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Abstract 

Protons and heavier ions have an increased relative biological effectiveness (RBE) 

compared to photons. While variable RBE models are applied clinically in carbon 

ion therapy, the RBE in proton therapy is accounted for clinically by applying a 

constant RBE of 1.1. However, an increasing amount of experimental and clinical 

data show that also the proton RBE varies spatially within the patient. In addition, 

the existing carbon ion RBE models give substantially different RBE-weighted dose 

(often referred to as biological dose) distributions for the same irradiation 

scenarios. Improving the current RBE calculations is therefore crucial for the 

treatment received by patients. In this thesis, variables affecting the RBE and 

biological dose models were studied using the FLUKA Monte Carlo code.  

In the first part of the thesis, a low-energy proton beam cell irradiation 

experiment at the Oslo Cyclotron Laboratory (OCL) was implemented in FLUKA 

(Paper I). Applying the FLUKA implementation, the dose and linear energy transfer 

(LET) (both the dose-averaged LET (LETd) and LET spectra) were estimated in 

potential cell irradiation positions. The LETd values increased along the beam path, 

up to approximately 40 keV/μm in the distal dose-fall off. The LET spectra became 

narrower with depth in water. Comparisons with a simulated 80 MeV proton beam 

showed that the OCL beam had significantly higher LETd values and much narrower 

LET spectra for the same LETd values. The FLUKA implementation of the OCL beam 

demonstrated the importance of having proper proton beam characteristics to 

achieve accurate RBE versus LET data. 

In the second part of the thesis, the RBE model applied clinically in carbon 

ion therapy in Japan (the microdosimetric kinetic model, MKM) was implemented 

in FLUKA (Paper II). For the implementation, tables connecting the saturation-

corrected dose-mean specific energy (���� ) to particle type and particle kinetic 

energy were generated. The FLUKA implementation was then used to study the 

sensitivity of the MKM to variations in the model parameters (Paper III). The 

created ����  tables agreed well with the tables applied clinically in Japan. The 
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relative changes in the biological dose distributions during the sensitivity study 

were less than the percentage change of a model parameter. In addition, varying 

multiple parameters simultaneously had mostly smaller impact on the biological 

dose than varying parameters separately. The MKM implementation enables 

conversion from dose distributions obtained with the local effect model (European 

RBE model) to MKM dose distributions, making direct comparisons to the Japanese 

clinical carbon ion data possible.  

In the final part of the thesis, a biological dose model accounting for hypoxia 

was developed for protons and implemented in FLUKA (Paper IV), as well as in a 

FLUKA based treatment planning tool (Paper V). The hypoxia model estimates the 

biological dose as a function of RBE and oxygen enhancement ratio (OER). The OER 

is a function of the LET and the partial oxygen pressure (pO2), which was estimated 

in patients using [18F]-EF5 PET images. Areas with low pO2 values were observed in 

the planning target volume of a head and neck cancer patient, resulting in volumes 

of lower biological dose than prescribed. Treatment plans optimized with the 

hypoxia method had a median biological dose corresponded with the prescription 

dose and physical dose distributions which were increased in the hypoxic areas. 

The optimization of treatment plans with the hypoxic model showed good 

potential for including the OER, as well as the RBE, in treatment planning. 

Overall, this thesis has contributed to knowledge on the RBE and biological 

dose calculations in proton and carbon ion therapy. Monte Carlo studies of an 

experimental or clinical proton or carbon ion beam may help reducing the 

uncertainties in the RBE and biological dose. Given the increase in proton and 

carbon ion facilities worldwide, improving the accuracy of RBE calculations to give 

patients the best possible treatment is more relevant than ever.   
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1. Introduction 

Cancer is a group of diseases caused by uncontrolled division of abnormal cells in 

parts of the body. While diagnostics and treatment modalities for cancer have 

improved greatly the last century with substantially increased survival rates 

(Quaresma et al 2015), cancer is still the second leading cause of death worldwide 

