
Accounting Research Center, Booth School of Business, University of Chicago

Sensitivity, Precision, and Linear Aggregation of Signals for Performance Evaluation
Author(s): Rajiv D. Banker and Srikant M. Datar
Source: Journal of Accounting Research, Vol. 27, No. 1 (Spring, 1989), pp. 21-39
Published by: Blackwell Publishing on behalf of Accounting Research Center, Booth School of
Business, University of Chicago
Stable URL: http://www.jstor.org/stable/2491205
Accessed: 13/08/2009 11:18

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Accounting Research Center, Booth School of Business, University of Chicago and Blackwell Publishing are
collaborating with JSTOR to digitize, preserve and extend access to Journal of Accounting Research.

http://www.jstor.org

http://www.jstor.org/stable/2491205?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black


Journal of Accounting Research 
Vol. 27 No. 1 Spring 1989 

Printed in U.S.A. 

Sensitivity, Precision, and Linear 
Aggregation of Signals for 
Performance Evaluation 

RAJIV D. BANKER AND SRIKANT M. DATAR* 

1. Introduction 

Several accounting and other signals are generally available for the 
construction of a managerial performance evaluation measure on which 
an optimal compensation contract is based. The demand for aggregation 
in evaluating managerial performance arises because reporting all the 
basic transactions and other nonfinancial information about performance 
is costly and impracticable (see Ashton [1982], Casey [1978], and Holms- 
trom and Milgrom [1987]). We identify necessary and sufficient condi- 
tions on the joint density function of the signals under which linear 
aggregation, a simple and commonly employed way to construct a per- 
formance evaluation measure, is optimal. This characterization suggests 
that the linear form of aggregation is optimal for a large class of 
situations. Focusing on performance measures that are linear aggregates 
enables us to determine the relative weights on the individual signals in 
the optimal linear aggregate, since these weights are invariant for all 
realizations of the signals. We interpret these weights in terms of statis- 
tical characteristics (sensitivity and precision) of the joint distribution 
of the signals. 

* Carnegie Mellon University. We thank Linda Argote for first stimulating our interest 
in the topic of optimal relative weights for aggregating two signals available for constructing 
a performance evaluation measure. This paper has also benefited from comments by seminar 
participants at Carnegie Mellon University, Cornell University, M.I.T., Stanford Univer- 
sity, the University of Chicago, the University of Minnesota, and the University of 
Pittsburgh. [Accepted for publication April 1988.] 
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We break the design of the optimal compensation contract into two 
stages: (1) constructing a managerial performance evaluation measure, 
and (2) choosing a compensation contract based on that measure. We 
focus on the first stage, which is more closely identified with the man- 
agement accountants' role of structuring and implementing a measure- 
ment system that first generates imperfect signals (denoted in our model 
by y and z)1 about the performance of the manager and then aggregates 
these signals into a single evaluation measure, r = r(y, z). The principal 
then chooses a compensation contract t(r) = t(r(y, z)) as a function of 
the performance evaluation measure, r, rather than the individual signals 
y and z. Emphasizing the first stage allows us to examine when individual 
signals may be linearly aggregated even though compensation A = 

under the optimal incentive contract may be nonlinear in r for optimal 
risk-sharing purposes. The usual agency models suppress the evaluation 
measure r and write the compensation function X as a direct function of 
y and z. 

The agency literature in accounting and economics, or the related 
literature in statistics, provides little guidance about how signals should 
be combined in constructing an evaluation measure.2 Holmstrom's [1979] 
informativeness condition provides little insight about the optimal rela- 
tive weights (1: m) on each signal y and z in the optimal linear aggregate 
ly + mz. For a subclass of distributions of the stochastic signals y and z 
for which some linear aggregation is optimal, we interpret the relative 
weights in terms of the sensitivity and precision of the signals. The 
sensitivity of a signal measures the extent to which the expected value 
of a signal changes with the agent's action, adjusted for the correlation 
with the other signal which may also change with the agent's effort. 
Precision indicates the lack of noise in a signal. The relative weight on 
each signal in the optimal performance evaluation measure for incentive 
purposes is directly proportional to the product of the sensitivity and 
precision of the signal.3 

Our paper relates to earlier work in agency theory, in particular, 
Holmstrom [1979]. His informativeness condition suggests that the signal 
z will be used in the agent's compensation contract no matter how noisy 
the signal, provided y is not a sufficient statistic for the pair (y, z) with 
respect to a. We show, for the subclass considered by us, an information 

'In much of the agency literature in accounting, one signal has typically been assumed 
to be the output x from which the principal derives utility. More generally, we can model 
this as a situation where the output x is simply a deterministic, or even a stochastic, 
function of y and z. 

2 An exceptifon is Holmstrom's [1982, theorem 8] result on relative performance evalu- 
ation. 

The optimal relative weights should not be interpreted as measures of the economic 
value of signals. Instead, the optimal weights characterize the manner in which individual 
signals must be aggregated to obtain the performance evaluation measure when linear 
aggregation is optimal. 
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signal z will be valuable, as in Holmstrom [1979], if it is sensitive, but 
the weight on it in the linear aggregate for incentive purposes will be 
small if it is noisy, that is, if it lacks precision. Holmstrom's [1979] result 
states that aggregation will be optimal provided the aggregate is a 
sufficient statistic for the individual signals y and z. In this paper, the 
optimal linear aggregates are not sufficient statistics for the individual 
signals. In our subclass, no scalar aggregate r = r(y, z) is a sufficient 
statistic for the individual signals (y, z) except under certain specific 
conditions discussed in Amershi, Banker, and Datar [1988]. The key 
difference between Holmstrom's [1979] result and ours is that we ex- 
amine conditions for some linear aggregation to be optimal in all agencies 
while, as we elaborate in section 3, Holmstrom's result can be interpreted 
as identifying conditions for the same linear aggregate to be optimal for 
all agencies. 

