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Abstract: Loading margin is a fundamental measure 

of proximity to  voltage collapse. Linear and quadratic 

estimates to  the variation of the loading margin with re- 

spect to  any system parameter or control are derived. 

Tests with a 118 bus system indicate that the estimates 

accurately predict the quantitative effect on the loading 

margin of altering the system loading, reactive power 

support, wheeling, load model parameters, line suscep- 
tance, and generator dispatch. The accuracy of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAes- 
timates over a useful range and the ease of obtaining 

the linear estimate suggest that this method will be of 

practical value in avoiding voltage collapse. 

Keywords: voltage collapse, index, bifurcation, loading 

margin, control, sensitivity 

1. Introduction 

Voltage collapse is an instability of heavily loaded elec- 

tric power systems characterized by monotonically de- 

creasing voltages and blackout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[1,2]. Secure operation of 

a power system requires appropriate planning and con- 
trol actions to avoid voltage collapse. This paper de- 

scribes and illustrates the use of loading margin sensitiv- 

ities for the avoidance of voltage collapse. 

For a particular operating point, the amount of ad- 
ditional load in a specific pattern of load increase that 

would cause a voltage collapse is called the loading mar- 

gin. We are interested in how the loading margin of a 

power system changes as system parameters or controls 
are altered. This paper shows how to compute linear 

and quadratic estimates to the variation of the loading 

margin with respect to  any power system parameter or 
control. The effect on the loading margin of changing 

the following controls and parameters is estimated: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1B. Loading margin as parameter p varies 

Loading margin sensitivities have a simple geometric 

meaning. Figure 1A shows nose curves of a large power 

system for three values of a power system parameter. 

The loading margin is the change in loading between the 

stable operating point and the nose of the curve corre- 

sponding to each parameter setting. (The nose corre- 

sponds to a bifurcation point of the power system when 

it is parameterized by loading.) As the parameter in- 
creases, the nose of the curve occurs a t  a higher load- 

ing and the loading margin increases. Figure IB shows 
the loading margin as a function of the parameter value. 

Each nose curve in Figure 1A contributes one point to  

Figure IB. The sensitivity of the loading margin with re- 

spect to the parameter a t  the nominal parameter value 

is given by the tangent linear approximation to the curve 

in Figure 1B. The main idea of the paper is that after 

the loading margin has been computed for nominal pa- 

rameters, the effect on the loading margin of altering the 

parameters can be predicted by using linear or quadratic 
estimates. Exhaustively recomputing the nose for each 
parameter change is avoided. 
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Loading margin is an accurate measure of proximity 

to  voltage collapse which takes full account of system 

limits and nonlinearities. (Every paper on other volt- 

age collapse indices implicitly acknowledges the signifi- 

cance of loading margin by using it as the horizontal scale 

when the performance of the proposed index is graphed.) 

Moreover, loading margin estimates can be directly as- 

sociated with costs, allowing for economic comparison of 

different strategies [4]. Methods to compute the nose and 

hence the loading margin are well developed [5,6,3,7,8,9]. 

This paper is different than these references because it 
assumes a loading margin computation and instead ad- 

dresses the sensitivity of the loading margin. 

Another approach to assessing proximity to voltage 

collapse uses fast time-domain simulation to predict 

whether the system will collapse (e.g. [10,11]). This ap- 

proach has the advantage of better representing the po- 

tentially complex series of time dependent events which 

can influence voltage collapse. For example, the time de- 
pendence of generator reactive power limits can be rep- 
resented. However, sensitivity information is difficult to  

obtain from time-domain simulations and requires a new 

simulation for each parameter variation considered. The 

loading margin and time-domain simulation approaches 

are complementary. Recent work combines aspects of 

both approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[12]. 
There has been previous work on the sensitivity of var- 

ious indices for voltage collapse. Tiranuchit and Thomas 

[13] computed the sensitivity of the minimum singular 

value of the system Jacobian, and Overbye and DeMarco 
[14] computed the sensitivity of an energy function index. 

The first order sensitivity of the loading margin was de- 
rived by Dobson and Lu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[IS]. This paper is an extension 

and application of [18]. 

2. Application to test system 

The practical use of the sensitivity formulas derived in 

section 4 and appendix A is illustrated using a particular 

voltage collapse of the 118 bus IEEE standard test sys- 

tem [23] (see [23] for area and bus numbers and to repro- 

duce the results). The system loading and loading mar- 

gin is measured by the sum of all real load powers (an L1 
norm). The stable operating point at which we test pa- 

rameter variation has a total system loading of 5677 MW. 
Buses critical to  the voltage collapse are in area two. The 

generator dispatch distributes the slack so that genera- 

tors in each area provide additional real power roughly in 

proportion to  their size. The loads increase proportion- 

ally from the base case loading and the voltage collapse 

occurs at a total load of 7443 MW and a loading margin 

of 1766 MW. Seven generators reach reactive power lim- 

its between the stable operating point and the voltage 
collapse. (Note that the reactive power limit for gener- 

ator 4 is increased to  avoid complications caused by an 

immediate instability that would have occurred just prior 

to the voltage collapse. An immediate instability I171 can 

be caused by a generator reaching a reactive power limit.) 