(WHO 2018). Methods for treating cancer are therefore still in continuous 

development, and these include radiotherapy, which has a vital role in cancer 

treatment. The aim of radiotherapy is to kill the cancer cells while sparing the 

healthy tissue. In conventional radiotherapy, the patients are treated with photons 

or electrons. However, due to the physical properties of particles like protons and 

heavier ions, it can be advantageous to use these in radiotherapy (Durante et al 

2017). Radiotherapy with protons and heavier ions is called particle therapy, and is 

currently under planning in Norway, with two proton therapy centers expected to 

open in Oslo and Bergen before 2025.  

Radiotherapy dates back to the end of the 19th century, with three 

fundamental discoveries; the discovery of x-rays by Wilhelm Röntgen in 1895 

(Röntgen 1896), followed by the discovery of natural radioactivity by Henri 

Becquerel in 1896 (Becquerel 1896) and the discovery of polonium and radium by 

Marie and Pierre Curie in 1898 (Curie 1950). The use of x-rays in cancer treatment 

was suggested shortly after Röntgen’s discovery, and already in 1896 x-rays were 

applied in patient treatment (Lederman 1981). In 1904, Wilhelm Henry Bragg 

studied α-particles emitted by radium, and discovered that the α-particles ionize 

most efficient towards the range of the particle (Bragg and Kleeman 1904). This 

ionization peak is now called the Bragg peak, and Robert R. Wilson suggested in 

1946 that this effect could be used in cancer treatment applying protons and 

heavier ions (Wilson 1946). 

Particle therapy has evolved drastically since being suggested by Wilson, 

from being only offered in research facilities to state-of-the-art treatment facilities 

at hospitals. Initially, several particle types, including helium, carbon, neon and 
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argon ions, were used in patient treatment (Castro et al 1980). Today, only protons 

and carbon ions are applied clinically, however, helium ions are about to make a 

comeback, with Heidelberg preparing to start treatments with helium in 2020 

(RaySearch 2019). There are currently more than eighty proton therapy facilities 

worldwide, found in Europe, Asia, North America and South Africa, while carbon 

ion therapy is currently offered in thirteen facilities, in Japan, Europe and China 

(PTCOG 2019).  

Protons and heavier ions have, as mentioned, physical properties which 

makes it possible to better confine the dose to the target when compared to 

conventional radiotherapy. Another difference is that protons and heavier ions also 

have an increased relative biological effectiveness (RBE) compared to photons. In 

particle therapy, an RBE-weighted dose (biological dose) is therefore applied in 

treatment planning. A large amount of data has demonstrated that the RBE varies 

with parameters such as physical dose, biological endpoint, the linear energy 

transfer (LET) and tissue type (Paganetti 2014). Still, a constant RBE of 1.1 is 

currently applied at clinical proton centers, as recommended by ICRU (ICRU 2007), 

ignoring these RBE dependencies. For heavier ions the variations in RBE are too 

large to be ignored. Therefore, clinical carbon therapy facilities generally apply 

variable RBE models, with the local effect model (LEM) in Europe (Scholz and 

Elsässer 2007) and the modified microdosimetric kinetic model (MKM) in Japan 

(Inaniwa et al 2015).  

Monte Carlo codes are useful tools in dose calculations, and regarding the 

dosimetric accuracy, general purpose Monte Carlo codes are considered the gold 

standard (Kozłowska et al 2019). In this thesis, the FLUKA Monte Carlo code 

(Böhlen et al 2014, Ferrari et al 2005) has been used to study the biological dose in 

particle therapy, first as a tool to improve in vitro data for RBE calculations, second 

for comparing and studying a clinically applied biological dose model and last to 

develop and study a new biological dose calculation method which accounts for 

both the traditional RBE dependencies and the tumor oxygen levels in a patient. 
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2. Physics of Particle Therapy 