In section 2, we describe the basic model and derive expressions for 
the gradients of the agent's compensation function with respect to the 
signals. In section 3, we introduce the idea of consolidating multiple 
signals to construct a performance evaluation measure to be used in the 
agent's compensation contract. We identify necessary and sufficient 
conditions on the joint probability distribution of the signals for which 
the performance evaluation measure can be optimally constructed by 
combining the signals linearly for all agencies. For a subclass of these 
joint probability distributions, we interpret, in section 4, the relative 
weights with which the signals are linearly aggregated as being directly 
proportional to the product of the sensitivity and the precision of the 
respective signals. Section 5 discusses our results and their accounting 
implications. Concluding remarks are presented in section 6. 

2. The Basic Model 

We consider a two-person, single-period principal-agent model where 
the agent takes some action4 a E [q, a] C R. not observed by the principal, 
which together with a random unobserved state of nature 0 generates 
two signals y and z, observed by the principal. Thus y = y (a, 0) E Y 5 R 
and z = z(a, 0) E Z 5 R. The actual monetary outcome of interest to the 
principal, denoted by x, is measured in terms of the signals y and z by a 
known function5 x = x(y, z) E X 5 R, such that xy(y, z), x,(y, z) > 0. 
The agent's compensation X is a function of the jointly observed signals 
y and z, that is 0: Y x Z -> R with the residual x(y, z) - 0(y, z) accruing 

4 For ease of exposition and consistency with much of the agency literature in accounting, 
we consider a single-dimensional action a. However, as we demonstrate in section 4, the 
extension of our model to the case of multidimensional actions is direct. 

' More generally, x can be modeled as a stochastic function of y and z as in Mirrlees 
[1976], Gjesdal [1982], and Banker, Datar, and Maindiratta [1988]. We illustrate this in 
section 5. Note that in particular one of the two signals, say y, may be considered to be the 
outcome x itself, so that x,(y, z) = 1 and x2(y, z) = 0. 



24 R. D. BANKER AND S. M. DATAR 

to the principal. We write the principal's utility function as W(x - 0), 
with W' > 0 and W" ' 0. The agent is assumed to be strictly risk and 
work averse with a separable, twice continuously differentiable utility 
function U() - V(a) with U'(.) > 0, U"(.) < 0, V'(.) > 0, and V"(.) 

0 0. The agent's compensation is restricted6 to the real interval [qX, q]. 
The function fa(y, z; a)/f(y, z; a) is continuously differentiable in y 

and z and has a support independent of a E A. We invoke the monotone 
likelihood ratio condition (MLRC) for the signals y and Z7 to show that 
the optimal compensation contract is monotonic in y and z. The principal 
and agent know the structure of the choice problem, their utility func- 
tions, and the set of available options. They jointly observe only the 
accounting signals y E Y and z E Z and of course the outcome x = x(y, 
z) assumed here to be a deterministic function of y and z. They also share 
identical state beliefs encoded in the density function f (.). 

The principal's problem is characterized by the following program: 

max W[x (y, z) (y, z)]f(y, z; a)dydz (1) 
mka 

subject to: 

Tr TU[q(y, z)]f(y, z; a)dydz - V(a) > U (la) 

a E argmax JJ U[(y, z)]f(y, z; a)dydz - V(a) (lb) 

aE [qd],q 0 [0qq5] (ic) 

To characterize the optimal contract, we employ the first-order ap- 
proach, and replace (lb) with the following first-order condition assuming 
the usual regularity conditions.8 

Tr TU[q(y, z)]fa(Y, z; a)dydz - V'(a) = 0. (lb') 

Let X and it denote the Lagrange multipliers for the constraints (la) and 
(lb'). Point-matched optimization of the Lagrangian yields the following 
characterization of the optimal compensation contracts for a* and q* in 

6 If the compensation function is not restricted to a finite interval, the existence of an 
optimal solution to the principal-agent problem cannot be guaranteed. See Mirrlees 
[1974]. For a more precise discussion of the existence of a solution to the agency problem, 
see Holmstrom [1979, p. 77]. 

7Whitt [1980] has shown that MLRC implies first-order stochastic dominance. Milgrom 
[1981] has shown that this is equivalent to the statistical inference from the observation of 
a higher value of the signal that the agent has taken a higher level of effort. 

8 For a discussion of the validity of the mathematically more tractable first-order 
approach, see Mirrlees [1979], Rogerson [1985], and Banker and Datar [1987]. 
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the interior: 

=t X + Ha() (2) 

Furthermore, we have the following adjoint condition: 

C- I W[x(y, z) - q(y, z)]f (y, z; a)dydz 
dla 

+ y d2 {ff U[q(y, z)]f (y, z; a)dydz - V(a)} = 0 (3) 

Note, however, that if faif is linear in y and z and if, for instance, y is 
unbounded below, the right-hand side of equation (2) will be negative for 
some y, while the left-hand side is always positive. In this case, an interior 
solution is clearly not possible and the optimal 0* will be at its lower 
bound value 4 of y. The Kuhn-Tucker conditions imply that such a 
boundary solution with 0*(y, z) = 4 will occur for values of y and z for 
which X + Pfa/f < W'(x - 4)/U'(45). For further discussion, see Mirrlees 
[1976, p. 125]. However, note that for other values of y and z for which 
an interior solution obtains, equation (2) can be employed to characterize 
the optimal 0*. 