The seiisitivity formulas evaluated at the voltage col- 

lapse yield linear and quadratic estimates of the loading 

margin azl a function of any parameter. The performance 

of these estimates is tested for seven different parame- 

ters representative of a range of control actions or sys- 

tem uncertainties. The solid lines and dotted curves in 

figures 2-8 are the respective linear and quadratic esti- 

mates for the loading margin variation as a function of 

the chosen parameter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. Effect of load shedding at  bus 3 

The dots in figures 2-8 represent the actual values of 

the loading margin as computed by combined continu- 

ation and direct methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  The large dots represent 

the loading margin computed assuming that the reac- 

tive power limits which apply at the voltage collapse re- 
main the same when the parameters are varied. (This 

assumption was used in deriving our sensitivity formu- 
las.) The small dots represent the actual loading margin 

allowing different reactive power limits to  apply at the 

voltage collapse. The small dots are computed by en- 

forcing generator reactive power limits as the loading is 

increased from the stable operating point. In figures 2-6, 

the assumptions about limits make little difference and 

the large dots cover the small dots. 

Emergency load shedding: 
At the stable operating point, bus 3 has a load of 

60 MW and 15 MVARs and a voltage of 0.95 p.u. Fig. 2 
shows the results for shedding up to  60 MW of base load 

at constant power factor. Each MW of load reduction in- 

creases the loading margin by 3.5 MW, and the relation 
remains almost linear over the entire range of load shed. 

Reactive Power Support: 

The laxgest generator in area two is at bus 10, which is 

connected by a long transmission line to the high voltage 

side of the network. At the stable operating point, the 

generator at bus 10 is near its reactive power limit. Bus 9 

represents the midpoint of the transmission line, and is a 
logical place to consider adding reactive power to  allevi- 

ate the voltage collapse. Figure 3 shows that the linear 

estimate is accurate and quantifies the effectiveness of 
reactive power support at bus 9. 
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Direction of load increase: 
Computing the loading margin requires a direction of 

load increase to  be assumed. Variation in the direction 

of load increase can result from inaccuracies in forecast- 

ing. Thus it is useful to estimate the sensitivity of the 

loading margin to  the direction of load increase. For 

this example, the direction of load increase is varied by 

transferring load increase from the critical bus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to  a less 

critical bus in the same area, bus 23. For a particular 

loading factor, the total load remains the same but the 

proportion of load at bus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 increases and the proportion 

at bus 1 decreases. Figure 4 shows that a linear estimate 
for the change in the loading margin performs well over 

the full range of variation. 

Area interchange: 

Recent trends in deregulation are expected to increase 

wheeling which can affect system security. The nom- 

inal interchange between the main area and area 2 is 

103 MW. 
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Figure 6. Effect of composition of load model 

Figure 5 shows the effects on the loading margin of 

adjusting the flows between area 2 and the main area. 

Importing an additional 10 results in an increase in 

loading margin of over 200 which is well predicted 

by the linear estimate. 

Load model: 

Load models are important in voltage collapse stud- 

ies. The sensitivity of the loading margin with respect 

to parameters of a load model can be used to estimate 

the effect on the loading margin of using more detailed 

models. Figure 6 shows the effect on the loading margin 

of an additional reactive load Q at  bus 3 linearly depen- 

dent upon the bus voltage V so that  Q = KV. K can 
be interpreted as MVARS at a voltage of 1 P.u.. 

Line susceptance: 

Variations in a line susceptance could represent the 

operation of a FACTS device or could reflect uncertainty 

in the network data. Figure 7 shows the effect of altering 

the susceptance of the line connecting bus 9 to bus 10. 



265 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dynamic consequence of a saddle node bifurcation. In a 

saddle node bifurcation, the stable operating equilibrium 

coalesces with an unstable equilibrium and disappears. 

The dynamic consequence of a generic saddle node bi- 

furcation is a monotonic decline in system variables. 

Although differential equations are the proper setting 

for understanding voltage collapse and are necessary for 

explaining why voltages dynamically decrease as a con- 
sequence of a saddle node bifurcation, it is possible and 

very advantageous to compute loading margins to volt- 

age collapse and their sensitivities using static equations. 
Dobson [19] proves that there is no loss of accuracy in 

using static models in place of the underlying dynamic 

models when computing loading margins and their sen- 

sitivities. 