Radiotherapy utilizes ionizing radiation in treatment of cancer, which is radiation 

with enough energy to detach electrons from atoms or molecules. The goal of 

radiotherapy is to damage the cancer cell DNA enough to kill the cells, while at the 

same time sparing the surrounding healthy cells. The DNA is damaged either by 

direct action, which happens when the radiation has enough energy to directly 

break parts of the DNA, or indirect action, which is when the radiation creates free 

radicals which may be harmful for the DNA (Joiner and van der Kogel 2009). The 

energy deposited in matter by the radiation per unit mass is called the radiation 

dose, and the aim is to deposit enough dose in the tumor to kill it.  

2.1 Interaction of particles with matter 

In particle therapy, the protons or heavier ions interact with the matter mainly 

through inelastic Coulomb scattering, elastic Coulomb scattering and non-elastic 

nuclear reactions, illustrated in Figure 2.1. Through these interactions the particles 

will lose energy, be deflected or removed from the original particle trajectory, 

ionize atoms and create secondary particles.  

 

������� 	
��� 
����������� ��� �������� ����� �������� ���������� �������� ����������� ����� ��������

������������������������������ ����������������������������
�!����"������������������#���������

�$�� ��������#� �������� ��� ���������� ��� ��������� %�� ������ ��#�
� &��� ������� ��� �������� �����

'���������(�)������	*�+�
��

2.1.1 Stopping power 

In inelastic Coulomb scattering, the incoming particle interacts with an atomic 

electron. The electron will be freed from the atom, while the primary proton or 

carbon ion, which is significantly heavier than the electron, will continue in an 
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approximately straight line, however, with a slightly lower energy (Newhauser and 

Zhang 2015). The energy loss rate is generally called the stopping power of the 

particles, and is described by the Bethe-Bloch equation, here as given in Leo (2012):  

� ��
�	 
 ��
��������� �

�
��
�� ��� ���� �!�"#$%

&� ' � �(� � ) � � *
�+. (2.1) 

Here, , is the mean energy loss over distance -, 
�  is Avogadro’s number, ��  is the 

classical electron radius, ��  is the electron mass, � is the speed of light in vacuum, 

� is the density of the absorbing material, . and / are the atomic number and 

atomic weight of the absorbing material, respectively, � is the projectile charge, ( 

is the projectile velocity relative to the speed of light, 0 
 12 � (�34�5�, 6 is the 

projectile velocity, 789: is the maximum energy transfer in a single collision, ; is 

the mean excitation potential and ) and < are correction terms. 

The particle stopping power is proportional to the square of the charge and 

inversely proportional to the square of the velocity of the primary proton or carbon 

ion (Equation (2.1)). The stopping power will therefore increase with decreasing 

velocity, and the energy loss is therefore highest when the particle has almost 

stopped, leading to the characteristic Bragg peak in the depth dose distribution. As 

carbon ions are heavier than protons, carbon ion therapy requires a higher energy 

to produce the same stopping power as protons, as seen in Figure 2.2. 

 

Figure 2.2: Stopping power in water as a function of energy for protons and carbon ions (a), 

together with depth dose profiles of a 135 MeV proton and a 254 MeV/u carbon ion beam in water 

(b). Stopping power data from ICRU49+73, obtained using the generic stopping power library 

libdEdx (Lühr et al 2012). The depth dose distributions were obtained through FLUKA Monte Carlo 

simulations.  
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2.1.2 Range 

The particle range is defined as the depth at which half of the primary particles 

have come to rest (Newhauser and Zhang 2015). This is an average quantity, due to 

variations in the energy loss of the individual particles called range straggling. The 

range of particles can be calculated according to the continuous slowing down 

approximation (CSDA), i.e. by integrating the particle stopping power from zero to 

the initial particle energy (Fano 1953). Several stopping power and range tables 

have also been made, which makes easy to directly get the range of particles in a 

given medium (Lühr et al 2012). 