To ensure that the agency problem is nontrivial we assume that the 
second-best optimal action a* is greater than the minimal action a. Then, 
as in Holmstrom [1979], it follows that it > 0. Banker and Maindiratta 
[1986] also show that 0* is differentiable on (0, 0). Differentiating (2) 
with respect to y and z, we obtain: 

P 
qY* = P AXy(y, z) + A Ul WI fa(Y, z; a) and (4) 

pP +p PApI +PA ay f(y, z;a) 

q5Z P AXZ (y9Z) +I U/A aY ;a (5) 
p? +p P 

pp + paz f (y, z; a) 

where pp = - W"/ W' and PA =-U"/ U' are the Arrow-Pratt risk-aversion 
functions for the principal and the agent respectively. 

We use these characterizations of the gradients to explore the reliance 
of the compensation contract on each of the signals. For expositional 
clarity, we develop the results for the case when the principal is risk 
neutral (pP = 0). We also indicate the complexities introduced and the 
modifications required when the principal is risk averse (pP: > 0). 

3. Linear Aggregation of Accounting Signals 

In this section, we examine conditions for the optimality of the simple, 
commonly observed linear aggregation of signals in constructing a per- 
formance evaluation measure. The optimal linear aggregate for a specific 
agency (which is the only problem of interest to the principal) is a 
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function of the distribution of signals at the optimal action a*, induced 
by the principal, which in turn depends on the specific utility function 
of the agent. Consequently, for different actions a* that the principal 
may induce, the optimal solution to the principal's problem causes the 
relative weights in the linear aggregate to vary. In Proposition 1, we 
provide sufficient conditions under which linear aggregation is robust 
with respect to any action a* induced by the principal, though the relative 
weights in the linear aggregate may vary with a*. 

Let : parameterize different agencies with U"(.) - V"(.) representing 
the utility function of the agent in the agency A. Let a: represent the 
optimal (second-best) action for agency A. If linear aggregation is to be 
optimal for all agencies, that is for all ad E A, then there must exist some 
arbitrary functions 1(a') and m(a') such that the optimal contract 0q 
corresponding to any given agency d can always be written in the form 
0q = A(7r-), where iri = l(a')y + m(a3)z + n(aO) is some linear aggregate 
of y and z. 

PROPOSITION 1. When the principal is risk neutral, a sufficient con- 
dition for the optimal compensation contract to be written as 0q = 
70 = 1(aO)y + m(a3)z for all a" E A is that the joint density function is of 
the form: 

f (y, z; a) = exp {f g[l(a)y + m(a)z, a]da + t(y, z)} (6) 

where g(.), I(a), m(a), t(y, z) are arbitrary functions. Further, in this 
case oy:/oz: = I(a')/m(a:). 

Proof. See Appendix A. 
A broad subclass of the class in (6) is given by: 

f (y, z; a) = expIp(a)y + q(a)z - r(a) + s(y) + t(z - yy)} (7) 

where a is the agent's action choice, p(.), q(.), r(.), s(.), and t(.) are 
arbitrary functions of a, y, or z as indicated, and y is a scalar parameter. 
For this class of joint probability density functions, the conditional 
distribution' of the signal y I z (and also z Iy) includes many common 
distributions such as (truncated) normal, exponential, gamma, chi- 
square, and inverse Gaussian. These conditional distributions include 
many of the common parametric functional forms for continuous prob- 
ability distributions that have been considered (to our knowledge) in the 
agency literature" in accounting. 

COROLLARY 1. If f (y, z; a) belongs to the class in (7), then k* can be 
written as V*(r) where r is a linear combination of y and z. 

Proof. See Appendix A. 

9 These univariate conditional density functions were first considered by Darmois [1935] 
and Koopman [1936]. 

10 See, for instance, Mirrlees [1976], Holmstrom [1979; 1982], Baiman and Demski 
[1980], Basu et al. [1985], and Amershi [1985]. 
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REMARK 1 

We see from Proposition 1 that linear consolidation of signals is 
optimal for a large class of joint density functions, which includes most 
of the common continuous probability distributions considered in agency 
models in accounting. But the compensation contract A itself need not 
be linear in y and z for this class of distributions. That is, even though r 
= ly + mz is a linear function of y and z, the compensation function t(7r) 

need not be linear in wr (and hence in y and z). However, as observed in 
Banker and Datar [1986], if the principal is risk neutral and the agent's 
utility function is logarithmic, U' = 1/0 and for the class in (7) the 
optimal 0* = X + ,j[pa(a*)y + qa(a*)z - ra(a*)] and the compensation 
contract itself is linear in y and z." 