The derivations and application of the sensitivity for- 

mulas require the choice of a nominal stable operating 

point at which parameters or controls are to  be adjusted, 

and a projected pattern of load increase. The pattern of 
load increase determines the nominal bifurcation point 

(nose) and also defines the direction in which the load- 
ing margin is measured. The bifurcation point should be 

computed by a method that takes into account system 

limits such as generator reactive power limits as they are 

encountered. In general, the limits enforced at the bi- 

furcation are different than those at the stable operating 

point. The derivation of the sensitivity formulas requires 

that the system equations remain the same as parame- 

ters are varied. In particular, the limits enforced at  the 

bifurcation are assumed to  stay the same as parameters 

are varied. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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For this example, the quadratic estimate is required 

to obtain accurate results over the full range of variation 

and the effects of changing limits are noticeable but not 

significant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Generator dispatch: Generators 10 and 12 together 

assume 50% of the slack for area 2 with generator 10 

alone picking up 42% for the nominal dispatch. Figure 8 

shows the effect of shifting slack from generator 10 to  

generator 12. The two generators participate equally in 

the dispatch when 17% of the total area slack is moved 

from generator 10 to generator 12. 

The quadratic estimate is accurate over a much larger 

range than the linear estimate. Moreover, the effects 

of limits can be significant. In this case, shifting more 

than 15% of the total area slack to generator 12 prevents 

generator 10 from reaching its reactive power limit; ad- 
ditional transfer past this point has little effect on the 

loading margin. 

3. Theoretical background and assumptions 

One influential theory of voltage collapse [15] models 

the power system as differential equations with slowly 

moving parameters and describes voltage collapse as the 

4. Informal derivation 
This section informally derives the first order sensitiv- 

ity of the loading margin L with respect to  any param- 

eter p.  See the appendices for a rigorous derivation of 

this and the quadratic sensitivity formulas. 

Suppose that the equilibria of the power system satisfy 

the equations 

f ( T , X , P )  = 0 (1) 

where x is the vector of state variables and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the vector 

of real and reactive load powers. Let XO be the real and 

reactive powers at the operating equilibrium. We specify 

a pattern of load increase with a unit vector i. Then 

the load powers at the saddle node bifurcation causing 

voltage collapse are 

where L is the loading margin. The choice of norm is 

arbitrary, is a unit vector in whateve,r norm is used to  
measure the loading margin L. Since k is a unit vector, 

it also follows that L = IX - Xol. 
At a saddle node bifurcation, the Jacobian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfx 

is singular. For each (z, X,p )  corresponding to a bifurca- 

tion, there is a left eigenvector w(z,  X , p )  (a row vector) 

corresponding to the zero eigenvalue of f z  such that 

x = x o  + i L  (2) 

w(z ,  X,p)fz(x, X,P) = 0. (3) 
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The points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z,X,p) satisfying (1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  correspond to 

bifurcations and a curve of such points can be obtained 

by varying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp about its nominal value p*.  Linearization 

of this curve about the bifurcation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2, , A,, p,) yields 

fXl*az + fxi*ax + f,i*ap = 0 (4) 

where f x  is the derivative of f with respect to the load 

powers X and f, is the derivative of f with respect to  

the parameter p .  ‘ I * ’  means ‘evaluated at (z*,X*,p*) ’ .  
Premultiplication by w = w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z*, A,, p*)  yields 

wfxl*AA + wfp / *Ap  = 0 (5) 

since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) implies that wfz l+ = 0. Equation (5) can be 

interpreted as stating that (wfxI*, wfp/ , )  is the normal 

vector at (X,,p,) to the bifurcation set in a load power 
and parameter space [18]. 

Using the parameterization of X by L from (2) yields 

AA = LAL and substitution in (5) gives 

w f x i  A L  + w f p  Ap = 0 (6) 

and hence the sensitivity of the loading margin to the 

change in parameters is 

For the linear estimate we use (7) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

The same formula holds for multiple parameters p ,  in 

which case wfpl* is a vector (see appendices). This is use- 

ful when approximating the combined effects of changes 

in several parameters or when comparing the effects of 

various parameters on the loading margin. 

For the quadratic approximation we use (7 ) ,  (A9) and 

1 

2 
AX = L,I& + -L,,I,(AP)~ (9) 

5. Discussion 

The loading margin sensitivities only depend on quan- 

tities evaluated at  the nominal bifurcation point. Evalua- 

tion of the linear sensitivity is particularly simple. Once 

the nominal bifurcation point is computed, the linear 

sensitivity (7) requires computation of the left eigenvec- 

tor w and the derivative f,l* of the power system equa- 

tions with respect to the parameter. In many cases f,l* 
has only one or two nonzero entries. w can be found 

by inverse power methods or as a byproduct of a direct 
method used to refine location of the bifurcation point 

[18]. Since w is the same regardless of the parameter 
chosen, it is very quick to compute the sensitivity to any 

additional parameters. 

