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Abstract Regional climate models are sensitive to the forcing data used, as well as1

different model physics options. Additionally, the behaviour of physics parameteri-2

sations may vary depending on the location of the domain due to different climatic3

regimes. In this study, we carry out a sensitivity analysis of the Weather Research4
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and Forecasting model to different driving data and model physics options over5

a 10-km resolution domain in the southwest of Western Australia, a region with6

Mediterranean climate. Simulations are carried out on a seasonal time-scale, in7

order to better inform future long-term regional climate simulations for this re-8

gion. We show that the choice of radiation scheme had a strong influence on both9

temperature and precipitation; the choice of planetary boundary layer scheme has10

a particularly large influence on minimum temperatures; and, the choice of cumu-11

lus scheme or more complex micro-physics did not strongly influence precipitation12

simulations. More importantly, we show that the same radiation scheme, when13

used with different driving data, can lead to different results.14

Keywords Dynamical downscaling · Physics parameterisation · Regional climate15

modeling · WRF16

1 Introduction17

The south-west of Western Australia (SWWA, see Fig. 1) is a region of significant18

agricultural production, with an estimated 13 million hectares of native vegetation19

cleared for agricultural land-use since the late 1820s (Huang et al, 1995; Andrich20

and Imberger, 2013). Grains are the main crops grown, with the commodity value21

of wheat, barley, and oats varying seasonally from approximately $3,000 million to22

more than $5,000 million between 2006 and 2010 (ABS, 2010). The region’s crops23

are grown from winter to spring and rain-fed, and hence, crop yields are impacted24

heavily by inter-annual variations in temperature and precipitation. SWWA is also25

home to some of Australia’s most iconic forests, which are sensitive to changes26

in temperature and precipitation (Hughes et al, 1993; Hughes, 2003; Evans and27
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Lyons, 2013). An understanding of the current climate of SWWA and how it might28

change in the future is therefore crucial for the planning and management of the29

region’s agriculture and forestry sectors.30

SWWA experiences a Mediterranean climate, with hot and dry summers, and31

cool and wet winters (Gentilli, 1971). Its climate is mainly driven by the position32

of the subtropical high pressure belt, which brings hot and dry continental air from33

the interior to the southwest during summer. Continental heating during summer34

results in surface heat troughs which control the penetration of sea-breezes and35

modulates temperature along the coast (Ma and Lyons, 2000; Ma et al, 2001).36

As the subtropical high pressure belt gradually moves northwards during winter37

and autumn, the region experiences most of its annual rainfall via the passage of38

frontal systems. Complex interactions between blocking-highs and frontal systems39

result in cut-off lows which are thought to account for up to 40% of the austral40

summer and spring rainfall (Pook et al, 2011) in central WA. Summer rainfall41

is also influenced by the passage of northwest cloud bands (Tapp and Barrell,42

1984). Coastal regions are influenced by the presence of the Leeuwin Current, an43

anomalous western boundary current which drives warm tropical waters south-44

wards (against prevailing winds) resulting in a moderation of winter temperatures45

and increased rainfall in the region relative to other western coastal margins (Rea-46

son et al, 1999). The main topographic influence on temperature and precipitation47

in SWWA is the Darling Scarp (Pitts and Lyons, 1989), which extends 200 km in48

a north-south direction from approximately 31oS to 34oS roughly 25 km from the49

coast, representing a sudden increase in topography of about 300 m from sea level50

(Fig. 1(c)). Previous studies have shown that a minimum horizontal resolution of51

500 m is required to adequately simulate dynamical features of wind flow along52
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the scarp (Pitts and Lyons, 1990). However, these simulations were restricted to a53

short time-scale of a few days, and did not explicitly focus on precipitation. Kala54

et al (2010) carried out longer simulations, focussing on two frontal events but at a55

lower resolution (20 km), and showed that whilst their model was able to capture56

the overall precipitation patterns, it was not able to accurately resolve orographi-57

cally induced precipitation close to the coast due to a poor representation of the58

scarp.59

In summary, there is considerable knowledge about the current climate of60

SWWA, however, there is limited information about current and future impacts61

at the regional scale. Regional climate models (RCMs) are a widely adopted tool62

to investigate current and future climatic changes at the regional scale. RCMs63

can dynamically downscale the synoptic fields from re-analysis products and/or64

global circulation models (GCMs), usually in the order of 100 to 250 km, to a finer65

resolution which is relevant at the farm/forest scale (1 to 10 km). An RCM which66

is being increasingly used for such purposes is the Weather Research and Fore-67

casting (WRF) Advanced Research (WRF-ARW) modelling system (Skamarock68

et al, 2008). WRF has been used in regional climate simulations for the continen-69

tal United States (Liang et al, 2005; Lo et al, 2008; Zhang et al, 2009; Leung and70

Qian, 2009; Bukovsky and Karoly, 2009; Caldwell et al, 2009; Salathe et al, 2010;71

Bukovsky and Karoly, 2011), East Asia (Kim and Song, 2010; Yuan et al, 2012), as72

well as Eastern Australia (Evans and McCabe, 2010), and is one of the RCMs being73

used for the Coordinated Regional climate Downscaling Experiment (CORDEX)74

(Giorgi et al, 2009) within the World Climate Research Program. WRF can be75

operated under a variety of configurations which can lead to varying results (e.g.,76

Lo et al, 2008; Bukovsky and Karoly, 2009; Argüeso et al, 2011; Awan et al, 2011;77
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Evans et al, 2011), and hence it is crucial to test for the most appropriate model78

setup for a particular purpose over a given region/domain.79

Different model versions and various settings of WRF were tested by Bukovsky80

and Karoly (2009) for the continental United States over a 4-month period. They81

generally recommend the use of Sea Surface Temperature (SST) updates, no inner82

nest feedback (i.e., no 2-way nesting), use of the NOAH land surface scheme (Ek83

et al, 2003) rather than the less complex 5-layer diffusion scheme, and the Kain-84

Fristch (KF) scheme (Kain, 2004) for convection. The effects of different WRF85

parameterisations were tested on a yearly time-scale for the European Alpine re-86

gion (Awan et al, 2011), and it was found that parameterisations were sensitive to87

not just the region, but also the season. For example, cumulus and microphysics88

schemes have a stronger influence during summer months, while the PBL and ra-89

diation schemes have an influence throughout the year. This was related to the90

land-surface having a stronger influence as compared to large-scale synoptic fields,91

due to stronger surface heating during summer months. Overall, their best model92

performance was achieved by using the KF scheme for convection (cumulus pa-93

rameterisation); the Yonsei University (YSU) scheme (Hong et al, 2006) for the94

PBL with the Monin-Obukhov (MO) scheme for the surface layer; and the Dud-95

hia scheme (Dudhia, 1989) for radiation. Awan et al (2011) also reported their96

results to be region specific, namely, that WRF tends to over-predict precipitation97

in mountainous regions during both summer and winter months.98

Argüeso et al (2011) investigated different WRF parameterisations for regional99

climate simulations over Southern Spain for a 10-year period. They determined100

that the cumulus and PBL schemes had a crucial impact on precipitation whereas101

the microphysics scheme had no noticeable impact. Minimum temperatures were102
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sensitive to the choice of PBL scheme. Overall, they found that the combina-103

tion of the Betts-Miller-Janjic (BMJ) cumulus scheme (Betts, 1986; Betts and104

Miller, 1986; Janjić, 1994, 2000) with the Asymmetric Convective Model (AC2)105

PBL scheme (Pleim, 2007a,b) and the WRF single moment 3-class microphysics106

scheme to perform the best. Flaounas et al (2011) and Crétat et al (2011) in-107

vestigated the impacts of different convective and PBL schemes over Africa and108

found that the choice of PBL schemes have the strongest effect on temperature,109

and that precipitation variability was strongly influenced by the choice of convec-110

tive parameterisation scheme. Evans et al (2011) carried out a 36-member WRF111

physics ensemble for storm events on the east coast of Australia. They found that112

whilst no particular combination of schemes performed best for all events, vari-113

ables and metrics, the MYJ PBL scheme and BMJ cumulus schemes were robust in114

performance. They suggest that the YSU PBL scheme, KF scheme for convection,115

and RRTMG radiation scheme should not be used in combination for Eastern Aus-116

tralia. Evans et al (2011) also point out that the choice of physics scheme becomes117

more important as rainfall intensity increases.118

Other than radiation, cumulus, and PBL schemes, the choice of land surface119

model (LSM) can strongly influence near surface temperature, moisture and winds.120

Jin et al (2010) investigated four LSMs in WRF and found that the more complex121