REMARK 2 

The condition in (6) for the joint density function is sufficient to 
ensure that some but not necessarily the same linear aggregate of y and 
z is optimal for all agencies. However, it is not a necessary condition for 
a linear aggregate of y and z to be optimal for a specific agency with given 
utility functions for the principal and for the agent. Consider the joint 
density function f of the form given by: 

In f(y, z; a) = gi[l(a)y + m(a)z]da + t(y, z) + g2(a - a*)g3(y, z), 

where g,(.), g2(*), and g3(.) are arbitrary functions with g'2(O) = 0, and 
a* is the optimal action for the specific agency under consideration. A 
linear aggregate l(a*)y + m(a*)z is indeed optimal because: 

fa(Y, z; a*)/f(y, z, a*) = g,[l(a*)y + m(a*)z], 

since g'2(a - a*)g3(y, z) vanishes at a = a*. Thus, we can construct any 
number of joint density functions, outside the class specified in (6) for 
which falf is coincidentally a function of a linear aggregate of y and z at 
a = am 

Instead of evaluating the optimal linear aggregate for a specific agency 
(and action), our focus in Proposition 2 is to identify necessary conditions 
on the joint density functions of y and z with the more robust property 
which ensures that some linear aggregation will always be optimal, 
whatever the utility function of the agent and the action induced by the 
risk-neutral principal. Note that the joint density function considered in 
Remark 2 does not satisfy this more robust property. For another agency, 
in which the optimal action induced is other than the a* considered in 
the example, a linear aggregate of y and z will not be optimal, since the 

" In fact, since 0* = U'-[1/(X + ,ufJ/J)], a logarithmic utility function for the agent and 
joint density function f(y, z; a) of the class described in (7) with t(y, z) in place of t(z - 

}yy), constitutes "almost necessary" and, of course, sufficient conditions for the optimal 
compensation contract 0* to be linear in the signals y and z. 
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expression g2(a - a*)g3(y, z) will not vanish. The class of joint density 
functions identified in Proposition 2 is precisely the class described in 
Proposition 1. We are thus able to characterize the class of joint density 
functions for which some linear aggregation is optimal for all agencies, 
although the relative weights in the optimal aggregation will vary with 
each agency. 

PROPOSITION 2. A necessary (and sufficient) condition for the optimal 
compensation contract to be written as 0: = 4/'1(7r'),rl' = l(a3)y + m(a"))z 
for all possible actions a" E A is that the joint density function is of the 
form in (6), that is, f (y, z; a) = explfg[l(a)y + m(a)z, a]da + t(y, z)), 
where g( * ), 1 (a), m(a), t(y, z) are arbitrary functions. 

Proof. See Appendix A. 

REMARK 3 

While Proposition 2 provides necessary and sufficient conditions for 
some linear aggregation to be optimal for all agencies 3, the weights l(a3) 
and m(a') vary with the optimal action a" for each agency 3. If, on the 
other hand, we are interested in necessary and sufficient conditions for 
the optimality of a specific ly + mz, with l and m independent of a13, we 
can proceed as in Proposition 2 and obtain: 

f (y, z; a) = exp {J' g(ly + mz, a)da + t(y, z)} 

as the necessary and sufficient condition on the joint density function. 
We can then rewrite this condition as: 

f (y, z; a) = fi(ly + mz, a)f2(y, z) for all a, y, z, (8) 

where fi() = exp[J g(ly + mz, a)dal and f2( ) = explt(y, z)}, which is 
precisely the condition for ly + mz to be a sufficient statistic for y and z 
with respect to a (see DeGroot [1970] and Holmstrom [1979]). The 
notion of a sufficient statistic is not adequate for examining when some 
linear aggregation is optimal across all agencies and actions induced by 
the principal since the joint density function f(y, z; a) in (6) that 
characterizes this class cannot always be written in the form in (8). 

REMARK 4 

If the principal is risk averse, then the signals y and z will be required 
for determining the value of the outcome x = x(y, z) for optimal risk- 
sharing arrangements, in addition to the information required for moti- 
vating the agent as considered earlier in the case of a risk-neutral 
principal. That is, even when the density function f is of the form in (6), 
the optimal compensation function 0,y will depend on x = x(y, z) in 
addition to wr1 = l(a13)y + m(a13)z. Therefore, the single linear aggregate 
7r will be adequate only if we can write x(y, z) = i(w1r). However, in 
many situations x will be some (other) linear function of y and z. In such 
cases, two linear aggregates w1r and x, will together be optimal. 
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4. Sensitivity and Precision of Signals 

We interpret the relative weights 1(a") and m(a") in the optimal linear 
aggregate in terms of statistical measures summarizing the joint proba- 
bility distribution of the accounting signals. For reasons of analytical 
tractability we focus on a subclass of the distributions in (6) identified 
as the necessary and sufficient conditions in Proposition 1 for some 
linear aggregation to be optimal in all agencies. Johnson and Kotz [1970, 
p. 32] note that this subclass defined by (7) is itself a fairly broad class 
that includes many common distributions. The class imposes few severe 
restrictions in that the distribution may be convex or concave and skewed 
on either side of the mean. It permits consideration of a large number of 
parameters since p(.), q(.), r(.), s(.), and t(.) are arbitrary functions. 
Furthermore, the class allows means, variances, and covariance to be 
functions of the agent's action a.12 

It follows immediately from (4) and (5) that when the principal is risk 
neutral and linear aggregation is optimal for the class in (7): 

by 
_ (a) _ fa(Y, z; a) 0 fa(y, z; a) 

-o m(a) ay f(y, z; a) /Oz f(y, z; a) 

where the relative weights 1(a): m(a) are independent of the actual 
realized values of the signals y and z. We interpret the relative weights 
in terms of the means, variances, and covariance of the joint probability 
distribution of the signals. Note, however, that our interpretations apply 
only to distributions belonging to the class in (7) and not to all distri- 
butions for which linear aggregation is optimal as identified in (6). 