The quadratic estimate additionally requires solu- 

tion of a sparse set of linear equations (A6,A8), the 
right eigenvector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII and some second order derivatives. 
The second order derivatives include the matrix wfzXj*, 
where f z z l ,  is the Hessian tensor. wf,,l, can be ob- 

tained as a byproduct of a direct method that uses a 

Newton iteration. The other higher order derivatives are 

more easily obtained and often evaluate to  zero. When 

the quadratic term is small, it increases confidence in 

the accuracy of the linear estimate. hen the quadratic 

term is not small, it serves as a more accurate e 

One source of inaccuracy is the neglect of high 

terms in the estimates. When the computed bifurcation 

is near a different bifurcation corresponding to voltage 

collapse of another area of the system, movement of the 

parameter can cause the voltage collapse to  ‘shift’ from 

one area t o t h e  other. Since the set of critical param- 

eters and loadings could have significant variations in 

curvature in this case, the linear and quadratic estimates 

would be useful only over a small parameter ra 

Another source of inaccuracy is that  the es 

sume a fixed set of equations whereas the 

equations can change discretely whenever a parameter 

variation causes power system limits to change. The 118 

bus system results are examples in which this does not 

significantly impair the usefulness of the estimates. How- 

ever, this source of inaccuracy has the potential to be 

significant and requires awareness when using the esti- 

mates. Future work could address the effect of limits on 
loading margin sensitivities, perhaps by representing 
effect of the limits using homotopy methods [all. 

The loading margin and sensitivity computations 

quire only static power system equations but accurately 

reflect the proximity to  voltage collapse of the dynamic 

power system. In particular, explicit knowledge of load 

dynamics is not needed. 

6. Conclusions 

This paper computes linear and quadratic estimates to 

the variation of the loading margin with respect to any 
power system parameter o 
be used to quickly assess 

of various control actions 

ing margin to  voltage collapse. Th  

approximate the change in loadin 

change in each control. Th  

determining the sensitivity of the loading margin to un- 

certainties in data. Estimates for any number of param- 

eters or controls require computation of only one nose or 

bifurcation point. 

appendix using bifurcation theor 

mate is new and the derivation of the linear estimate 
improves on previous work in [IS]. The derivation is in- 

dependent of the norm chosen to  measure the loading 

margin. 
The practical use of the sensitivity computations is il- 

lustrated for a range of system parameters on a voltage 

collapse of the IEEE 118 bus system. The likely sources 
of inaccuracy discussed in section 5 in 

the generator reactive power limits en 
The results suggest that the linear estimate is good for 
many parameters and can sometimes 

the quadratic estimate. Direct comp 

The sensitivity formulas are rigorously derived zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
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Differentiation of (A4) with respect to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp yields 

g x X p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ geLp + gp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (A61 

Evaluation at  (z*, !, , p* )  and premultiplication by w 
leads to wgeI*LpI* + wgpI* = 0 and the desired first 

order result 

control actions can be made in terms of their effect on 

the loading margin. The closeness of the estimates over 

a useful range of parameter variations and the ease of 
obtaining the linear estimate suggest that the sensitiv- 

ity computations will be of practical value in avoiding 

voltage collapse. 
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Appendix A: Derivation of sensitivity formulas 

such that the solutions of 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf : IR" x IRm x IR' 4 IR" be a smooth function 

0 = f ( z ,  X , P )  (A11 

are the equilibria of the power system near (z*,X*,p*). 
We assume that f has a fold bifurcation at (z*, X,,p,) 
satisfying: 

F(b) 

F(d) 

F(a) f ( z * ,  X,,p*) = 0 
f z l *  has rank n - 1 

w f x x ( * ( v , v )  # 0 ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv and w are nonzero 

vectors satisfying fxl*v = 0 and wfxl*  = 0. 

F(c) wfxI* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi # 0 

These are the generic conditions for a fold bifurcation 

[22]. (They differ slightly from the conditions for a sad- 

dle node bifurcation and the distinction between the two 

bifurcations is discussed in [19]. The fold bifurcation is 

more appropriate when working with static equations.) 

Let Xo be the base case loading and let the unit vec- 

tor ,& E Rm be a given direction in loading space. The 

loading is parameterized by ! E IR: 
q e ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, A,) = XI) + t i  

g(z, 4P) = f(., Xo + & P )  

(A2) 
The loading may be measured with any norm, but dif- 

ferent norms lead to different unit vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. Let 

(A3) 

Since gx = fx, gzx = fxx, and ge = f x k ,  g also has a fold 
bifurcation at (z,, !, , p * )  and the corresponding condi- 

tions F(a)-(d) are satisfied with g written for f except 

that F(c) becomes wge(* # 0. 

Appendix B proves that near ( z * ,& ,p * )  there is a 

smooth surface XI! parameterized by p so that each point 

on XI! corresponds to a fold bifurcation. Points on XI! are 
of the form ( X ( p ) ,  L ( p ) , p )  where X ( p )  defines the varia- 

tion of the bifurcating equilibrium with parameter p and 

L ( p )  defines the variation of the loading margin with pa- 
rameter p.  In the useful case of one dimensional p ,  XI! is 

a curve. Points of Q? satisfy 

S ( X ( P ) , L ( P ) , P )  = 0 (-44) 

P ( X ( P ) ,  L(P),P) = 0 (A51 

(A4) states that  ( X ( p ) ,  L (p) ,p )  is an equilibrium and 

(A5) is the condition for bifurcation ( p  is defined in Ap- 

pendix B) .  

The second order term Lppl* may be found a s  follows. 