Community Land Model (CLMv3), generally outperformed the simper NOAH,122

RUC (Smirnova et al, 2000), and soil thermal diffusion scheme. They found no123

close relationship between the choice of LSM and precipitation. Prabha et al (2011)124

investigated the influence of NOAH and RUC LSMs on low-level jet dynamics and125

found that the RUC LSM performed better as compared to NOAH at lower eleva-126

tions, but NOAH performed better at higher elevations. They also found that the127
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NOAH LSM resulted in higher vertical mixing as compared to RUC under sta-128

ble conditions with low winds and high pressure. They however did not examine129

influences on precipitation. Mooney et al (2012) on the other hand, have shown130

that LSM choice not only influences temperature, but precipitation simulations,131

especially during the summer season over Europe. Namely, they showed that use132

of the NOAH LSM as compared to the RUC LSM, resulted in lower biases for133

temperature, but simulations using the RUC LSM generally had lower precipita-134

tion biases as compared to those using NOAH. Finally, a recent study by Stéfanon135

et al (2013) showed that use of the simple thermal diffusion scheme in WRF does136

not allow for the accurate simulation of heat-wave conditions over Europe, and137

more sophisticated LSMs such as the RUC, which explicitly resolve the treatment138

of soil processes is required.139

Based on the current literature, it is clear that WRF is sensitive to the domain140

(location and boundaries), as well as different model parameterisations. Adequate141

testing of model configuration is therefore essential before carrying out long-term142

regional climate simulations. Accordingly, the aim of this paper is to test differ-143

ent model physics parameterisations and input data on simulated precipitation144

and temperature maxima and minima for SWWA. This forms the first part of a145

broader research project which aims at carrying out regional climate impact as-146

sessments for the agricultural and forestry sectors of SWWA. We note that the147

choice of model horizontal and vertical resolution can be equally important to148

the choice of boundary conditions and physics options. However, the resolution149

issue is not explicitly addressed in this paper, as model resolution for long term150

climate simulation is inherently limited to computational and storage constraints.151

This paper focuses on finding the best physics options and input forcing data,152
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given these constraints. The next section describes the numerical experiments car-153

ried out, followed by a description of the observational data-sets and statistical154

analysis used.155

2 Methods156

2.1 Numerical Experiments157

Yearly simulations were carried out with WRF-ARW Version 3.3 from October158

2009 to November 2010, with the first two months being model spin-up and not159

used in the analysis. Two nested grids (1-way nesting) were used spanning 5150 km160

× 4200 km and 1760 km × 1440 km, at 50 km and 10 km resolutions respectively161

as shown in Figs. 1 (a) and (b). Both nested grids used 30 vertical levels, with162

levels more densely spaced within the PBL. Given the relatively long simulation163

period, use of nudging techniques was required to prevent model drift. This is164

commonly used for regional climate simulations (e.g., Argüeso et al, 2011) to ensure165

that the simulations retain the large scale features important in regional climate166

modeling. Based on previous studies which have investigated the influence of grid167

(analysis) versus spectral nudging techniques (Lo et al, 2008; Bowden et al, 2011;168

Liu et al, 2012; Omrani et al, 2013), we opted for spectral nudging applied to169

the outer domain (50 km) and above the PBL. Deep soil temperatures were set170

to a 150-day lagged averaging period and a series of sensitivity tests were carried171

out by changing the source of lateral boundary-conditions, SSTs, and the following172

model parameterisation schemes as outlined in Table 1; LSM, cumulus/convective,173

longwave and shortwave radiation, PBL, and cloud-microphysics.174
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The reference experiment (REF) was chosen because it follows the same con-175

figuration as in Evans and McCabe (2010) (except that Evans and McCabe (2010)176

used WRF3.0.1) which has shown adequate results for southeast Australia. REF177

uses 6-hourly boundary conditions from the 2.5 × 2.5 degree resolution National178

Centre for Atmospheric Research (NCAR) / National Centre for Environmental179

Prediction (NCEP) (commonly referred to as NNRP); the NOAH land surface180

model (LSM) (Chen and Dudhia, 2001a,b); the Rapid Radiative Transfer Model181

(RRTM) (Mlawer et al, 1997) and Dudhia schemes for long wave and shortwave182

radiation respectively; the KF scheme for convection; the YSU PBL scheme with183

MO surface layer scheme; surface skin temperatures within the NNRP data as184

SSTs; and the 5-class single moment microphysics scheme (WSM 5-Class).185

Experiment N SST is the same as REF, except that weekly mean SSTs from186

the National Oceanic and Atmospheric Administration (NOAA) SST product is187

used (Reynolds et al, 2002) and are interpolated to 6-hourly fields for use in WRF.188

The NOAA SST is at a 1.0 × 1.0 degree resolution and derived from satellites and189

in-situ measurements. On the other hand, NNRP data used in REF incorporate190

an earlier version of the same SST data-set (Reynolds and Smith, 1994), which191

are interpolated to daily values and used in the coupled ocean-atmosphere data192

assimilation system (Kalnay et al, 1996) to produce the NNRP product. When193

running WRF for the REF simulation, these SST data are not used directly, and194

the surface skin temperature output from NNRP is used instead, as the source195

of SST in WRF. Hence, the difference between experiments N SST and REF is196

that N SST uses a higher resolution SST in a direct fashion, whereas REF has197

a lower resolution, and indirectly incorporates satellite estimates of SST. This is198



10 Jatin Kala et al.

illustrated in Fig. 2 for JJA (winter) and SON (spring) showing that NOAA SSTs199

are higher by up to 1.4oC close to the coast.200

Experiments FNL and ERA are the same as REF, except that the 6-hourly201

boundary conditions are taken from the 1.0 × 1.0 degree NCEP Final (NCEP-202

FNL) Operational Global Data Assimilation System and the 1.5 × 1.5 degree203

ERA-interim (ERA-Int) re-analysis product (publicly available version) from the204

European Centre for Medium-Range Weather Forecasts (ECMWF) respectively.205

The NCEP-FNL data includes observations from the Global Telecommunications206

Systems and many other data sources, and is generated using the same model used207

by NCEP for their Global Forecast System (GFS). NCEP-FNL data are prepared208

after GFS is initialised such that the observational data can be used, but the209

product is only available from late 1999 to present. The ERA-Int data emanates210

from the ECMWF’s ERA-40 product and involves better representations of the211

hydrological cycle, quality of the stratospheric circulation, handling of biases, and212

use of observations. The data are available from 1979 onwards and more detail can213

be found in Dee et al (2011). These experiments were carried out because, as to214

the author’s knowledge, no previous study has explicitly compared these three re-215

analysis products in WRF. Additionally, these simulations will help better inform216

the influence of using data from different sources (e.g., different GCMs) as input217

forcing for future climate projections for future studies in this region.218

The RUC simulation differs from REF in that it uses the RUC LSM (Smirnova219

et al, 2000), rather than the NOAH LSM (Chen and Dudhia, 2001a,b). This ex-220

periment was carried out as the choice of LSM can have a large influence on tem-221

perature and precipitation (e.g., Prabha et al, 2011; Mooney et al, 2012; Stéfanon222

et al, 2013). Whilst the NOAH LSM is the most commonly used LSM in WRF for223
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regional climate modelling (e.g., Evans and McCabe, 2010; Argüeso et al, 2011;224

Awan et al, 2011; Argüeso et al, 2012), the RUC LSM is of comparable complexity225

but has not been as extensively evaluated.226

The BMJ simulation differs from REF in that the BMJ scheme is used for con-227

vection rather than KF. The choice of convective scheme can have a strong influ-228

ence on precipitation simulations (Bukovsky and Karoly, 2009; Argüeso et al, 2011;229

Awan et al, 2011). Whilst the majority of studies use the KF scheme (Bukovsky230

and Karoly, 2009; Evans and McCabe, 2010; Awan et al, 2011), Argüeso et al231

(2011) found the BMJ scheme performed better for their simulations. Experiments232

RRTMG and CAM consider different radiation schemes; RTG uses a modified233

version of the shortwave RRTM scheme for application in GCMs, RRTMG , for234

both longwave and shortwave radiation and the Community Atmosphere Model235

schemes are used for longwave and shortwave radiation in the CAM experiment.236

The accurate resolution of shortwave and longwave radiation is essential for mod-237

elling low level temperatures, and the PBL and the radiation schemes tested in238

this experiment tackle the problem in different ways. The CAM schemes use a239

Delta-Eddington approximation for shortwave radiation absorption and scatter-240

ing (Collins et al, 2004), and the RRTMG model, like the RRTM model, uses241

the correlated-k method for radiative transfer (Iacono et al, 2008). Both CAM242

and RRTMG schemes use overlapping cloud fraction algorithms to determine the243

cloudiness of the grid whereas the RRTM/Dudhia parameterisaion considers only244

a binary measure of grid cloudiness. CAM and RRTMG radiation schemes differ245

further from Dudhia/RRTM in that they take into account the concentrations246

of trace gases, aerosols, ozone, and carbon-dioxide, and they consider reflected247

shortwave radiation fluxes.248
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PBL and land surface schemes are varied in experiments AC2 and AC2 P.249

These experiments differ from REF through the use of the AC2 scheme for PBL250

with the MO land surface scheme in the case of experiment AC2 and with the251

Pleim-Xiu (PX) surface layer scheme (Pleim, 2006) in experiment AC2 P. These252

experiments were undertaken as a result of Argüeso et al (2011) findings that the253