For our exponential-type bivariate distributions of signals we denote 
the precision of signal y by p2 = 1/Var(y), and the precision of signal z 
by p2 = 1/Var(z). Sensitivity measures the change in the expected value 
of the signal with changes in the level of effort of the agent. For 
uncorrelated signals y and z, we define the (unadjusted) sensitivity of 
signal y by Aila = OE(y)/Oa, and the (unadjusted) sensitivity of signal z 
by /A2a = OE(z)/Oa. For correlated signals y and z, we modify the notion 
of sensitivity to measure the sensitivity of one signal relative to the other. 
We define the (adjusted) sensitivity of signal y as Ala = Ala - kp 2a, 

where k is Cov(y, z) and P2 is the precision of z as defined above. We 
similarly define {2a = 82a kpl2/ia as the (adjusted) sensitivity of signal 
z. 

We show, for the class of density functions defined in (7), that the 
weight on a particular signal in the optimal linear aggregate used for 
incentive purposes is directly proportional to its sensitivity and precision. 

12 Although the variances and the correlation coefficient must be independent of a in the 
case of a normal distribution, this restriction is relaxed for some other members of the 
class in (7). For instance, in the case of a gamma, exponential, chi-square, or truncated 
normal distribution, the variances and the correlation coefficient may depend on a. 
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We first prove the result for the case of uncorrelated signals, that is, with 
y = 0 in (7).13 

PROPOSITION 3. If the joint density function of y and z is of the form 
f (y, z; a) = exp Ip(a)y + q(a)z - r(a) + s(y) + t(z) I defined over y C Y C 
R and z C Z C R: 

Pilyla 
2 M P2I12a 

when 0* is in the interior of [0, q]. Note that 1, m, and pi, Iia for i = 1, 
2, are evaluated at a = a*.l4 

Proof. See Appendix A. 
We next consider the general case of correlated accounting signals. We 

show that the optimal weight on a particular signal in the linear aggregate 
used for incentive purposes is directly proportional to its precision and 
(adjusted) sensitivity measured relative to the other signal, as defined 
earlier. 

PROPOSITION 4. If the joint density function f(y, z; a) is of the form 
f(y, z; a) = explp(a)y + q(a)z - r(a) + s(y) + t(z - yy), y $ 0, defined 
over y C Y C R and z C R, I/m = PPa/P2{2a when 0*(y, z) E (b, k). Note 
that pi2 and ia for i = 1, 2 are evaluated at a = a*. 

Proof. See Appendix A. 
COROLLARY 2. If the joint density function f belongs to the class 

defined in (7) over y E Y C R and z C R, then y = Cov(y, z)/Var(y). 
It is evident that linear transformations of the original signals belong 

to the class in (7). Moreover, the relative weights on the signals y and z 
in the optimal linear aggregate are scale-invariant, that is, the relative 
weights do not vary when the same linear transformation is applied to 
both the signals y and z. 

We have developed our results on sensitivity, precision, and linear 
aggregation for the case of multiple signals about the agent's action, 
modeled as single dimensional. Our results, however, extend directly to 
the case where the agent's action is multidimensional (see also Matsu- 
mura [1985]). Suppose the agent selects actions a1 and a2 that affect the 
distribution of both the signals y and z. The joint density function can 
then be written in the form: 

f(y, z; aia2) = explp(al, a2)y + q(ai, a2)Z 

- r(ai, a2) + s(y) + t(z - yy)). 

13 Bildikar and Patil [1968, p. 1317] show that for this class y and z are independent if 
and only if they are uncorrelated. 

' The above results generalize directly to the case when the signals y and z are 
independent and f(y, z; a) = p(a)h(y) + q(a)k(z) - r(a) +s(y) + t(z). In this case: 

I =aE[h(y)]/aa Var[k(z)] hy(y) 
m aE[k(z)]/aa Var[h(y)] k,(z) 
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If the principal is risk neutral, the first-order condition for optimization 
is: 

1 tai(Y, z; al,a2) + fa2(Y, z; a,, a2) 

-, =y X f (y z; a,, a2) f f(y, z; a,, a2) 

where tu and A2 are the Lagrange multipliers on the incentive compati- 
bility constraints for a1 and a2 respectively. The optimal linear aggregate 
is (piPal + /2Pa2)Y + (8tlqai + 12qa2)z. The modified sensitivity measure for 
each signal is now the weighted sum of the sensitivity of the signal to 
each action ai where the weights are the Lagrange multipliers tti. Due to 
the Envelope Theorem these multipliers are interpreted as EWW/Oai, the 
marginal importance of each action to the principal. The relative weight 
on each signal is then equal to the weighted sensitivity measure times 
the precision of the signal. 