Range straggling broadens the Bragg peak of the beam. The ratio of the 

straggling width and the mean range is proportional to 2 =>? , where > is the 

particle mass (Schardt et al 2010). Carbon ions will therefore have a much smaller 

straggling width compared to protons when they have the same range. This 

explains the much sharper Bragg peak of carbon ions compared to protons, seen in 

Figure 2.2b. When irradiating a patient, however, the profile of the Bragg peaks will 

be even broader, due to for instance the density homogeneities of the penetrated 

tissue (Schardt et al 2010). 

2.1.3 Lateral dose profile  

The width of a particle beam traveling through a medium will be broadened due to 

particles passing close enough to nuclei to be elastically scattered or deflected by 

the positive charge of the nuclei (Newhauser and Zhang 2015). While the angular 

deflection of a single scattering can be negligible, the sum of the scattering can 

result in a large deflection from the original path. This effect is therefore called 

multiple Coulomb scattering, and results in an observable lateral broadening of the 

beam with a nearly Gaussian distribution. The lateral broadening is more than 

three times larger for a proton beam than for a carbon ion beam at the same 

range, which is a clinical disadvantage for protons (Weber and Kraft 2009). This 

broadening may be slightly reduced by reducing the air gap between patient and 

beam exit window (Weber and Kraft 2009). By comparison, photons will often have 

a lateral broadening between protons and carbon ions (Rath and Sahoo 2016). 
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2.1.4 Production of secondaries 

In non-elastic nuclear reactions, the primary particle will interact with an atomic 

nucleus, leading to a reduction in the primary particle fluence and the production 

of secondary particles. For this to happen, the primary particles must have enough 

energy to overcome the Coulomb barrier of the nucleus (Newhauser and Zhang 

2015). In proton therapy, the most common secondary particles are secondary 

protons and neutrons. Secondary protons may deposit as much as 10% of the 

absorbed dose in a high-energy proton treatment beam, while neutrons are 

extremely penetrating and have an RBE of as much as 20 times higher than the 

proton RBE, potentially leading to an increased risk of radiogenic late effects 

(Newhauser and Zhang 2015). In carbon ion therapy, secondary ions with lower 

atomic number than carbon may be produced, as well as neutrons and target 

fragments. The secondary ions with lower atomic number than carbon ions have 

longer range than the primary particles (at the same velocity), leading to a 

fragmentation tail after the Bragg peak (Gunzert-Marx et al 2008). This 

fragmentation tail leads to a dose deposition after the Bragg peak of the carbon 

ions, as observed in Figure 2.2b.  

2.2 Physical dose and depth dose curves 

2.2.1 Absorbed dose 

The absorbed dose (physical dose) is a physical quantity describing the mean 

energy imparted by ionizing radiation to matter (ICRU 2011). The unit of absorbed 

dose is gray (Gy), where 1 Gy = 1 J/kg. In conventional radiotherapy, the absorbed 

dose is the standard when reporting the delivered dose to a patient, while in 

particle therapy this dose will be modified to account for biological effects also, as 

described further in Chapter 3.  

2.2.2 Spread-out Bragg peak 

In a clinical scenario, the particle beam must cover an extended area, which is not 

possible with a monoenergetic beam. This leads to the spread-out Bragg peak 

(SOBP), where particle beams with different energies form a uniform dose to the 
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target area (Figure 2.3). This energy modulation is achieved by either introducing 

appropriate filters in the beamline or by tuning the accelerator to deliver beams 

with different energies. While this will give radiation dose outside the tumor area, 

it is still favorable compared to the depth dose curve of conventional radiotherapy 

with photons.  

 
Figure 2.3: Comparison of photon and proton depth dose distributions. The figure is adapted from 

Filipak (2012). 