AC2 scheme performed better for their simulations as compared to the more widely254

used YSU/MO schemes. The PX scheme was also tested as the AC2 scheme can255

be used in conjunction with both the MO and PX schemes.256

Simulations 3C and 5C D test the sensitivity of microphysics schemes. The257

3C experiment is the same as in REF, except it employs the simpler 3-class mi-258

crophysics, rather than the more complex 5-class scheme used in REF. The 3-259

class scheme only resolves 3 states of cloud water, namely water/ice, vapour, and260

rain/snow, whereas the 5-class scheme includes cloud water and ice, rain, snow,261

and vapour. The 5C D experiment employs the double moment 5-class scheme262

rather than the single moment scheme of the REF experiment. The double moment263

scheme computes hydrometeor number concentrations, allowing for more flexibil-264

ity, whereas the single moment schemes have a pre-defined distribution function265

for hydrometeor sizes (Lim and Hong, 2009). As a rule of thumb, high resolution266

simulations of individual storm events usually require more complex microphysics267

parameterisations, which may not be necessary for regional climate runs (from a268

computational perspective) hence it is useful to test several schemes to strike the269

right balance. We note that more complex 6-class schemes exist in WRF which270

include graupel, however, this form of precipitation is rarely observed in SWWA,271

and hence these schemes were not tested.272
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The final two experiments, FNL RTG and ERA RTG, were conducted as a273

consequence of the results from the experiment RTG which will be discussed274

later. These simulations differ from the REF experiment because they employ275

the RRTMG radiation scheme (for both longwave and shortwave radiation), and276

they use the NCEP-FNL (FNL RTG) and ERA-Int (ERA RTG) lateral boundary277

conditions.278

2.2 Observations, regionalisation and data analysis279

Daily gridded observations of precipitation and maximum and minimum temper-280

atures were obtained from the Australian Bureau of Meteorology (BoM) (Jones281

et al, 2009) as part of the Australian Soil Water Availability Project (AWAP)282

(Raupach et al, 2008, 2009). These data are at a resolution of 0.05o × 0.05o (ap-283

proximately 5 km × 5 km) and are obtained by interpolating data from a network284

of stations (Jones et al, 2009). The number of stations used varies with time and285

their location are shown as the white dots in Figs. 4a and 4b for precipitation and286

temperature respectively. The AWAP data-set has been previously used in evalu-287

ating climate simulations over Australia (Evans and McCabe, 2010; Evans et al,288

2011). King et al (2013) evaluated the AWAP data-set against station observations289

for extreme rainfall events and found that whilst the product tends to underes-290

timate the frequency of heavy rainfall events and overestimate that of very low291

rainfall events, it generally performs reasonably well in capturing the inter-annual292

variability of extreme rainfall events, and their spatial extents. The latter caution293

against the use of AWAP when the aim is to examine trends and variability in294

extremes in regions with poor coverage of station locations. This is not an issue for295
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this study as the focus is on the ability of WRF to simulate the seasonal variation296

over a one year period.297

An initial comparison of the WRF output to the BoM AWAP gridded data298

showed that the model had errors specific to particular land use regions within299

the model domain. Considering these particularities, we distinguish 3 regions as300

illustrated in Fig. 3; the coastal region, agricultural region and the predominantly301

inland rangelands. The northern reaches of the coastal region accommodates the302

overwhelming majority of the SWWA population in the Perth metropolitan area303

and the south and east of the region contains most of the remaining forest in the304

SWWA. The agricultural region, which consists almost exclusively of cereal crops305

in the winter and spring and bare earth for the remainder of the year, is physically306

bounded to the east by nature reserves and a vermin proof fence (Lyons et al,307

1993), but it is constrained also by the rainfall gradient, which declines markedly308

from west to east as the distance from the coast increases (Fig. 4(a)). The eastern309

boundary of the agricultural region is therefore the approximate limit at which310

rain fed crops are viable. The rangelands region, which comprises the majority of311

the SWWA is a semi-arid to arid zone which is sparsely vegetated and remains312

in a relatively pristine state. As defined, these land use regions are particularly313

relevant for management of the agriculture and forestry sectors in the SWWA314

however they also represent different climatic regions, particularly with respect to315

rainfall; with the coastal region receiving the majority of the rainfall while the316

agricultural region receives on average about half the rainfall of the coast which317

is a combination of frontal and convective processes. Statistics were computed for318

each region (Fig. 3) after removing the relaxation zone from the grid boundaries,319
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and shown in Taylor diagrams (Taylor, 2001) and bias plots (biases are shown in320

absolute and percentage terms, i.e., scaled by the mean of the observations).321

Whilst the use of a gridded data-set such as AWAP is very useful in evaluating322

WRF, it has limited use in investigating the intensity, location, and frequency323

of rainfall events. To this end, we also selected 3 precipitation stations, one in324

each region, to carry out a time-series analysis. These stations are shown in Fig. 3325

and were chosen because they are Bureau of Meteorology stations with long term326

quality controlled data and are on approximately the same latitude.327

2.3 Climatology328

The BoM-AWAP data is illustrated in Fig. 4 showing the seasonal mean sum-329

mer (December-January-February or DJF), autumn (March-April-May or MAM),330

winter (June-July-August or JJA), and spring (September-October-November or331

SON) precipitation, maximum temperatures, and minimum temperatures for 2010.332

During DJF, precipitation is mostly confined inland and brought about by North-333

West cloud bands and surface convection. Precipitation increases during MAM334

and JJA as the cold-fronts associated with the sub-tropical high pressure cells335

move further North, with maximum precipitation during JJA and a distinct East-336

West gradient. Precipitation decreases on the West coast during SON as the cold-337

fronts move further South, and North-West cloud bands and convection lead to338

precipitation further inland. Maximum and minimum temperatures both show a339

North-South gradient, with the highest temperatures confined to the North-West340

and coolest temperatures to the South-West.341
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Figure 5 shows the seasonal anomalies for precipitation and maximum and342

minimum temperatures for 2010 over the period 1970-2010. 2010 was clearly a343

dryer than average year, especially during JJA (winter) and SON (spring), and344

warmer than average, especially in SON, DJF (summer), and MAM (autumn)345

during the day (maximum temperatures), but cooler than average in JJA during346

the night (minimum temperatures). This overall warming and drying trend has347

been observed since the mid 1970’s from streamflow and station observations and348

been consistent to date (Bates et al, 2008). The overall warming and drying trend349

is also consistent with future climate projections for this region. Namely, Moise350

and Hudson (2008) conducted an analysis of IPCC AR4 coupled ocean-atmosphere351

GCMs, and found that all of them consistently predict a 25-30% decrease in win-352

ter rainfall for southwest Australia. The more recent IPCC AR5 report (Collins353

et al, 2013) also identifies SWWA as a region of strong agreement for decreases in354

maximum 5-day precipitation and increase in consecutive dry days. Hence, whilst355

the choice of 2010 does not constitute an average year in a climatological sense,356

it is representative of future changes in climate for this region. Since the aim of357

this study is to investigate a WRF configuration which will be used for regional358

climate projections, the choice of 2010 (dryer and warmer than average) is partic-359

ularly relevant.360

3 Results361

Before analysing the influence of the different forcing data and physics options, we362

first briefly examine the effect of the use of the higher resolution 10-km inner nested363

grid as compared to the outer 50-km grid, as illustrated in Fig. 6 showing seasonal364



Sensitivity of WRF to driving data and physics options 17

precipitation, maximum and minimum temperatures from the REF experiment for365

the two domains. The main influence of the inner nest is to better resolve coastal366

processes, especially for precipitation, with the outer domain clearly unable to367

capture much of the coastal rainfall as compared to the observations (Fig. 4). This368

is not unexpected as the topography is better resolved for the inner nest (Fig. 1).369

The influence of the inner 10-km grid on temperature is less evident as compared370

to precipitation, but similarly, the differences are mostly at the coast (for example371

JJA minimum temperatures). Both domains show very similar patterns and biases372

as compared to the observation (Fig. 4).373

3.1 Temperature374

Figures 7 and 8 show Taylor diagrams for maximum and minimum temperatures375

respectively (the coastal region is represented by squares, the agricultural region376

by triangles, and the rangelands by circles). The arc on the Taylor diagrams show377

the spatial correlation pattern, while the horizontal and vertical axes represent378

the ratio of the variance of the model to the observations. The dashed concentric379

circles represent the centred pattern root-mean-square (RMS) difference. Hence,380

for a perfect model, the point should lie on the 1:1 curved line (equal variance381

to the observations), and as close as possible to the horizontal axis (zero RMS382

difference and pattern correlation of one). Absolute and percentage biases are383

shown in Tables 2 and 3.384

All simulations show high pattern correlation of 0.8 to 1.0 for maximum tem-385

peratures. The RMS errors and relative variances are higher during JJA (austral386

winter) as compared to the other seasons. Maximum temperatures are simulated387
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well by the REF experiment in terms of correlation, RMS error, and variance how-388

ever there is a systematic negative bias which is highest in DJF and SON, between389