5. Discussion and Accounting Implications 

In many accounting contexts, the outcome x of the agent's effort is not 
jointly observed,15 but two distinct jointly observable signals y and z are 
available which measure the outcome x with error. The incentive contract 
can then be based on these signals. The question of interest is the relative 
weights on the signals y and z in an optimally designed incentive contract. 
If the joint density function of y and z belongs to the class in (7), with y 
= x + q and z = x + r where x, qj, and r are independent stochastic 
variables,"6 Var(y) = Var(x) + Var(t1) and Var(z) = Var(x) + Var(r). 
Furthermore, since y - z = --r we have Var(y) + Var(z) - 2Cov(y, z) 
= Var(ti) + Var(r) = Var(y) - Var(x) + Var(z) - Var(x). Therefore, 
Cov(y, z) = Var(x). Next we compute the (adjusted) sensitivity of each 
of the signals y and z as follows: 

vya = [OE(x)/Oa]Var(r)/[Var(x) + Var(r)] and 

!za = [OE(x)/Oa]Var(i7)/[Var(x) + Var(i7)]. 

Hence, I/m = Var(r)/Var(i7). In other words, the relative weights for 
the two signals y and z will be inversely proportional to the variances of 
their corresponding (measurement) errors q and r respectively. 

Our model provides some insight into the practice of adjusting divi- 
sional profits by corporate overheads in evaluating divisional performr 
ance. Consider a divisional manager whose action a directly affects 
divisional profits, y, such that OE(y)/Oa > 0. The corporate overhead, z, 
is not affected by the agent's action, so that OE(z)/Oa = 0. Divisional 
profits and corporate overheads are correlated with a correlation coeffi- 

15 These situations have been considered by Mirrlees [1976, p. 122], Gjesdal [1982], and 
Banker, Datar, and Maindiratta [1988]. 

16 The variables 7j and T may be interpreted as "measurement errors." 
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cient, r, 0 < r < 1. In the following proposition we show that z will be 
used in the optimal performance evaluation measure if and only if z and 
y are correlated, that is, r $ 0. Further, the relative weight m: 1 on the 
signal z relative to signal y is directly proportional to the correlation 
coefficient. 

PROPOSITION 5. If the joint density function of y and z belongs to the 
class in (7), and ita, > 0, A12a = 0, pi > 0 and p2 > 0, then the relative 
weight: 

R -M= +kp2 = +- 
1 07 

and OR/OE(y) = 0, OR/OE(z) = 0, aR/arz =-ruy/u 2 < o, aR/Oar = r/c > 
0, aR/Or = +cy/crO> 0. 

Proof. See Appendix A. 
Proposition 5 suggests that noncontrollable corporate overhead ex- 

pense will be used in the construction of the optimal performance 
evaluation measure if and only if this accounting signal is correlated with 
controllable divisional profits. This is in contrast to Baiman and Demski 
[1980] who develop a demand for overhead cost allocation from the 
additional information conveyed by the cost allocation basis which serves 
as an additional signal. In our model, the correlation of overhead costs 
with divisional profits is the key. Overhead costs, z, provide information 
about the agent's action choice a even though a does not directly influence 
z. 

The absolute value of the relative weight (-m/i) on the overhead cost 
signal in the optimal performance evaluation measure is independent of 
E(y) and E(z). It increases if the signal y is noisier (i.e., ay increases) or 
if y and z are more positively correlated (i.e., r increases) and decreases 
if the signal z is noisier (i.e., a, increases). 

Our results on the use of corporate overhead costs in the divisional 
manager's optimal performance evaluation measure are similar in spirit 
to the results on relative performance evaluation, as in Baiman and 
Demski [1980] and Holmstrom [1982], where the output of one agent is 
used in the performance evaluation of a second agent when the outputs 
of the two agents are correlated. Thus, the notions of sensitivity and 
precision, which we have employed in determining the relative weights 
in optimal linear aggregation, extend directly to the case of relative 
performance evaluation. 

We next apply the results of our model to evaluate the performance of 
a profit center (divisional) manager whose action a affects revenue 
measured by ($y) and costs measured by ($ - z). The joint distribution 
of y and z belongs to the class in (7). It follows from Proposition 4 that 
the relative weight on each signal 1: m in the optimal performance 
evaluation measure is directly proportional to the sensitivity times pre- 
cision of each signal. The noisier a signal, the smaller the weight on that 
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signal in the agent's performance evaluation measure.17 The more sen- 
sitive a signal to changes in the manager's level of effort, the greater the 
weight on that signal in the manager's performance evaluation measure.18 

We refer to the product of the sensitivity and precision as the intensity 
of the signal. The performance evaluation measure ly + mz can be written 
as a function of the profit number (y + z) alone only when the intensity 
of the revenue signal equals the intensity of the cost signal. If the weight 
on the cost signal (-z) is greater than the weight on the revenue signal 
(y), the optimal performance evaluation measure may be written as l(y 
+ z) + (m - l)z. The optimal performance evaluation measure then is 
based on the profit number (y + z) and on the more heavily weighted 
cost signal. 

Following Holmstrom [1979], a necessary condition for a manager to 
be evaluated as a profit center rather than as a cost center is that 
revenues be marginally informative about the manager's effort given 
costs. Our discussion above illustrates that this condition is not sufficient. 
When the sensitivity times precision of revenue (y) and costs (-z) are 
not equal, it is not optimal to evaluate the profit center manager on the 
basis of the pure profit number alone. 