2.3 Linear energy transfer 

Linear energy transfer (LET) is a measure of a charged particle’s ionization density, 

and is defined as follows:  

@ABC 
 ��C
�D , (2.2) 

where E,C is the mean energy lost by the charged particles due to electronic 

interactions when traversing the distance EF, when excluding the transfer to 

electrons with energies above a maximum transfer energy C (ICRU 2011). LETΔ is 

generally called the restricted LET, and it excludes secondary electrons (delta rays) 

with energies above C, as these electrons could deposit their energy relatively far 

from the origin. If all transferred energy is included in the calculation of the LET, the 

quantity is called the unrestricted LET (LETG) and equals the electronic stopping 

power of the particle. In the clinical energy range for protons and carbon ions, it 

can be assumed that there is little difference between LETΔ and LETG (Grzanka 
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2014). The unrestricted LET can, in infinitely small volumes, be related to the 

absorbed dose H as follows: 

H 
 I
J @AB, (2.3) 

where K is the particle fluence and � is the tissue density (Gottschalk 2016). This 

shows that fewer high-LET particles are needed to give the same absorbed dose as 

low-LET particles. 

At a given position along the beam, there may be several particles with 

different energies, resulting in several LET values, i.e. an LET spectrum. However, a 

single LET value is often easier to work with, and the LET is therefore commonly 

averaged into for instance dose-averaged LET (LETd). From Equation (2.3), the LETd 

at a position � can be found as follows:  

@AB�1�3 
 L M1�N�3OPQR1�3ST ��
L M1�N�3ST �� 
 L I1�N�3PQR�1�3��ST

L I1�N�3PQR1�3��ST
, (2.4) 

where D is the absorbed dose contributed by charged particles with kinetic energy 

, at location � and K is the particle fluence. A clinical proton beam will typically 

have LETd values less than 10 keV/μm, while clinical carbon ion beam can have LETd 

values up to 200-300 keV/μm (Kantemiris et al 2011).  

2.4 Microdosimetry 

While the absorbed dose and LET are often applied when determining the damage 

done by the radiation, they may not always be sufficient to describe the 

effectiveness of the radiation (Liamsuwan et al 2014). For better describing this, 

more complete information of energy depositions at the subcellular level can be 

required. Microscopic quantities like the lineal energy and specific energy may 

therefore be useful here. The LET and absorbed dose differ from microdosimetric 

quantities as they quantify the average energy loss of charged particles per 

distance or volume, while the stochastic energy deposition in micrometric volumes 

is measured in microdosimetry (ICRU 1983). 
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2.4.1 Specific energy and lineal energy 

The specific energy (�) and lineal energy (U) are microdosimetric quantities 

corresponding to the absorbed dose and the LET. The specific energy is defined as 

the quotient of the energy, V, imparted by ionizing radiation in a volume of mass �, 

while the lineal energy is the quotient of the energy, VW, imparted to the matter in a 

given volume with a mean chord length of F X by a single energy-deposition event: 

� 
 Y
Z, (2.5) 

U 
 [\D X ] (2.6) 

The specific energy has unit Gy, while the lineal energy has unit keV/μm. The lineal 

energy can be measured directly, and the specific energy can be directly calculated 

from this. While the gold standard of microdosimetric measurements is tissue 

equivalent proportional counters, silicon-on-insulator microdosimeters have been 

developed as an alternative, which increases the spatial resolution significantly 

(Rosenfeld 2016). However, it can be more practical to estimate the specific energy 

using track structure models, which can give the specific energy to a volume as a 

function of the distance from the ion trajectory to the center of the volume 

(Inaniwa et al 2010). 