3-4 oC. There is considerable variation in the bias between the regions however,390

there is no consistency between the seasons in this regard; for example, the coastal391

region is simulated with the least bias in MAM but in SON the coastal bias exceeds392

that of both the agricultural region and rangelands. This may be partly due to393

the fact that the regionalisation used reflects the east-west precipitation gradient,394

whereas the temperature gradient is, as expected, north-south. This is clearly a395

shortfall of this study, and a separate regionalisation for temperature could be396

more appropriate. However, the context here is to provide future climate informa-397

tion to the agricultural and forestry sectors, and hence, we use a regionalisation398

based on broad land-use classes.399

Reflecting the trend observed in maximum temperatures, night time minimum400

temperatures are also systematically underestimated by the REF experiment how-401

ever there is considerably less variation in the bias between the coastal, rangeland402

and agricultural regions. The percentage bias is also greater for minimum tem-403

peratures than for maximum; biases were generally below 12% of maximum tem-404

peratures however minimum temperature biases are generally greater than 12%,405

and in some cases (the winter minima in the agricultural region and rangelands)406

bias exceeds 50%. The correlation of both minimum and maximum temperatures407

in the REF experiment were high, except for some simulations during JJA for the408

rangelands (low density of station observations) and the variance ratio was less409

than 2, showing good performance.410

The N SST experiment results were very similar to that of the REF experiment411

showing that use of NOAA SSTs rather than skin temperatures within NNRP has412
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little influence on temperatures. The FNL and ERA simulations however, demon-413

strate significantly lower bias relative to the REF experiment, and all experiments414

driven by NNRP boundary conditions, for maximum temperatures, especially in415

the warmer months (DFJ, MAM and SON). Both simulations had a slight positive416

bias for minimum temperatures. While the correlations of these experiments are417

high, they do exhibit some noticeable differences in variance between models and418

observations when compared to the NNRP driven experiments, particularly with419

respect to minimum temperatures. For example, when compared to REF, RMS420

errors and the variance ratio are higher during DJF at the coast and in the agricul-421

tural regions. However, for impact studies focussing on agriculture and forestry, it422

is temperature extremes, rather than variability, which has the strongest impact.423

Hence, the reduction in bias is a major advantage of using the FNL and ERA-424

interim data-sets over the NNRP. We also note that while both sets of driving425

data perform better than NNRP, there is however little difference between the426

performance of these two re-analysis packages. Of particular relevance to agricul-427

ture is surface soil moisture and temperature and an examination of the differences428

between the 3 re-analysis showed that FNL and ERA had higher surface soil tem-429

peratures as compared to REF by 2-3 oC (not shown), reflecting the lower screen430

temperature bias for these two experiments as compared to REF (Tables 2 and 3).431

The FNL and ERA experiments also showed slightly higher soil moisture as com-432

pared to REF by about 0.05-0.1 m−3 m−3 which can be explained by the higher433

precipitation for these two experiments, discussed later in section 3.2.434

The RUC experiment has large positive biases as compared to the REF ex-435

periment for maximum temperature ranging from 5 to 9oC especially during the436

SON, DJF, and MAM seasons (Table 2), whilst the biases for minimum temper-437
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ature were slightly lower as compared to REF (Table 3). The Taylor diagram for438

maximum temperature (Fig. 7) shows that the RUC experiment had large variance439

ratios as well as RMS error, especially for JJA and SON, as compared to REF ex-440

periment, whilst there were no marked differences for minimum temperature (Fig.441

8). Figure 9 shows the seasonal differences in sensible and latent heat flux between442

the REF and RUC experiments. During DJF and SON, the RUC experiment had443

higher sensible heat over most of the agricultural region and rangelands by about444

15-30 W m−2 and lower latent heat flux by about 5-15 W m−2, reflecting the445

large biases in maximum temperature. Differences in soil moisture between the446

two experiments were less than 0.1 m−3 m−3.447

The BMJ experiment results were very similar to the REF experiment, show-448

ing little change in bias or RMS and variance ratio or spatial correlation pattern.449

Changing the radiation scheme showed more interesting results. CAM shows a450

slight reduction in negative bias relative to the REF experiment however the im-451

provement observed by the use of the RRTMG radiative scheme for longwave and452

shortwave radiation (in experiment RTG) is significant, and produces the strongest453

model performance across all simulations driven by NNRP boundary conditions.454

In MAM and JJA, the negative bias is almost eliminated entirely by the RTG455

experiment and there is at least a 1oC improvement in DJF and SON. It was as456

a result of these findings that the FNL RTG and ERA RTG model simulations457

were run to further assess the merits of the RRTMG scheme when used with the458

FNL and ERA-interim re-analyses.459

When the FNL and ERA-Interim boundary conditions are used along with the460

RRTMG longwave and shortwave radiation schemes in experiments FNL RTG461

and ERA RTG, the results show a reduction in the negative bias for maximum462
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temperatures, indicating some improvement as compared to to the FNL and ERA463

simulations (Table 2). For minimum temperatures, the FNL and ERA simulation464

had small positive biases, and use the RRTMG scheme results in an increase465

in these biases (Table 3), i.e., the net effect of the RRTMG scheme is warmer466

temperatures. For the REF experiment, the biases were mostly negative both467

maximum and minimum temperatures, and hence, the RTG simulation showed a468

reduction in bias for both maximum and minimum temperatures. For the FNL and469

ERA experiments, biases were negative for maximum temperature, but positive for470

minimum temperatures, and hence use of the RRTMG scheme in FNL RTG and471

ERA RTG improved the maximum temperature bias, but increased the minimum472

temperature bias. The net warming effect of the RRTMG scheme (in experiments473

RTG, FNL RTG and ERA RTG) can be explained by the high incoming shortwave474

radiation as compared to use of the Dudhia scheme (in experiments REF, FNL,475

and ERA) as illustrated in Fig. 10 showing differences between 15-30 W m−2
476

across the domain for all seasons.477

Whilst the use of different micro-physics had little to no influence on temper-478

ature, the use of the AC2 PBL scheme increased the negative bias for maximum479

temperatures, most notably in DJF, MAM, and SON, especially in the range-480

lands region. This negative bias is further enhanced when the AC2 PBL scheme481

is employed in combination with the Pliem Xu surface layer scheme (experiment482

AC2 P). However, for maximum temperatures, the AC2 P simulations result in483

lower biases as compared to the AC2 experiment, during DJF and SON. The high484

negative bias for minimum temperatures can be related to a rapid collapse of485

the nocturnal PBL as illustrated in Fig. 11, showing the seasonal daily average486

minimum PBL height for the AC2, AC2 P and REF experiments.487
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3.2 Precipitation488

Figure 12 shows Taylor diagrams for precipitation and the absolute and percentage489

biases are shown in Table 4. A clear seasonal pattern is evident for all simulations490

and regions, with biases, RMS errors and ratio of variances being generally higher491

during DJF and MAM (austral summer and autumn) and lower during JJA and492

SON (winter and spring). The weak performance in precipitation for all simulations493

during summer can be attributed to the difficulty in accurately simulating the494

intensity of the convective rainfall events which dominate rainfall in summer and495

autumn, especially in the rangelands region. Winter rain is mostly from frontal496

systems, i.e., synoptically driven and strongly influenced by the forcing data, and497

hence, JJA and SON precipitation show lower errors.498

Biases for the REF experiment are negative except for coastal region during499

DJF (low rainfall season), showing the WRF generally under-predicts precipita-500

tion, and additionally, the bias is most negative for the rangelands regions, ranging501

from -80 to -100 % (a bias of -100% indicates that the model hardly captured any of502

the observed rainfall). Precipitation in this region is relatively small in magnitude503

compared to the coast (see Figure 4) and strongly influenced by surface convection504

all year-round, rather than synoptically driven. Given the spatial paucity of the505

observational network in the rangelands there is an inherent disconnect between506

the observation of small scale convective storms and the model’s ability to simulate507

such events.508

The spatial correlations varied generally between 0.8 and 1.0, showing that509

WRF reproduced spatial patterns of precipitation reasonably well. Frontal rain-510

fall, which is the source of most of the precipitation along the coast and in the511
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agricultural region in JJA (Fig. 12c) and SON (Fig. 12d), is well simulated how-512

ever the negative bias in the REF simulation is not insignificant, particularly in513

the agricultural areas (55%). Previous studies in the SWWA have highlighted the514

meteorological importance of the Darling scarp (a sloping, 300m high escarpment,515

