to the ensemble
classifier (see Figs. 5a and 5b). The two classification maps
achieved by the regular SVM and ensemble appear similar in
many regions (Figs. 6 and 7). Nevertheless, some differences
exists and the map achieved by the ensemble appears more
homogenous. Classification accuracies achieved by the SVM
ensemble were significantly higher than those produced by the
regular SVM classifier with the respective number of train-
ing samples based on a test with a 99% confidence interval
(α = 0.01) (Table I).

C. Results for Data From Pavia, Italy

As for the Hekla data set, the results achieved with the SVM
ensemble show higher overall accuracies than those for the
regular SVM and RF for three training sample sets (Table II).
Again, SVM ensembles with ten iterations yield higher
accuracies than the regular SVM. Accuracies for 25 and 50
iterations are even higher but do not show relevant differences.

Fig. 4. Hekla data. Overall accuracy (in percent) achieved by the SVM
ensemble using different number of iterations, input features, and training
samples.

The experimental results again show that SVM ensembles
perform well with small training sample sets: Accuracies
achieved with the regular SVM and tr#25 are 4.5% and 4.9%
below accuracies obtained with the ensemble approach in 25 or
50 iterations. For tr#200, this difference is only 2.3%.

The investigation of the impact of the number of features on
the overall accuracy clearly showed that the use of only 10% of
the features was ineffective and resulted in lower overall accura-
cies than a regular SVM classifier does. The adequate number
of features is 30%, using the training sets tr#100 and tr#200,
and an increased number of features do not improve the overall
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Fig. 5. Hekla data. Difference between producer’s and user’s accuracy achieved by SVM ensemble with 25 iterations and a regular SVM classifier using
(a) tr#50 and (b) tr#200.

Fig. 6. Hekla data. Classification maps achieved by SVM and SVM ensemble
(number of features/iterations: 30%/25) with training set tr#50.

Fig. 7. Hekla data. Detailed visual comparison of classification maps achieved
by SVM and SVM ensemble (number of features/iterations: 30%/25) with
training set tr#50.

accuracy. In contrast to all other results, the SVM ensemble
with tr#50 shows a steady increase in overall accuracy with
an increasing number of randomly selected features. The most
accurate result was attained with 80% of the whole feature set.

Irrespective of the number of classifiers that is used in
the classifier system, an ensemble that is based on a smaller
quantity of the available features (i.e., 10%) is relatively in-
effective in terms of accuracy. In some cases, it is even less
accurate than a regular SVM. On the other hand, the use of
25 iterations outperformed the regular SVM classifier in terms
of accuracy, irrespective of the training sample set size (Fig. 8).
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TABLE II
DATA SET 2—PAVIA. OVERALL ACCURACY (IN PERCENT) USING

DIFFERENT METHODS AND NUMBER OF TRAINING SAMPLES.
∗INDICATES A SIGNIFICANT DIFFERENCE (α = 0.01) IN

COMPARISON TO THE REGULAR SVM

Regarding the producer’s and user’s accuracies, the ensemble
strategy performs more accurate in most cases (Fig. 9). The
differences between the SVM ensemble and the regular SVM
tend clearly toward being positive, i.e., the accuracy achieved
by the ensemble is higher.

The producer’s accuracies for Asphalt, Bare soil, and Bricks

are increased by more than 5%, as do the user’s accuracies for
Bitumen, Meadow, and Trees. For the Hekla data set, this effect
is less obvious, when a higher number of training samples are
available. In this case, the users’s accuracy of Bitumen is even
slightly reduced by the ensemble, compared to the accuracy
achieved by a standard SVM.

The findings of the accuracy assessment are confirmed by a
significance test using a confidence interval of 99% (α = 0.01).
The test shows that the results achieved with the ensemble
approach significantly outperform the results of a standard
SVM classifier in terms of accuracy.

The two classification maps achieved by the regular SVM
and ensemble appear very similar in most of the regions
(Fig. 10). Some differences exist in the north–west (i.e., bottom
of the image), which is classified as mixture between Meadow

and Bare soil. In this region, the ensemble approach assigns
more pixels to the Meadow class, while the conventional SVM
classification clearly tends toward the Bare soil.

V. DISCUSSION

The generation of SVM ensembles by RFS was shown to be
generally positive in experiments. Obtained overall accuracies
are significantly higher than those achieved by a regular SVM
and by an RF, and classification maps appear more homoge-
neous in visual analysis. This general trend exists independently
from specific classes, as shown by the producer’s and user’s
accuracies.

Experiments showed the influence of training sample size on
the obtained results. Despite the positive effect of the ensemble
strategy for all training sets, the large surplus in accuracy
achieved by SVM ensembles for small training data sets needs
to be mentioned. One reason for this might be that, in the case
of small suboptimal training sample sets, the SVM classifier
is affected by the curse of dimensionality, even though SVMs
usually perform well in high-dimensional feature space and
with small training sets. Another effective method to handle

Fig. 8. Pavia data. Overall accuracy in percentage achieved by the SVM
ensemble using different number of iterations, input features, and training
samples.

the problem of small training sets is the use of semisupervised
SVM [17]. Related to this, the discussion in [40] is interesting.
The author argues that classifier combination (i.e., MCS) is sim-
ilarly useful in a semisupervised context, as unlabeled data (i.e.,
semisupervised approach) are valuable for ensemble methods.