2.4.2 Track structure models 

When protons or heavier ions ionize atoms, the secondary electrons will generally 

move a distance of a few nanometers to a few millimeters from the particle 

trajectory and deposit dose. To describe the radial dose distribution from ion 

trajectories, track structure models may be used. In carbon ion therapy, the Kiefer-

Chatterjee track structure model (Chatterjee and Schaefer 1976, Kiefer and 

Straaten 1986) and a track structure model by Scholz & Kraft (1996) is applied in 

biological dose calculations in Japan and Europe, respectively. These models 

estimate similar dose distributions from individual tracks, except close to the 

center of the track, as observed in Figure 2.4. 
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Figure 2.4: Track structure for 43 MeV/u carbon ions with LET = 50 keV/μm calculated by the 

Kiefer-Chatterjee model and the model by Scholz and Kraft. The figure is reproduced from Kase et 

al (2008) with permission from IOP Publishing.   
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3. Radiobiology 

When irradiating a biological system, a succession of processes will happen. A time 

after the physical processes have taken place, the biological phase will start. This 

will happen from seconds to years after irradiation, depending on the type and 

severity of the damages (Joiner and van der Kogel 2009). In the biological phase, 

measurable changes to the organism can be seen. While the majority of lesions 

from the radiation are successfully repaired in this phase, some will fail to do this 

and this may eventually lead to mutation or cell death (Joiner and van der Kogel 

2009). The biological effects resulting from irradiation with protons and heavier 

ions will be enhanced compared to irradiation with photons. In the following, the 

linear quadratic (LQ) model, which quantifies the radiosensitivity of cells, and the 

RBE will be described. This will be followed by a description of tumor hypoxia, 

which is a situation where the tumor has areas with low oxygen levels, resulting in 

lower cell radiosensitivity. 

3.1 Linear quadratic model  

The most common way of describing cell survival after irradiation is by the LQ 

model. In this model, the cell survival fraction S is given by   

� ��1^3 
 _H ` (H�N  (3.1) 

where H is the physical dose and _ and ( are radiosensitivity parameters. The _ 

and ( parameters are generally found by fit to experimental data, and the _ (? -

ratio is commonly used to describe the fractionation sensitivity of the cells. 

Studies of tissue responses to radiation have shown that tumors and early 

responding tissues (e.g. skin, oral mucosa and bone marrow) generally have 

1_ (? 3	-ratios (i.e. the _ (? -ratio of photons) in the order of 7-10 Gy, while late 

responding tissues (e.g. heart, lung and kidney) generally have 1_ (? 3	-ratios in the 

order of 3-5 Gy (McMahon 2019). The higher the _ (? -ratio of the cell line, the 

lower the fractionation sensitivity (Leeuwen et al 2018). 
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3.2 Relative biological effectiveness  

The RBE is defined as the ratio of the physical doses of a reference radiation, 

Habcbabdeb, (generally photon radiation) and of the radiation in question,fHg, which 

results in the same biological effect for a given endpoint (IAEA 2008):  

hiA 
 HabcbabdebHg ]f (3.2)  

The biological endpoint can vary; however, for in vitro studies it is often set to 10% 

cell survival, as illustrated in Figure 3.1. From the LQ model (Equation (3.1)) and the 

definition of the RBE, the RBE can be calculated as follows: 

hiA 
 �
Mj kl� mn

��n'
� ` omMjp�Mj�q

�n � mn
��nr, (3.3)  

where Hg is the physical dose of the particles (e.g. proton or carbon ion) and _, (, 

_	 and (	 are the particle and photon radiosensitivity parameters, respectively.  

 

Figure 3.1: Survival fraction curves of V79 cells irradiated with x-rays and 20 keV/μm protons, and 

corresponding RBE calculation at 10% cell survival. Based on data from Belli et al (1998). 

3.2.1 Biological dose 

The prescribed dose in particle therapy is based on the biological dose (also called 

RBE-weighted dose), which is illustrated in Figure 3.2. The biological dose, Hstu is 

calculated as follows: 

Hstu 
 hiA O HgvwW N (3.4) 
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where HgvwW is the total physical dose. Clinically, the RBE in proton therapy is set 

constant and equal to 1.1, ignoring variations in the RBE, while in carbon ion 

therapy the RBE is determined by variable RBE models.  