Individual elements of costs within a cost center are often added 
together to form an aggregate cost measure. In the cost accounting 
literature, a commonly suggested criterion for aggregation is the homo- 
geneity of the individual cost components. Homogeneity means that the 
costs assigned to a particular cost pool should exhibit the same pattern 
of response to the various determinants of cost behavior (Shillinglaw 
[1972, p. 77].19 Feltham [1977] develops this notion of homogeneity with 
respect to aggregation of costs into cost pools within an information 
economics framework to evaluate the sufficiency of the cost aggregate 
for a single decision maker. In a two-person setting, our results indicate 
that a simple equally weighted aggregation of individual cost components 
into a single cost pool for performance evaluation purposes is optimal if 
and only if the intensity (sensitivity times precision) of all individual 
components is the same. If the intensity of any individual cost signal is 
greater, the optimal performance evaluation measure will include both 
the aggregate cost and the cost signal whose intensity is greater.20 

7 Homlstrom [1982] obtains a similar result in the case of a multivariate normal 
distribution. 

18 Our results provide a formal economic basis for extending laboratory experiments 
involving accounting aggregation for single-person decision making (Barefield [1972]) to 
multiperson economic settings involving evaluation of performance. 

19 Shillinglaw [1977, p. 21] suggests that accounting data should be collected and 
aggregated in ways that make it easier to identify the relationships between costs and their 
determinants. Horngren and Foster [1987, p. 457] also note that Cost Accounting Standards 
Board regulations require homogeneous cost pools for product costing purposes. 

20 Another example of linear aggregation of signals occurs in the case of an investment 
center. In this case, the manager's effort influences both the operating income (y) and the 
level of investment (-z). If the joint density function of y and z belongs to the class in (7), 
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6. Concluding Remarks 

Multiple signals are commonly available for evaluating managerial 
performance. We distinguish between the performance evaluation mea- 
sure based on basic signals and the compensation schedule based on the 
evaluation measure. We focus on the management accountants' role in 
combining detailed records (signals) into an aggregate performance eval- 
uation measure. In Propositions 1 and 2 we identify necessary and 
sufficient conditions under which some linear aggregation is optimal for 
all agencies, and for a subclass we obtain an interpretation (in terms of 
the sensitivity, precision, and intensity of the individual signals) of the 
optimal weights in such linear aggregates.21 

An implication of our analysis is that evaluating the performance of a 
profit center (divisional) manager on the basis of a pure profit number 
will be optimal only if the sensitivity times precision (intensity) of 
revenue (y) and costs (-z) is equal. If the intensity of either signal is 
greater, the optimal performance evaluation measure will depend on the 
profit number and the more intense signal. 

Our analysis also demonstrates that it is optimal to include noncon- 
trollable corporate overhead expenses in the construction of the optimal 
divisional performance evaluation measure if corporate overheads are 
correlated with controllable divisional profits, a result in the spirit of 
relative performance evaluation, as in Holmstrom [1982]. The notions of 
sensitivity and precision extend directly to the case of relative perform- 
ance evaluation. The absolute value of the relative weight on the signal 
not controllable by the agent in the optimal performance evaluation 
measure is directly proportional to the precision of that signal as well as 
the correlation coefficient between it and the other signal controllable 
by the agent. 

the optimal performance evaluation measure will look like residual income. However, the 
relative linear weight (m/I) for the investment signal in the optimal linear aggregate for 
managerial performance evaluation will depend on the intensity of the two signals and will, 
in general, differ from the interest rate. Moreover, for joint density functions of y and z 
that belong to the class in (7), the ratio measure return on investment will not be an 
optimal performance evaluation measure for incentive purposes. In fact, proceeding as in 
Proposition 2, the necessary and sufficient condition for return on investment to be the 
optimal performance evaluation measure for all agencies d is that J,(y, z; a'f)/f(y, z; al) = 

g(y/z, a')h(y, z) for all a,' E A, where g(.) and h(.) are any arbitrary functions. In other 
words y/z is a sufficient statistic for (y, z) with respect to the agent's action a. 

21 We do not investigate the amount or extent of loss (a) if equal weights are used in the 
linear aggregate instead of the optimal weights or (b) if accounting signals outside the class 
for which linear aggregation is optimal are aggregated linearly. Determining the extent of 
loss analytically is difficult because it entails a comparison of integrals. In a single-person 
decision-making context, Feltham [1977] estimates losses resulting from aggregation using 
simulation techniques. 
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APPENDIX A 

Proof of Proposition 1 

We show that if f (y, z; a) is indeed of the form in (6), then 01(y, z) can 
be written as iPA[1(a0)y + m(aO)z] for all agencies A. If f belongs to this 
class of joint density functions, then fa/f = g[l(a)y + m(a)z]. Furthermore, 
since the optimal compensation function 0/(y, z) is characterized by the 

equation 
I 

= X + A tfa(y, ' d)7 where G = (W)', we can write 0, = 

G-1[1/(X + gg(w1)] = iIA(wr3), where 7r' = l(a3)y + m(a,)z. 

Proof of Corollary 1 

We simply show that if f is in class (7), then it is in the class in (6). 
This is seen immediately by writing 1(a) = pa(a), m(a) = qa(a), g(.) = 
pa(a)y + qa(a)z - ra(a), and the constant of integration with respect to a 
as s(y) + t(z - yy), in particular. 