Differentiation of (A5) (obtained by differentiating (B2) )  
and evaluation at (z*, l,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp * )  yields 

wgzxl*(V,XpI*) + wgxel*vLpI* + wg,pI*v = 0 (A8) 

which, with (A6) evaluated at ( z * , l * , p * ) ,  is aset  of n + l  
linear equations we may solve for X,l*. F(b) and F(d) 

imply that these n + 1 equations have rank n and are 

uniquely solvable for X ,  I *. 
Differentiation of (A6) gives 

g x x p p  + 2gXeXpLp + gxx (Xp ,  X,) + 2gx,X, 

+ gpp = 0 

Evaluation at  (z,, e,, p*) ,  premultiplication by w ,  and 

solving for L ,  I * gives 

L,I* =s [Swgxex,Lp + w x x ( X p ,  xp> + 2wgX,x, 

+geeLpLp + geLpp + 

+ WgeeLpL, + 2wgepLp + wgpp] 1 (A9) 

All terms on the right hand side are known and can easily 
be expressed in terms o f f .  If the loading X appears only 

linearly in (Al) then (A9) simplifies to 

( A W  
If, in addition, the parameters p also appear in (Al) as 

linear terms, then g x p  = gpp = 0 and the last two terms 

of the bracket in (A10) vanish. 

Appendix B: Construction of 8.  

The surface Q of bifurcation points is constructed 

as the zero section of a smooth function U .  Write 

B'J for the cofactor of the ( i , j )  element of a matrix 

B E IRnxn. Since condition F(b) states that gxl* has 

rank n - 1, we can find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j such that (gX1*)'J # 0. 

Since the cofactors of a matrix are smooth functions 

of the entries of the matrix, there is a neighborhood 
S c Etnx" of gxl* such that B2J # 0 for B E S.  De- 

fine the smooth functions G(B) = (B13, B2J ,  ..., BnJ)  and 

G(B) = (BZ1,B", ..., Bzn)T. Then 

G(B)B = detB e; and B6(B) = detB e, (Bl) 

where e, is a column vector of all zeros except that  the 
ith position has value one. G ( B )  and G(B) are non-zero 

vectors for B E S. Define w = ul(gxI*) and v = S(gx l * ) .  
It  follows from (Bl) and det gx I * = 0 that  w gz I * = 0 and 

gxl* v = 0 so that w and u are nonzero vectors satisfying 
the conditions in the definition of the fold bifurcation. 
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Define the smooth map zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIR by P(B) = 

G(B)Bij(B) It follows from (Bl) that  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(B) = B'JdetB. 
Since g,  is smooth, there is a neighborhood N about 

(LC*,&,P*)  such that (x, ! ,p)  E N implies gxl (s ,e ,p)  E S. 
Define p : N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt IR by 

d Z , 6 P )  = P ( g x ( z 1 6 P ) )  

= 6 ( g x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21 -e, p) )gx(x ,  -e, (gx(x14 P)) (sa) 
and define U : N + ELn x IR by U(x, ! ,p)  = 

g ( x l " p )  . Then !P is defined as the zero section of 
L P I )  

invertible if a = b = 0 is' the only solution to 

(u,, ue)l* (9) = 0, or, equivalently, 

gxl*a + ge/*b = 0 

wg,,I.va + wg,eI*vb = 0 

(B3) 

(B4) 

Since F(c) implies that  gel* is not in the range of g,l,, 
t o  satisfy (B3), b = 0 and then F(b) implies that  
a = cw for some scalar a!. Then (B4) with b = 0 yields 

a!wg,,l,(v,v) = 0 and F(d) implies a = 0 and a = 0. 
Thus ( U,  , Ut) 1 * is invertible. 

It then follows from the implicit function theorem that 
there is a neighborhood P of p* and smooth functions 

X : P + IR" andL : P --f IRsuchthat { (X (p ) ,L (p ) ,p )  I 
p E P }  c Q' and U ( X ( p ) , L ( p ) , p )  = 0, which can be 
rewritten as (A4) and (A5). 
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Discussion 

Claudio A. Caiiizares (University of Waterloo): This inter- 
esting and well written paper discusses the issue of how system 
parameters influence the maximum system loading, and pro- 
poses a simple method to locally predict the new location of the 
maximum loading points as these parameters change. 

There are a couple of issues that this discusser would like to 

bring out, that are closely related to the discussions and results 
presented in the paper, and to which the authors’ comments 
would be greatly appreciated. 

1. As the authors mention and show in the paper, the pro- 
posed methods are successful in locally approximating the 
shape of the manifold of bifurcation points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U). However, 
how useful this approximation is depends on the actual 
shape of U, which is very much contingent on the system 
characteristics and especially its limits, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas indicated in the 
paper. 