25km inland which runs parallel to the north-south coastline) and the need to run516

simulations at a very fine scale to capture the influence on precipitation of this517

topographical feature (Pitts and Lyons, 1990; Kala et al, 2010). Hence, it is likely518

that the resolution of this simulation is not accounting for the influence of the519

scarp on frontal rainfall.520

To better quantify the ability of WRF to simulate the intensity, timing, and521

frequency of rainfall events, we carried out a station-level comparison of the REF522

simulated precipitation against 3 stations (Fig. 3), one located in each region523

and at roughly the same latitude, illustrated in Fig. 13. Close to the coast, the524

timing of rainfall events is very well captured, with the exception of a large rainfall525

event in late March, and WRF generally under-predicts precipitation. Within the526

agricultural and rangelands region, as the intensity of rainfall decreases further527

from the coast, the REF experiment clearly is unable to capture small rainfall528

events, especially at the Norseman station. Namely, REF only simulated 3 rainfall529

events, whereas the observations show well in excess of 15 rainfall events.530

The use of the NOAA SSTs in the N SST experiment as compared to the REF531

experiment results in a reduction in bias for precipitation along the coast and to532

a lesser degree in the agricultural region during JJA and SON. There is a large533

increase in percentage bias at the coast and the agricultural region during DJF,534

however, this corresponds to a very small change in absolute bias. This is expected535

as DJF rainfall in these regions is relatively small. Figure 2 shows the difference536
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in SST between the N SST and REF experiments during JJA and SON, and537

illustrates that the use of surface skin temperature data in the REF experiment538

as a surrogate for SST is predominantly underestimating SST, especially close539

to the coast. In terms of winter precipitation, there is merit in employing the540

satellite derived NOAA SST data as used in the N SST experiment, especially541

when simulation domains contain a significant percentage of sea surface, as is the542

case here. While the NOAA SSTs are providing a benefit in winter coastal model543

performance, it is however worth noting that, in addition to a slight bias increase544

in DJF, the N SST simulation did result in an increase in relative variance and545

RMS errors for precipitation in the warmer months of DJF and MAM. For this546

region, accurate simulations of precipitation along the coast during JJA is of prime547

importance as it is the main source of water for rain-fed agriculture. Hence, we548

argue that the use of NOAA SSTs is a better option.549

The FNL and ERA simulations show a clear improvement in bias during MAM,550

JJA, and SON, as compared to the REF experiment. This is especially noticeable551

for the rangelands region, with smaller biases during JJA and SON as compared552

to much larger and negative (close to -100%) bias for the REF experiment. During553

DJF, the FNL simulation produces a larger bias for the coastal and agricultural554

regions, as compared to the REF experiment, while the ERA simulation only555

improves the bias at the coast. However both the ERA and FNL simulations556

shows higher spatial correlation pattern and lower variance ratio and RMS errors557

as compared to the REF experiment, but the ERA simulations performs best558

overall. An examination of the differences in SST between the REF and ERA and559

REF and FNL simulations did not reveal any clear spatial patterns which could560

explain the differences in precipitation simulations.561
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Use of the RUC LSM had little influence on precipitation as compared to REF,562

except for higher RMS error and variance ratio at the coast for MAM and larger563

negative bias at the coast during JJA. It was interesting to note that although564

RUC produced less precipitation than REF, as shown by the larger negative bias,565

the RUC simulations had larger latent heat flux during JJA at the coast, a counter-566

intuitive result. This suggests that the RUC LSM has a larger evaporative flux as567

compared to the NOAH LSM when soil water is available (i.e., during MAM and568

JJA), which could be due to the different treatment of above ground processes (e.g.,569

vegetation evaporation), surface processes (e.g., run-off), as well was sub-surface570

processes (root zone drainage) between the two LSMs. To adequately quantify571

these differences would required running both LSMs offline with the same forcing,572

which is outside of the scope of this paper.573

The BMJ simulation had fairly similar biases compared to the REF (which574

uses the KF scheme) experiment during DJF but smaller ratio of variance and575

RMS errors, showing a better simulation of variability of precipitation. During576

MAM, JJA, and SON, the BMJ simulation had higher (more negative) bias at577

the coast as compared to the REF experiment, but lower variance ratio. Hence,578

both the KF and BMJ schemes have their merits and disadvantages. However the579

higher bias during JJA and SON at the coast is not insignificant (almost double)580

and as such, it appears that the KF scheme may be more appropriate in this case.581

The RTG and CAM simulations had similar biases to REF, except that the bias582

at the coast during SON was almost twice as large. SON is the austral spring,583

and represents a transition from frontal (synoptically driven) precipitation, to the584

summer regime when surface convection has a larger role. Hence, it appears that585

the radiation schemes are particularly sensitive during that transition period.586
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The AC2 and AC2 P simulations produced similar results during DJF and587

MAM, but both simulations had lower bias during JJA at the coast as compared588

to REF, and the AC2 P simulation showed a slight improvement in bias during589

SON at the coast. There were no major differences in the variance ratios, RMS590

errors, and spatial correlations. Similarly, the 3C and 5C D simulations produced591

very similar results to the REF experiment for precipitation, i.e., the use of a592

simpler and less computationally expensive microphysics scheme (3C) appears to593

be appropriate.594

The FNL RTG and ERA RTG schemes were conducted as result of an im-595

provement in bias in maximum and minimum temperature when comparing the596

RTG to the REF simulation discussed earlier in section 3.1. The FNL RTG and597

ERA RTG produced very similar results for precipitation during JJA and SON as598

compared to the FNL and ERA simulations respectively, but there was a marked599

increase in bias at the rangelands during DJF and MAM. Namely, the precipitation600

bias increased from 9.5 and 5.8 mm month−1 during DJF and MAM at the range-601

lands for the FNL experiment, to 22.3 and 19.0 mm month−1 for the FNL RTG602

experiment, and from 8.9 and 9.6 mm month−1 to 21.3 and 25.3 mm month−1
603

for the ERA as compared to the ERA RTG experiment (Table 4). However, no604

such increase in bias was observed for the RTG experiment as compared to the605

REF experiment, showing that the RRTMG scheme results in different behaviour606

with different sources of driving data. We further explored this by examining the607

changes in convective available potential energy (CAPE), lifting condensation level608

(LCL), and precipitable water (PW) between the REF, FNL, and ERA simula-609

tions (i.e., using the Dudhia/RRTM shortwave/longwave schemes) and the RTG,610

FNL RTG, and ERA RTG (i.e., using the RRTMG/RRTMG shortwave/longwave611
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scheme), as illustrated in Fig. 14. Use of the RRTMG scheme clearly results in an612

increase in CAPE between 60-140 J kg−1 during DJF and MAM for the FNL RTG613

and ERA RTG simulations as compared to FNL and ERA respectively, whilst the614

differences in CAPE between RTG as compared to REF is much smaller. Higher615

CAPE implies larger positive buoyancy and higher likelihood of convection and as-616

sociated precipitation. Additionally, use of the RRTMG scheme clearly resulted in617

lower LCL and higher PW for all seasons within the rangelands for the FNL RTG618

and ERA RTG simulations as compared to FNL and ERA respectively. Hence,619

the increased positive buoyancy, lower LCL and larger amount of PW can explain620

the large positive precipitation biases.621

4 Discussion622

The REF experiment provided a reasonable simulation at the seasonal scale for623

the domain of the interest. However, the negative biases for maximum and min-624

imum temperatures are not insignificant, given that impacts on agriculture and625

forestry are not only dependant on precipitation, but also temperature extremes626

(van Gool and Vernon, 2005; Lobell et al, 2012). Additionally, given the known627

issues of low moisture availability within the NNPR data-set for the southern hemi-628

sphere (Schneider et al, 2013), this combined with negative temperature biases,629

may partly explain the overall negative bias in precipitation as well. The temper-630

ature biases were reduced when using the FNL and ERA-interim re-analyses as631

forcing data. The better performance when using the ERA-interim and FNL re-632

analysis as compared to the NNRP is not unexpected, as the former have higher633

resolution, use more observational data and involve more accurate representations634
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of the hydrological cycle (Dee et al, 2011). The better performance of ERA-Interim635

over NNRP has also been shown by Fersch et al (2012), who compared terres-636

trial water storage from WRF simulations over Australia (amongst other regions)637

with both re-analysis against remotely sensed estimates and showed that ERA-638

Interim driven simulations had lower biases as compared to NNRP, which had a639

dry tendency. This is in-line with our results which showed large negative biases in640

precipitation during winter for REF, but smaller positive biases for the ERA sim-641

ulation. However, it must be noted that the resolution of NNRP is closer to that642

of GCMs and using NNRP may be more appropriate to enable comparisons with643

GCM forced simulations. However, if the focus is to re-produce the past climate644

as accurately as possible, then the use of ERA-Interim and FNL is more appro-645

priate. The N SST simulation, which used satellite derived SSTs with the NNRP646

re-analysis improved the bias for winter precipitation, showing that care should be647

taken in using the best available source of SST. This is in line with other studies648

which have shown that the accurate prescription of SSTs in WRF is critical to649

simulating extreme precipitation events over eastern Australia (Evans and Boyer-650

Souchet, 2012). An important source of uncertainly for future climate projections651

are biases within GCMs used to drive RCMs. Whilst this study did not use any652

GCM data, the results presented also suggest that any future climate study has to653

use data from more than one GCM, and additionally, critically examine inherent654

uncertainties and biases within the driving data used.655

Use of the RUC land surface model resulted in large positive biases for maxi-656

mum temperature, especially during the warmer seasons of SON (spring) and DJF657

(summer). Similar results have been found by Mooney et al (2012) over Europe,658

with the RUC LSM having a bias for the mean summer air temperature of up659
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to 5 oC whilst the NOAH LSM showed much lower biases (with all other physics660

options being the same). The biases reported here are higher, ranging from 6 to661