Proof of Proposition 2 

Suppose 0/(y, z) = 4/[l(a,3)y + m(a3)z]. Differentiating with respect to 
each of y and z, we have oyj - (xA)' l(a) and z[ =(A)' m(a3). Therefore, 
0yK/0zK3 = l(a3)/m(a3). From equations (4) and (5), we also have: 

1 (aO) OyO (9[fa(yg z; a,3)/ff(y, z; aK3)]/(9y 

m (a') 0z' (9[fa(yg z; a3)/f (y, z; a')]/9z' 

Next, writing hV = h(y, z; aO) = fa(y, z; a3)/f(y, z; a3), we have m(a:)h,13 
- l(aO)hz" = 0. This is a linear homogeneous partial differential equation 
whose subsidiary equation can be written as: 

l(a ) _ m(a) _ 0 
dy dz dhI 

Therefore, any solution to it must be of the form h(y, z, a") = g[l(a3)y + 
m(aO)z, a,], where g is any arbitrary function. See, for instance, Scarbor- 
ough [1965, p. 95], and Sneddon [1957, p. 50]. Note further that alnf(y, 
z; a')/aa = h(y, z; a') = g[l(a,3)y + m(a')z, a'3] holds for all a3 e A. 
Therefore, integrating both sides of the equation with respect to a", we 
obtain: 

f (y, z; a) = exptf g[l(a)y + m(a)z, a]da + t(y, z)}. 
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Proof of Proposition 3 

We begin by proving that for this class of joint density functions: 

a fa(y, z; a*) 2 
a9y f (y, z; a*) Pa( 

P1) plka 

and: 

a fa(y, z; a*) 2 

a9z f (y, z; a*) qa (a*) =P2/t2a 

The proposition will then follow immediately since: 

1:m = - fa d fa 
9y f 9z f 

Note that for the class of joint density functions considered in this 
proposition, y and z are independent stochastic variables, with density 
functions: 

fi(y) = explp(a)y - r1(a) + s(y)} and 

f2(z) = explq(a)z - r2(a) + t(z)}, 

where r1(a) + r2(a) = r(a). Note that for simplicity in exposition we 
suppress the parameter a in fJ(*), f2(*), and also in E(.), Var(.). 

In order to next derive expressions for E(y) and Var(y), we shall adopt 
the method employed in two-sided Laplace transform therory. See, for 
instance, Holbrook [1966], Jaeger and Newstead [1969], and Widder 
[1941]. 

Since f fA(y) dy = 1, we have f explp(a)y + s(y)} dy = explr1(a)). 
Therefore, on differentiating with respect to p(a), we have: 

T y explp(a)y + s(y)}dy = r1'(a) expfr1(a)1/p'(a) 

and hence, E(y) = r,'(a)/p'(a). To obtain an expression for E(y2), we 
once again differentiate the above integral with respect to p(a). Thus: 

y2 explp(a)y + s(y)}dy 

= [r1'/p']2exp r1 + -[(p'r" -p ri')/p'2]exp r 

and hence: 

E(y2) = [rl'/p']2 + [(p'rl" - p"r1')/p'3]. 

Therefore, Var(y) = E(y2) - [E(y)]2 = (p'r1" -p"r1)/p/3. 
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In addition, differentiating E(y) with respect to a, we obtain: 

a Erl"-p"r' 1 

Thus, - E(y) = p' Var(y), or equivalently: 
a 

d a= pa(a) = p' = E(y)/Var(y) = P/Lia 

Similarly, it can be shown that: 

az 
fa (a) = P2 /2a. 

Proof of Proposition 4 

We begin by making the linear transformation w = z - -yy, so that 
E(w) = E(z) - -yE(y), and Var(w) = Var(z) + 'y2 Var(y) - 2-y Cov(y, z). 

Furthermore, note that the joint density function g(y, w; a) can be 
expressed as g(y, w; a) = expl[p(a) + -yq(a)]y + q(a)w - r(a) + s(y) + 
t(w) I and, therefore, it is evident that y and w are independent stochastic 
variables and their joint density function belongs to the class considered 
in Proposition 3. 

Since z = w + Pyy, we also have Var(z) = Var(w) + -y2 Var(y). Comparing 
this expression with the earlier expression relating variances of y, z, and 
W, it follows that 2_y2 Var(y) = 2-y Cov(y, z), and hence, -y = Cov(y, z)/ 
Var(y) = kpi, where k = Cov(y, z). 

Next consider the optimal linear aggregate of the two signals y and co 
for incentive purposes. Let 1' and m' be the weights for y and co in the 
optimal linear aggregate. 

Since y and co are independent, from Proposition 3 we have: 

I' aE(y)/aa Var(co) 
m' Var(y) aE(w)/9aa 

Furthermore, we also have: 

|//M m = ga /a ga 

m ay g acw g 

= [Pa (a) + -yqa(a)]/qa(a) 

= [pa(a)/qa(a)] + y 

= [I/m] + ay. 
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Therefore: 

(i/m) = ('/M') - y 

Var(w)[aE(y)/aa] - yVar(y)[aE(w)/aa] 
Var(y)[aE (w))/aa] 

Pi Ala YP2 282a 

P2 (82a - 7YIa) 

Pi2(la - kp22A2a) 

P22 A2a- kpi2tla) 

Proof of Proposition 5 

From Proposition 4, the adjusted sensitivity of z =-hkp,2Ala. Therefore: 

R = -m/r = +kpl2Alap22/pl2A la 

= +kp22 

= +rTy/6z. 

Comparative statics results follow immediately by differentiating R with 
respect to E(y), E(z), ary, uz, and r. 
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