With respect to the feature subset size, the accuracy assess-
ment demonstrates that a very small number of features (i.e.,
10%) are ineffective and generally result in a lower overall
accuracy than for the regular SVM. One reason for this could
be that each SVM requires some sort of minimum information
(i.e., randomly selected features) to be effective in separation.
Moreover, each classifier within an ensemble must at least
perform slightly better than random guessing in terms of OA.
A smaller number of features would result in a very weak
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Fig. 9. Pavia data. Difference between producer’s and user’s accuracy
achieved by SVM ensemble with 25 iterations and a regular SVM classifier
using (a) tr#50 and (b) tr#200.

Fig. 10. Data set 2, Pavia. Classification maps achieved by SVM and SVM
ensemble (number of features/iterations: 30%/25) using training set tr#100.

performance of each single classifier within the ensemble, and
consequently, the overall accuracy cannot be improved. Based
on the experimental results, a feature subset size between 20%
and 50% is adequate. However, the selection of a small value
(i.e., 20%) results in lower accuracies in some cases, whereas
the selection of a higher number (i.e., 50%) does not improve
the OA, compared to an ensemble, which is based on 30% of
the features. Thus, a random selection of 30% of all available
features might be a good value in terms of the overall accuracy.

This is not in accordance with the recommendations given in
[21], which suggest a higher number of features in the case of
DT-based classifier systems. Nevertheless, this follows recom-
mendations from Ho [21], who states that selecting 50% of the
features can achieve similar classification accuracies, compared
to the ensemble, which is based on 30% of the features. On the
other hand, the use of a high number of features of the data
set results in an increased processing time. Considering the
necessary number of iterations, the experimental results show
that an ensemble with 25 iterations is already very accurate.

To test transferability of our findings, a third hyperspectral
data set (i.e., AVIRIS Indian Pines2) was classified using an
SVM ensemble with 30% of the features and 25 iterations. The
Indian Pines data set was collected by the AVIRIS instrument
over an agricultural study site in northwest Indiana and used in
several remote sensing studies, e.g., [1], [6], and [41]. The scene
consists of 145 × 145 pixels, and 14 land cover classes were
considered in our experiments, ranging from 54 to 2466 pixels
in size. Classifications were performed using 25 randomly se-
lected training samples per class. In comparison, the ensemble-
based result is 15% more accurate than the classification result
achieved with a regular SVM.

Despite the clear increase in classification accuracy by SVM
ensembles, the matter of computational complexity appears
as a main drawback and needs to be discussed against the
background of possible strategies to reduce processing times.
On the one hand, the idea of parallel SVM implementation,
which was recently discussed in the context of hyperspectral
remote sensing [1], [42], will be useful for SVM ensembles.
Moreover, the reduced-set approach, which was originally
developed for binary SVM [43] and later extended to the
multiclass case [44], can be directly adapted, because an
ensemble of SVM can be seen as an ensemble of binary SVM.
On the other hand, the lower data dimensionality achieved by
the suggested strategy for ensemble construction levels out
some of the additional complexity, particularly when small
feature subsets appear optimal.

VI. CONCLUSION

In the presented study, an SVM ensemble strategy based on
RFS was proposed, tested in experiments, and discussed in the
context of classifying hyperspectral data. Three research ques-
tions were stated in the beginning regarding the classification
accuracy, ensemble size, and computational complexity. Based
on our experiments, it can be assessed that the classification
accuracy can be significantly increased by the proposed ensem-
ble strategy, compared to classification accuracy achieved by a
standard SVM or an RF. Both ensemble parameters, namely,
feature subset size and ensemble size, have a significant impact
on the accuracy and the stability of SVM ensembles in terms of
the classification results. Given this sensitivity of the ensembles
and the high computational complexity of an MCS strategy with
an SVM as base classifier, parameter selection appears critical.
However, our experimental results allow some guidelines with
regard to reliable ranges for the two parameters, i.e., according
to the results, about 20%–30% of the available feature should be

2Data are available online from http://cobweb.ecn.purdue.edu/~biehl/
MultiSpec/.
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used to construct the classifier system, and an ensembles size of
25 appears sufficient. These recommendations proved effective
in an additional experiment on an independent data set. Due
to the fact that even values outside these ranges yield results
superior to those from regular SVM and the relatively small
values for ensemble size and feature subset size, the use of SVM
ensembles appears worthwhile, and efficient implementation
strategies should be investigated. Particularly for small training
sample sets, the presented SVM ensemble strategy by RFS
constitutes a feasible approach and useful modification of the
regular SVM.
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