10 oC (Table 2), since we explicitly focussed on maximum and minimum tem-662

peratures, while Mooney et al (2012) evaluated the mean temperature. Mooney663

et al (2012) also reported that the NOAH LSM has a greater tendency to show664

a positive bias in daily precipitation as compared to the RUC. Here we also find665

that the NOAH LSM generally results in higher precipitation as compared to RUC666

with the NOAH LSM having a smaller negative bias as compared to RUC (Table667

4). Comparison of the surface turbulent heat fluxes showed that the RUC LSM668

has higher sensible heat flux as compared to the NOAH LSM for DJF and SON,669

which can explain the temperature bias. However surface heat fluxes are integra-670

tive of processes with the PBL, and identifying the reasons behind the differences671

in surface fluxes between the RUC and NOAH LSMs would require running both672

models offline with the same forcing, which is beyond the scope of this paper.673

Because of the predominance of convective rainfall, especially during summer674

months and the results of previous studies (Flaounas et al, 2011; Crétat et al, 2011),675

it was expected that simulated rainfall would be sensitive to different convective676

and PBL parameterisation schemes. However, we did not find large differences in677

simulated precipitation when switching from the KF to the BMJ cumulus schemes678

and from the YSU/MO to the AC2 and AC2 P PBL/Surface layer schemes. This679

may be due to several reasons. Firstly, we simulated a single year, which was par-680

ticularly dry. However, whilst our results may be sensitive to the choice of year,681

the persistent warming and drying trend for this region, from both observations682

(Bates et al, 2008) and GCM projections (Moise and Hudson, 2008; Collins et al,683

2013), gives us confidence that the choice of cumulus and PBL schemes have little684
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influence on precipitation for SWWA. Secondly, the amount of convective rainfall685

during DJF in SWWA, is relatively small, compared to JJA (winter) precipitation,686

and this may also explain the lack of sensitivity to the different schemes, as pre-687

vious studies have shown that the influence of different physics options is largest688

for more extreme precipitation events (Evans et al, 2011), and when focussing689

explicitly on mesoscale convective events (e.g., Jankov et al, 2005). Conversely,690

the lack of rainfall sensitivity to microphysics scheme was in line with previous691

research (Argüeso et al, 2011) and it appears that the simple 3-class single moment692

micro-physics scheme is sufficient, at least for this region and for such resolution.693

The most important shortfall remains the accurate simulation of DJF (summer)694

precipitation, which is not unexpected based on studies for similar meteorological695

conditions in other regions (Pohl et al, 2011)696

Of particular note for the precipitation results is the fact that all the simu-697

lations demonstrate a consistent pattern in the predictive performance of WRF698

based on the regional groupings; the coastal region is simulated with the greatest699

skill and the rangelands with the least skill. The potential mechanisms for this700

pattern include a model response to the rainfall gradient, differences in the type701

of rainfall, change in land use type or a reduction in the distribution of rainfall702

monitoring stations. Based on the consistently high density of observations in both703

the coastal and agricultural regions (Fig 4a), it seems unlikely that observation704

error is solely responsible for this trend. However, because of the low density of705

observations in the rangelands, it is probable that the error in this region has been706

exacerbated by some observational errors, which we are unable to quantify.707

The sensitivity of WRF to different radiation schemes yielded interesting re-708

sults. Namely, whilst the model was not very sensitive to the use of the CAM709
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radiation scheme, it was shown to be sensitive to the RRTMG scheme. RRTMG710

increased the minimum and maximum temperatures relative to simulations us-711

ing the RRTM/Dudhia scheme due to higher incoming shortwave radiation for all712

seasons. This improved the bias with NNRP driven simulation, as the latter had713

negative biases for both maximum and minimum temperatures. However, use of714

the RRTMG scheme degraded performance for minimum temperatures when used715

with NCEP-FNL or ERA-interim, as the increase in incoming shortwave radiation716

acted to make the small positive biases even larger. The higher incoming short-717

wave radiation could be explained by the fact that the RRTMG scheme allows for718

fractions to be applied to sub grid cloud cover, unlike the Dudhia scheme where a719

grid is either completely cloudy or clear. Similar results have been reported else-720

where. Namely, Evans et al (2011) conducted a WRF physics ensemble over east-721

ern Australia (they use ERA-Interim) and also found that the RRTMG/RRTMG722

shortwave/longwave scheme generally overestimated temperatures. The RRTMG723

scheme also resulted in large bias in precipitation in the rangelands during the724

warmer seasons of DJF and MAM when used with NCEP-FNL and ERA-interim725

forcing, whereas this was not observed when using NNRP. This was due to the726

RRTMG scheme resulting in much larger CAPE when used with NCEP-FNL and727

ERA-Interim data as compared to NNRP. This in conjunction with lower LCL and728

higher precipitable water, would have led to increased precipitation. Evans et al729

(2011) also found that the RRTMG radiation, KF cumulus, and YSU PBL physics730

combination performed consistently poorly for all their simulations of storm events731

in Eastern Australia. Moreover, sensitivity studies over other regions (Yuan et al,732

2012; Pohl et al, 2011; Awan et al, 2011), have found that shortwave radiation733
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schemes in particular, have a strong precipitation response. Hence our results are734

consistent with previous studies.735

Changing PBL schemes had a strong influence on temperatures. Namely, use of736

the AC2 PBL scheme, especially in conjunction with the PX surface layer scheme737

is clearly not recommended for our domain, due to large biases in minimum tem-738

peratures in the rangelands region. While both YSU and AC2 utilise non local739

closure schemes, AC2 reverts to a local closure scheme under conditions of neu-740

trality or stability, especially at night (Hu et al, 2010). As a consequence of this741

switch to a local closure scheme, the AC2 PBL scheme has a tendency to suffer742

from a lack of mixing in the night-time boundary layer, which results in a too rapid743

collapse, low minimum PBL and hence negative bias with respect to night-time744

minimum temperatures. Hence, this mechanism can explain the high biases.745

Whilst the choice of PBL schemes has been shown to influence precipitation746

simulations in other studies (e.g., Argüeso et al, 2011), this was not the case747

here. Studies in the SWWA have demonstrated that land cover change can impact748

boundary layer development and therefore precipitation in the region (Lyons, 2002;749

Kala et al, 2010; Nair et al, 2011). While each region does demonstrate markedly750

different land uses, and in the case of the agricultural region extensive land cover751

change, for these land uses to be influencing precipitation, it was expected that752

this would be demonstrated through a sensitivity to PBL and surface layer scheme,753

which was not observed. That the choice of PBL scheme does not appear to in-754

fluence rainfall sensitivity suggests that the errors in rainfall simulation and the755

regional differences in model performance are not strongly associated with land756

use type.757



Sensitivity of WRF to driving data and physics options 33

5 Conclusions758

We carried out a range of sensitivity experiments with WRF, using different forcing759

data and model physics options. The aim of this was to better inform the planning760

of future long-term regional climate simulations for this region with significant761

agricultural and forestry sectors. Overall, it is clear the control (REF) simulation762

experimental set-up is adequate for longer term climatic simulations for this region,763

at least at the seasonal time-scale and 10-km spatial resolution. An important764

issue remains the systematic underestimation of precipitation at the coast, which765

could be due to un-resolved topography, and hence future studies should aim766

at further quantifying the role of the Darling scarp on orographically induced767

precipitation in SWWA. The lack of precipitation during summer further from the768

coast suggests land-atmosphere feedbacks are not being adequately captured, and769

this also requires further investigation. The simulations with different re-analysis770

products show that when the goal is to establish a base-line climatology, the ERA-771

interim data-set should be preferred over the FNL and NNRP. When NNRP is772

nonetheless used, the use of NOAA SSTs should be preferred over the use of surface773

skin temperatures within the NNRP data-set.774

Our results show that the choice of PBL scheme can have a large influence on775

temperatures, and choice of radiation scheme on both temperatures and precipi-776

tation in SWWA. Consistent with previous studies, we found that the RRTMG,777

in combination with the YSU PBL scheme, and KF cumulus scheme is not recom-778

mended. Additionally, the AC2 PBL scheme results in large biases for minimum779

temperature, and should not be used, at least for the domain of interest here. The780

KF and BMJ cumulus scheme did not result in significant differences for our do-781
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main, and consistent with several studies, using more complex micro-physics does782

not improve precipitation simulations. More interestingly, we show that schemes783

may behave differently with different forcing data-sets, as was shown with the784

RRTMG radiation scheme. Hence, sensitivity testing should ideally include both785

use of different physics options as well as forcing data.786

Future studies will evaluate WRF driven by the ERA-interim re-analysis on a787

climatic (30 years) time-scale (similar to the ERA simulation here), and evaluate788

the model at daily, seasonal, and inter-annual time-scales, and additionally, use789

station and sounding observations, in addition to the AWAP gridded product.790

This will in turn be used to help inform the design of GCM forced simulations to791

provide regional information of possible future climatic changes in SWWA.792
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Table 1: Summary of numerical experiments carried out (BC-boundary conditions,

LSM-land surface model, LW-longwave radiation scheme, SW-shortwave radiation

scheme, CS-cumulus scheme, PBL-planetary boundary layer scheme, SLS-surface

layer scheme, SST-sea surface temperature source, MIC-microphysics scheme)