Figure A shows the U curve for a 173 bus system [A], as 
the MVAr rating of a SVC located at the system “criti- 
cal” bus is changed. Notice the sharp change in the shape 
of U, triggered by generator Q limits and SVC limits. In 
this case, the proposed methods would not be very useful 
around the knee of the curve, and probably a predictor- 
corrector approach that follows the U manifold would be 
more adequate to determine the effect of the SVC rat- 
ing on the maximum loading point. The proposed linear 
approximation (A7), however, could be readily used as a 

tangent predictor step of a continuation method in (A,P) 
space to trace the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ’ manifold [B]. In the case of a multi- 
parameter systems, i.e., when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is a vector, (A7) would 
define a tangent hyperplane, which can then be used to 
define a direction of movement to trace U. 

2. It is important to highlight the fact that the proposed 
methods do not have to be dependent on a particular 
choice of A, so that generic load models could be easily 
handled by the proposed techniques. These methods, how- 
ever, assume a one dimensional parameterization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl of A, 
i.e., for all practical purposes m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. In some cases, such 
as the computation of the closest bifurcation points, one 
would be interested in allowing for multi-parameter loads 
(m > 1). The predictor step of the GRG optimization 

4500 
1 

Fig. B. Optimum SVC rating in a sample system. 

method can be modified to generically predict the effect 
of the parameters p on the manifold cf closest bifurcation 
points [B], as this technique is designed to obtain tangent 
hyperplanes to a particular constraint manifold; however, 
this requires of some cumbersome computations. Ttius, it 
would be very useful if the methods presented in the paper 
could be modified to do similar predictions. 

3. Another interesting observation resulting from some of the 
figures in the paper, particularly Fig. 7, is that there ap- 
pears to be a parameter value for which the loading mar- 
gin is maximized. Determining the value of this param- 
eter may be of interest, particularly when designing se- 
ries and shunt compensation (e.g., FACTS design), as one 
may wish to “maximize” the distance to  collapse using se- 
ries and/or shunt devices [B]. The optimization, however, 
should not only be based on maximizing the 1oad:ng mar- 

gin, but how cost effective the devices are, e.g., how thc 
rating of the device compares to changes in the loading 
margin [C]. This is depicted in Fig. B, where the factor 

f, = A MWmargln/MVArSvC is plotted against the SVC 
rating for the same 173 bus system used for Fig. A; ob- 
serve that the maximum value of f, does not correspond 
to the maximum loading margin. In these types of cases, 
determining the effect of the system parameters in an ob- 
jective function other than the loading margin may be of 
more value. 

[A] C. A. Caiiizares, W. F. Long, F. L. Alvarado, and C. L. De- 
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Fig. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI for SVC rating changes in a sample system. Manuscript received February 20, 1996. 
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T. Wu (The University of Hong Kong), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Fischl, H. L. 
Chen and C.O. Nwankpa, (Drexel University, Philadelphia, 
PA): The authors are to be congratulated for their work on 
predicting the loading margin due to changes in system 
parameters. This is particularly useful in estimating the effect 
of parameter uncertainties on the power transfer capability of 
the power network. We would like to seek the authors' 
clarification and comments on the following points: 

The range of validity of the sensitivity results: It would 
be useful to have some quantitative measure as to the 
"size" of parameter variation around the base case 
operating the sensitivity approach is valid, since the 
nature of the problem is the estimation of an one- 
dimensional manifold (Le., a curve that consists of the 
fold bifurcation points) relative to a specified point on it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
a highly nonlinear problem. Specifically, we expect the 
range of validity to be different for changes in bus powers 
as compared to changes in network parameters such as 
line admittances and/or shunt capacitors, We have tried 
using the Taylor series expansion to predict the post- 
contingency voltage collapse point based on the pre- 
contingency voltage collapse point [Ref. A]. Curves 
similar to Fig. 7 were obtained, except that we used a 
larger range of susceptance values, Le., from nominal 
value to zero susceptance which represents the line outage 
value. We found that even the quadratic estimates of the 
loading margins gave very poor prediction of the correct 
voltage collapse point. Therefore, we would be interested 
to know what the picture would look like if in Figure 7 
the susceptance ran from 0 to 48 instead of 16 to 48. We 
are encouraged to see from Figs. 3 through 6, that the 
sensitivity method produced very accurate estimates in 
these cases. If the result in Fig. 5 represents a general 
phenomenon, where loading margin is linear with respect 
to import power level, it would be very helpful in the 
evaluation of inter-area power transfer capability. We 
would appreciate the authors comments on accuracy of 
the sensitivity method with respect to the potential 
applications. 

Another observation regarding the results shown in the 
paper is that the sensitivity formula is used mainly for 
predicting the loading margin when the margin is 
increasing due to change of operation and/or adding 
equipment. Clearly, when equipment is outaged, the load 
margin will decrease and in effect this decrease may 
cause the specified operating point to be infeasible. 
Could the authors comment on this situation and if they 
have a method to predict the occurrence of this situation. 

We would also like to know the type of load models used 
in the studies reported here. Since different load models 
produce different type of bifurcation points, it is 
important to clearly specify the load models. 