Experiment BC LSM LW SW CS PBL/SLC SST MIC

REF NNRP NOAH RRTM Dudhia KF YSU/MO NNRP WSM 5-class

N SST NNRP NOAH RRTM Dudhia KF YSU/MO NOAA WSM 5-class

FNL FNL NOAH RRTM Dudhia KF YSU/MO NCEP-FNL WSM 5-class

ERA ERA-INT NOAH RRTM Dudhia KF YSU/MO ERA-INT WSM 5-class

RUC NNRP RUC RRTM Dudhia KF YSU/MO NNRP WSM 5-class

BMJ NNRP NOAH RRTM Dudhia BMJ YSU/MO NNRP WSM 5-class

RTG NNRP NOAH RRTMG RRTMG KF YSU/MO NNRP WSM 5-class

CAM NNRP NOAH CAM CAM KF YSU/MO NNRP WSM 5-class

AC2 NNRP NOAH RRTM Dudhia KF AC2/MO NNRP WSM 5-class

AC2 P NNRP NOAH RRTM Dudhia KF AC2/PX NNRP WSM 5-class

3C NNRP NOAH RRTM Dudhia KF YSU/MO NNRP WSM 3-class

5C D NNRP NOAH RRTM Dudhia KF YSU/MO NNRP WDM 5-class

FNL RTG FNL NOAH RRTMG RRTMG KF YSU/MO FNL WSM 5-class

ERA RTG ERA-INT NOAH RRTMG RRTMG KF YSU/MO ERA-INT WSM 5-class
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Table 2: Seasonal absolute and percentage (shown in brackets) bias in maximum

temperature (oC) for the experiments in Table 1, for the Costal (Coast), Agricul-

tural (Agric), and Rangelands (Range) regions.

DJF MAM JJA SON

Coast Agric Range Coast Agric Range Coast Agric Range Coast Agric Range

REF -3.3 -3.9 -3.2 -0.7 -1.3 -1.8 -1.9 -1.9 -2.1 -3.0 -2.9 -1.7

(-11%) (-12%) (-9%) (-3%) (-5%) (-7%) (-11%) (-6%) (-11%) (-13%) (-12%) (-6%)

N SST -3.1 -3.7 -3.1 -0.8 -1.3 -1.5 -1.7 -1.8 -2.1 -3.0 -2.9 -1.6

(-11%) (-11%) (-8%) (-3%) (-5%) (-5%) (-10%) (-5%) (-12%) (-13%) (-11%) (-6%)

FNL -0.7 -1.6 -1.9 0.1 -0.4 -0.7 -1.2 -1.6 -1.3 -1.5 -1.7 -1.1

(-2%) (-5%) (-5%) (0%) (-2%) (-3%) (-7%) (-5%) (-7%) (-7%) (-7%) (-4%)

ERA -0.5 -1.2 -1.5 0.0 -0.5 -0.8 -1.3 -1.5 -1.3 -1.5 -1.5 -0.7

(-2%) (-4%) (-4%) (0%) (-2%) (-3%) (-7%) (-5%) (-7%) (-7%) (-6%) (-3%)

RUC 8.9 7.9 9.8 6.0 5.6 7.1 0.6 1.9 3.5 5.8 6.9 10.5

(31%) (24%) (27%) (26%) (22%) (26%) (4%) (6%) (19%) (26%) (27%) (40%)

BMJ -3.2 -3.7 -3.1 -0.6 -1.0 -1.5 -1.8 -1.9 -2.3 -2.5 -2.6 -1.5

(-11%) (-11%) (-9%) (-3%) (-4%) (-6%) (-11%) (-6%) (-12%) (-11%) (-10%) (-5%)

RTG -2.4 -3.0 -2.2 -0.2 -0.4 0.1 -0.7 -0.0 0.0 -2.1 -1.7 -0.4

(-8%) (-9%) (-6%) (-1%) (-1%) (0%) (-4%) (-0%) (0%) (-9%) (-7%) (-1%)

CAM -3.0 -3.7 -2.9 -0.9 -1.3 -1.1 -1.7 -1.4 -1.6 -2.8 -2.5 -1.3

(-11%) (-11%) (-8%) (-4%) (-5%) (-4%) (-10%) (-4%) (-9%) (-12%) (-10%) (-5%)

AC2 -3.8 -4.6 -4.0 -0.5 -1.4 -2.2 -1.8 -1.9 -2.1 -3.7 -3.7 -2.5

(-13%) (-14%) (-11%) (-2%) (-6%) (-8%) (-11%) (-6%) (-12%) (-16%) (-15%) (-10%)

AC2 P -1.3 -2.7 -2.0 0.6 -0.4 -1.0 -1.9 -1.7 -1.8 -2.7 -2.6 -1.1

(-5%) (-8%) (-5%) (3%) (-1%) (-3%) (-11%) (-5%) (-9%) (-12%) (-10%) (-4%)

3C -3.2 -3.9 -3.3 -0.9 -1.4 -1.5 -1.7 -1.6 -2.1 -2.9 -2.8 -1.6

(-11%) (-12%) (-9%) (-4%) (-5%) (-6%) (-10%) (-5%) (-11%) (-13%) (-11%) (-6%)

5C D -3.0 -3.6 -3.0 -0.4 -0.9 -1.5 -1.5 -1.2 -1.4 -2.7 -2.6 -1.5

(-10%) (-11%) (-8%) (-2%) (-4%) (-5%) (-9%) (-4%) (-7%) (-12%) (-10%) (-6%)

FNL RTG 0.3 -0.8 -1.5 1.0 0.5 -0.1 -0.1 -0.0 0.2 -0.4 -0.5 -0.1

(1%) (-2%) (-4%) (4%) (2%) (-0%) (-0%) (-0%) (1%) (-2%) (-2%) (-0%)

ERA RTG 0.1 -0.8 -1.4 0.5 0.1 -0.6 -0.1 0.2 0.4 -0.5 -0.1 0.3

(0%) (-2%) (-4%) (2%) (0%) (-2%) (-1%) (1%) (2%) (-2%) (-1%) (1%)
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Table 3: Same as in Table 2 except for minimum temperature (oC).

DJF MAM JJA SON

Coast Agric Range Coast Agric Range Coast Agric Range Coast Agric Range

REF -2.4 -1.8 -2.9 -1.4 -1.3 -2.9 -1.2 -2.2 -3.0 -1.5 -1.5 -1.9

(-17%) (-11%) (-15%) (-12%) (-10%) (-20%) (-19%) (-42%) (-54%) (-16%) (-16%) (-16%)

N SST -1.9 -1.2 -2.6 -1.1 -1.3 -3.0 -0.9 -2.2 -3.2 -1.1 -1.3 -1.7

(-13%) (-8%) (-13%) (-9%) (-10%) (-21%) (-14%) (-40%) (-58%) (-12%) (-14%) (-15%)

FNL 0.9 2.1 1.4 1.3 2.0 1.7 0.6 0.6 1.2 0.7 1.1 1.2

(6%) (13%) (7%) (11%) (16%) (12%) (9%) (11%) (22%) (7%) (12%) (10%)

ERA 0.6 1.9 1.3 1.0 1.8 1.8 0.5 0.7 1.3 0.8 1.2 1.5

(4%) (12%) (6%) (9%) (15%) (12%) (9%) (14%) (23%) (9%) (13%) (12%)

RUC -1.4 -1.1 -1.6 -0.7 -1.2 -2.4 -0.5 -1.4 -2.9 -0.4 0.1 -0.5

(-10%) (-7%) (-8%) (-6%) (-10%) (-17%) (-8%) (-26%) (-52%) (-4%) (1%) (-4%)

BMJ -2.4 -1.6 -2.9 -1.4 -1.4 -3.1 -1.1 -2.5 -3.5 -1.3 -1.4 -1.9

(-17%) (-10%) (-14%) (-12%) (-11%) (-22%) (-18%) (-47%) (-63%) (-14%) (-15%) (-16%)

RTG -1.6 -0.9 -2.0 -0.7 -0.4 -1.3 -0.3 -0.5 -0.9 -0.9 -0.6 -0.6

(-11%) (-5%) (-10%) (-6%) (-3%) (-9%) (-5%) (-10%) (-15%) (-10%) (-7%) (-5%)

CAM -2.8 -2.0 -3.2 -2.1 -2.0 -2.8 -2.2 -2.4 -3.0 -2.1 -1.7 -1.9

(-20%) (-12%) (-16%) (-18%) (-16%) (-20%) (-35%) (-45%) (-54%) (-23%) (-18%) (-16%)

AC2 -4.1 -3.5 -5.6 -2.7 -2.9 -5.3 -2.0 -2.8 -3.8 -3.1 -3.3 -4.3

(-29%) (-22%) (-28%) (-23%) (-23%) (-38%) (-31%) (-53%) (-69%) (-34%) (-36%) (-36%)

AC2 P -5.1 -4.5 -6.4 -3.5 -3.7 -6.4 -3.0 -4.0 -5.4 -4.0 -4.2 -5.6

(-36%) (-28%) (-32%) (-30%) (-30%) (-45%) (-47%) (-75%) (-97%) (-43%) (-45%) (-48%)

3C -2.4 -1.7 -3.1 -1.6 -1.6 -2.9 -1.3 -2.2 -3.1 -1.5 -1.6 -1.9

(-16%) (-11%) (-15%) (-14%) (-13%) (-21%) (-20%) (-41%) (-56%) (-16%) (-17%) (-16%)

5C D -2.3 -1.7 -2.8 -1.1 -0.9 -2.6 -0.8 -1.7 -2.4 -1.4 -1.3 -1.7

(-16%) (-11%) (-14%) (-9%) (-8%) (-19%) (-12%) (-32%) (-43%) (-15%) (-14%) (-15%)

FNL RTG 1.3 2.6 1.9 1.8 2.8 2.6 1.4 1.9 2.8 1.4 2.1 2.4

(9%) (16%) (9%) (16%) (23%) (19%) (23%) (35%) (50%) (15%) (23%) (20%)

ERA RTG 1.1 2.5 1.8 1.6 2.6 2.5 1.4 1.9 2.9 1.5 2.2 2.5

(7%) (15%) (9%) (14%) (21%) (18%) (22%) (36%) (52%) (16%) (24%) (21%)
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Table 4: Same as in Table 2 except for precipitation (mm month−1).

DJF MAM JJA SON

Coast Agric Range Coast Agric Range Coast Agric Range Coast Agric Range

REF 4.1 -0.1 -8.4 -18.9 -20.0 -18.3 -13.3 -21.4 -15.4 -6.9 -4.1 -13.2

(117%) (-1%) (-87%) (-38%) (-68%) (-82%) (-14%) (-55%) (-83%) (-20%) (-34%) (-91%)

N SST 5.3 1.1 -8.4 -16.5 -19.8 -19.7 -3.8 -18.1 -15.5 -2.0 -3.2 -13.0

(150%) (20%) (-87%) (-33%) (-67%) (-89%) (-4%) (-46%) (-83%) (-6%) (-26%) (-89%)

FNL 7.2 7.3 9.5 -16.1 -7.9 5.8 12.6 3.5 6.0 -0.9 3.2 -4.2

(206%) (141%) (99%) (-32%) (-27%) (26%) (14%) (9%) (32%) (-2%) (27%) (-29%)

ERA 2.2 2.6 8.9 -9.9 -4.1 9.6 6.8 -0.7 4.1 3.8 2.3 -4.3

(62%) (49%) (92%) (-20%) (-14%) (44%) (7%) (-2%) (22%) (11%) (19%) (-30%)

RUC 4.6 -0.3 -8.3 -22.7 -21.7 -19.6 -19.1 -20.1 -13.9 -9.4 -5.0 -13.1

(132%) (-7%) (-86%) (-45%) (-74%) (-89%) (-20%) (-51%) (-74%) (-27%) (-41%) (-91%)

BMJ 2.7 -1.8 -8.8 -26.9 -23.9 -20.4 -24.4 -21.2 -15.1 -14.4 -6.2 -13.7

(75%) (-34%) (-91%) (-54%) (-81%) (-92%) (-26%) (-54%) (-81%) (-42%) (-51%) (-95%)

RTG 4.1 -0.3 -8.6 -21.4 -19.0 -19.5 -21.0 -20.5 -15.5 -12.2 -6.3 -13.3

(116%) (-5%) (-89%) (-43%) (-64%) (-88%) (-23%) (-52%) (-83%) (-35%) (-52%) (-92%)

CAM 3.2 -0.1 -8.5 -19.4 -20.0 -17.7 -17.4 -19.7 -15.2 -12.5 -5.2 -12.9

(90%) (-2%) (-88%) (-39%) (-68%) (-80%) (-19%) (-50%) (-82%) (-36%) (-43%) (-89%)

AC2 4.6 -0.4 -7.8 -20.9 -21.9 -19.4 -6.2 -17.4 -14.9 -6.1 -3.1 -12.6

(131%) (-8%) (-80%) (-42%) (-74%) (-88%) (-7%) (-44%) (-80%) (-18%) (-25%) (-87%)

AC2 P 3.4 -0.4 -8.5 -16.1 -21.5 -19.5 -3.2 -14.5 -14.3 -4.1 -2.5 -12.9

(98%) (-7%) (-88%) (-32%) (-73%) (-88%) (-3%) (-37%) (-76%) (-12%) (-21%) (-89%)

3C 3.7 0.5 -8.3 -20.0 -21.4 -19.0 -17.0 -21.7 -15.6 -7.8 -4.7 -13.2

(105%) (10%) (-86%) (-40%) (-72%) (-86%) (-18%) (-55%) (-84%) (-23%) (-39%) (-91%)

5C D 5.7 0.2 -8.2 -15.0 -17.8 -18.9 -8.9 -19.1 -14.8 -5.5 -3.1 -13.0

(163%) (3%) (-84%) (-30%) (-60%) (-86%) (-10%) (-49%) (-79%) (-16%) (-25%) (-89%)

FNL RTG 5.6 7.6 22.3 -19.3 -3.5 19.0 4.2 8.3 10.0 -2.9 4.6 1.2

(160%) (146%) (230%) (-39%) (-12%) (86%) (5%) (21%) (53%) (-8%) (38%) (8%)

ERA RTG 3.7 7.5 21.3 -10.8 3.5 25.3 -0.9 -2.6 3.6 -4.5 2.4 2.9

(106%) (145%) (220%) (-22%) (12%) (114%) (-1%) (-7%) (19%) (-13%) (20%) (20%)
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Fig. 1: (a) Map showing the topography of the outer grid domain (50-km resolu-

tion), the boundary of the second inner nested grid representing SWWA, and the

location of the city of Perth; (b) topography of the second inner nested domain

(10-km resolution) and location of the Darling scarp, and; (c), topography of the

Darling scarp (9-arc seconds topography from Geoscience Australia (Hutchinson

et al, 2009)). Note that the maps shown in (a) and (b) are the computational grids

used for the simulations whereas the map shown in (c) is only for the purpose of

illustrating the sharp increase in topography associated with the Darling scarp.
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Fig. 2: Countour plots showing the difference in sea surface temperature between

the REF and N SST experiments (C) by season. Negative values indicate that the

N SST simulation had higher sea surface temperatures relative to REF.
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Fig. 3: Regionalisation used during analysis (red = coast, blue = agricultural

region, yellow = rangelands). Each black dot in the 3 regions represent the location

of a precipitation station used for further analysis, namely, the Perth Airport

station at the coast, the Cunderdin in the agricultural region, and Norseman in

the rangelands.
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Fig. 4: (a) Precipitation (mm month−1), (b) maximum temperature (oC), and (c)

minimum temperature over SWWA during DJF, MAM, JJA, and SON of 2010

from the Australian Bureau of Meteorology. White dots in the DJF panels (a) and

(b) show precipitation and temperature station locations and the black solid line

represents the approximate boundaries of the agricultural region.
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Fig. 5: Same as in Fig. 4 except showing the seasonal 2010 anomaly from 1970-

2010.
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Fig. 6: (a) Precipitation (mm month−1), (b) maximum temperature (oC), and (c)

minimum temperature over SWWA during DJF, MAM, JJA, and SON of 2010

from the outer 50-km domain (D01) and inner 10-km nested domain (D02) for the

REF experiment (Table 1).
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Fig. 7: Taylor diagrams for maximum temperature during (a) DJF, (b) MAM, (c)

JJA, and (d) SON, for the experiments in Table 1, for the coastal region (squares),

the agricultural region (triangles), and rangelands (circles).
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Fig. 8: Same as in Figure 7, except for minimum temperature.
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Fig. 9: Differences in seasonal (a) sensible, and (b) latent heat flux (W m−2)

between the REF and RUC experiments (Table 1)
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Fig. 10: Seasonal means of differences in incoming shortwave radiation (W m−2)

between the (a) REF and RTG, (b) FNL and FNL RTG, and (c) ERA and

ERA RTG experiments (Table 1).
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Fig. 11: Seasonal means of minimum PBL heights for (a) AC, (b) AC2 P, and (c)

REF simulations (Table 1).
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Fig. 12: Same as in Figure 7, except for precipitation.
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Fig. 13: Time series of daily precipitation (mm) from 1st of December 2009 to 30th

of November 2010 at the: (a) Perth (Coast), (b) Cunderdin (Agricultural), and (c)

Norseman (Rangelands) stations (Fig. 3). Black lines represent the observations

and the blue lines the REF experiment.



Sensitivity of WRF to driving data and physics options 63

Fig. 14 Differences in:

(a) Convective Avail-

able Potential Energy

(CAPE) (J kg−1), (b)

Lifting Condensation

Level (LCL) (m), and

(c) Precipitable Wa-

ter (PW) (kg m−2)

between the REF and

RTG (REF-RTG), FNL

and FNL RTG (FNL -

FNL RTG), and ERA

and ERA RTG (ERA -

ERA RTG) experiments

(Table 1).
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