It would be helpful if the authors give more details as to 
their statement that the accuracy of the prediction of the 
loading margin is poor when the desired bifurcation point 
is near a different bifurcation corresponding to voltage 
collapse of another area of the system, so that the 

movement of the parameter can cause the voltage collapse 

to 'shift' from one area to the other. Could the authors 
give an example of this occurrence that they experienced. 
Do the authors have a criterion or method for predicting 
this phenomena? 
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Scott Greene, Ian Dobson, Fernando Alvarado: 
We thank the discussers for their useful comments and 

suggestions. 

T. Wu, R. Fischl, H.L. Chen, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC.O. Nwankpa: 
1, We agree that the main issue in applying the sen- 

sitivity formulas is the range over which the approxima- 

tions remain accurate enough to  be useful. We suspect 

that there are many useful applications for the sensitiv- 

ity formulas and these will emerge as further experience 

is gained in particular applications. We discuss below 

the application to estimating the effect of line outages 

on the margin. We have extended the lower range of 
susceptance for Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 as shown in Figure C1. The 

base case equilibrium disappears for a susceptance be- 

low 8 p.u. and this is predicted well by the quadratic 

estimate of the loading margin becoming negative. 
In the case considered in our paper of a lossy line, 

reducing the susceptance to zero does not have exactly 

the same effect as removing the line (the line conduc- 

tance remains fixed). A better way to re 

outage is as follows: At the nominal bifurcation, the line 

may be removed and replaced by the 

powers injected at the ends of the line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure C l .  Effect of susceptance of line 9-10 
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position due to changes in the parameter. This could 
explain the poor prediction in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[A]. 

The detail of reducing our second order formula 

(A10) so that it can be compared with the formulas of 

[A] follows: The third term of (A10) vanishes in the case 

of line admittances and (A10) becomes 

These real and reactive powers are regarded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas parame- 

ters and reducing these parameters to zero has the effect 

of removing the line. The sensitivity formulas can then 

be used to  predict the effect of line outages. Some initial 

results using the paper’s nominal voltage collapse of the 
118 bus system are now described. 

Four cases were chosen to sample several types of 

line outage. Losing the line between buses 1 and 2 d i s  

connects two important load buses that are also inde- 

pendently well connected to the network. Removing the 

line connecting bus 9 and bus 10 disconnects the largest 

generator in area 2 from the network (variations in the 
susceptance of this line were considered above). Bus 33 
connects some tie lines to the critical area through bus 

15. Outaging the line connecting the generator at bus 

26 to  bus 30 weakens the link between generation and 

load in the critical area without isolating the generator. 
Table 1 shows the new loading margins resulting from 

the four outages, as well as the linear and quadratic es- 

timates of the new loading margin. 

The second column of Table 1 shows the loading margin 

in MW assuming that the same generator q-limits are 

enforced as at the nominal nose point. The third col- 
umn shows the actual margin computed with the limits 

allowed to differ from those at  the nominal nose point. 

The final two columns show the linear and quadratic es- 

timates of the new loading margin computed from the 

sensitivity formulas. The negative margin estimates for 

the outage of line 9-10 are consistent with no solution for 

the equilibrium when the line is out. The outage of line 

26-30 is a case in which the quadratic estimate is con- 

siderably better than the linear estimate and changes in 

the nose point limits have a noticeable effect. This ini- 

tial testing seems to us promising and further work is 

needed. 
We thank the discussers for bringing reference [A] 

to our attention; it is a useful reference for our paper. 

[A] uses a particular “loading margin” defined in im- 

port space and an optimization formulation to determine 

the nose point, and addresses the effect of line outages. 

Our paper does not address line outages but our general 

derivation of sensitivity formulas is valid for line outages. 

The first order sensitivity formula (11) of [A] agrees 

with the first order sensitivity formula of our paper and 
reference [18] (the Lagrange multiplier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-gXH;’ of [A] 
is proportional to the left eigenvector w of our paper). 
However, the second order sensitivity formula (12) of [A] 
omits the first term of formula (AlO) which describes the 

effect on the margin of the changes in the equilibrium 

Table 1. Loading margin resulting from line outages 

(margin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1766 MW for no outage) 
line same different linear quadratic 
out limits limits estimate estimate 

1 - 2  1755 1755 1762 1760 
9 - 1 0  nosol. nosol. -376 -1266 
15-33  1770 1770 1766 1767 
26-30  1317 1029 1502 1386 

-1 
LPPl* = - [WXX(XP, Xp) + 21ugxpxp] I (Cl) wge I 

or, in the notation of [A]: 

Equation (12) of [A] is 

&r* 

dYA 
= g x ~ , - l ~ x , ~ , - l ~ ,  

(the term of (12) is half the second term of (C2), but a 
factor of half is omitted from the Taylor series (10) of 

2. The discussers ask about predicting the loss of an 

operating point when equipment is outaged. Infeasibility 

due to the loss of an operating point is indicated by the 

sensitivity formulas when they predict a negative loading 

margin and an example of this is discussed above. 

3. The discussers ask about the type of load mod- 

els used. The loads of the 118 bus system are modeled 

as constant power and the load increase assumes a con- 
stant power factor. An exception is the more detailed 

load model for bus 3 used for Figure 6, which included 

additional reactive load linearly dependent on the bus 

voltage. The intent of using this load model at  bus 

3 was to illustrate how the margin sensitivity to load 

model parameters or more detailed load models could 

be investigated. 

The derivation of the sensitivity formulas is valid for 

any load model described by differential or static equa- 

tions with parameters. Moreover, reference [19] proves 

the useful result that static load models suffice for the 

margin and sensitivity computations of this paper. 

The discussers mention “different types of bifurca- 

t i o n ~ ~ ~ .  The paper addresses the margin to  voltage col- 

lapse in which the operating point disappears in a saddle 

node or fold bifurcation; the paper does not address zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAos- 
cillatory instability via a Hopf bifurcation. 

The discussers ask about the possibility of 

poor prediction accuracy when several bifurcations are 

nearby. This could arise when several areas of the power 
system are near voltage collapse. We answer this ques- 
tion by theory and an example. 

Theory suggests how another saddle node bifurca- 

tion nearby could lead to poor prediction accuracy. An- 
other bifurcation nearby implies there is another eigen- 

value which is almost zero. It is known that close prox- 

[AI 1. 

4. 
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imity of the eigenvalues can cause the critical eigenvec- 

tors to be very sensitive to parameter changes. The sen- 

sitivity of the critical eigenvectors appears in formulas 

for the third and higher order terms in the Taylor series 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a function of p .  Large eigenvector sensitivities 

could cause large higher order Taylor series terms and 

poor prediction accuracy from the linear and quadratic 

estimates. 
A small power system example follows: Consider a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

bus power system consisting of an infinite bus connected 

by two identical transmission lines to two PQ load buses. 

The two PQ buses are joined by a weak transmission line 
of low admittance. This system is essentially two s e p  

arate single line infinite bus systems which are weakly 

coupled. Then the bifurcation set appears as in Fig- 

ure C2. Each of the flatter portions of the bifurcation 

set correspond to a voltage collapse of one of the P Q  
buses (we think of each PQ bus as a rather small area). 

One can conceive of varying the assumed direction of 
loading so that the bifurcation moves from the collapse 
of one PQ bus to the other PQ bus. The bifurcation 

would pass through the corner region in which the cur- 

vature of the bifurcation set changes significantly. We 

would expect the sensitivity formulas to lose accuracy 

when used to predict the effect of sizable changes near 

the corner region. Similar effects in large scale systems 

with many parameters are conceivable but have not yet 

been demonstrated to be a concern in practice. We sug- 

gest that the "corner" could be detected by another real 

eigenvalue being nearly zero at the bifurcation. 

Claudio Cafiizares: 

We agree that our estimates would perform 

poorly near the knee of the curve of Figure A because of 

the way limits change and that more elaborate meth- 

ods could be effective. Many of these methods use 

the sensitivity formulas repeatedly. For example, as 
Dr. Cafiizares suggests, continuation methods can ex- 

ploit the sensitivity formulas to help trace the curves 
in both the one and many parameter case. The lin- 
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Figure C2. Bifurcation set of a 3 bus system 

ear estimate would perform well over the nearly straight 

portions of the curve o 

2. Dr. Caiiizares ensitivity of the mar- 
gin when we do not as ular direction of load 

increase t% but instead ction of load increase 

t% to vary. One example was done i? the paper in the case 

of the sensitivity of the margin to IC (see Figure 4). The 

example suggested by Dr. Caiiizares in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk varies 

with parameter p is when L is defin to be the margin 

to a locally closest hifurcation in loading space (mini- 
mum margin with respect to loading A). Then equation 

(A3) can be written as 

g ( x , e , p )  = f(z,Xo + N P ) , P )  ((33) 

to emphasize the dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA on parameter p .  Equa- 

tion (A7) becomes 

L,I, = -wgPi* + W , I * ~ ~ L  = -  wfPi* + w ~ ~ I * L ~ L  
%Jt I* wfxl*i 

(C4) 
At a locally closest bifurcation, 

where Iwf~l,l is the norm of w f ~ I * .  Substituting for 

w f ~ l *  in the numerator of ((34) yields 

In general, finding kP may require considerable calcula- 

tion, but if the norm used is Euclidean, then L T i p  = 0 

and (C5) reduces to the simple formula 

which is the same as the first order sensitivity formula 
(7) of the paper. We agree with Dr aiiizares that the 

first order sensitivity would be useful for a predictor step 

of an optimization method. 

3. We agree that exploration of different margins 

such as those which measure cost would bs useful. Our 

derivations are written generally to allow creativity in 
appropriately defining the margin when the formulas are 

applied. The system parameterization could also be chc- 
sen to include some parameters in dollars. The linear 

estimates could provide the marginal costs useful in eco- 
nomic analyses. 

Correc t ion  of misprint: 

The left hand sides of equations (8) and (9) of the 

paper should be AL. 

Manuscript received April 2, 1996. 