 
Figure 3.2: Physical dose of a proton spread-out Bragg peak (solid line), with corresponding 

biological dose (dashed line). Here, the RBE was set to 1.1. To distinguish from physical dose, the 

biological dose has the unit Gy(RBE). The depth dose distributions were obtained through FLUKA 

Monte Carlo simulations. 

3.2.2 RBE models 

In order to estimate the variable RBE in particle therapy, several RBE models have 

been developed. These models can generally be divided into two categories. The 

first category is phenomenological models, which considers the particle 

interactions within the cell and the subcellular effects to be a “black box” and 

therefore attempts to estimate biological effects directly by fitting to experimental 

data. The second category is mechanistic/biophysical models, which attempts to 

model the underlaying biological effects on a micrometer scale within the cells. 

Most phenomenological and biophysical RBE models are based on the general RBE 

equation (Equation (3.3)). The difference between the models will be in the 

definition of the radiosensitivity parameters _ and ( of the particles, as well as in 

the values used for the photon radiosensitivity parameters _	 and (	. An extensive 

review of the existing phenomenological RBE models for proton therapy can be 

found in Rørvik et al (2018). In carbon ion therapy, more sophisticated 

phenomenological models or biophysical models are required, due to the “overkill 

effect” at high LET values (Karger and Peschke 2018). Currently in clinical carbon 
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ion therapy, biophysical models are applied in treatment planning, and these are 

described further in Section 4.3. However, a phenomenological model has been 

applied earlier in Japan (Karger and Peschke 2018, Kanai et al 1999). 

3.2.3 RBE dependencies 

Cell experiments have shown that the RBE is dependent on several factors, 

including the biological endpoint, particle type, tissue type, radiation quality and 

the physical dose (Paganetti 2014). In RBE models, the dependency on the 

biological endpoint is generally covered by the experimental data the model is 

fitted to, while the physical dose dependency is covered by the dose input in the 

RBE model (Equation (3.3)). The dependencies on radiation quality, particle type 

and tissue type are covered in the definition of the radiosensitivity parameters, and 

this is where RBE models mainly differ.  

The radiation quality is often quantified by the LET. The RBE will generally 

increase with increasing LET, except at high LET values due to the so-called overkill 

effect, as illustrated in Figure 3.3. This increase in RBE with increasing LET can be 

explained by high-LET radiation having denser track structure than low-LET 

radiation, leading to more severe damage where the track intersects vital 

structures such as the DNA (Joiner and van der Kogel 2009). It is widely accepted 

that the LET amplifies at the distal end of the particle beam, and the RBE will 

therefore generally increase with depth of the beam. The radiation quality can also 

be quantified by the specific energy or lineal energy, and studies have shown that 

these quantities may be more accurate than LET when quantifying the radiation 

quality (Kase et al 2006, Liamsuwan et al 2014). 

The RBE versus LET data in Figure 3.3a show that the RBE is also dependent 

on the particle type. The maximum LET values for protons are much lower than the 

ones for carbon ions, and protons will therefore generally have lower RBE values, 

although protons will generally be more effective than carbon ions for the same 

LET values (Durante and Paganetti 2016). From the data in Figure 3.3b, a 

dependency on cell lines can also be observed. While the general trend between 

the data of these cell lines are similar, the magnitude of the RBE differs. The 
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survival fraction of cells is, as already mentioned, dependent on the tissue type, 

and studies have shown that this is reflected in the RBE, generally with an 

increasing RBE with decreasing cell line 1_ (? 3	-ratio (Schardt et al 2010).  

 

Figure 3.3: RBE as function of LET for different particle types (a) and for different cell lines 

irradiated with carbon ions (b). The figure is adapted from Scholz (2003) with permission from 

Springer. 

3.3 Tumor hypoxia 

Hypoxic cells are cells with low oxygen levels, and these are more radioresistant 

than normal cells (Fleming et al 2015). This effect is often quantified by the oxygen 

enhancement ratio (OER), which is the ratio of the dose at a given oxygen pressure 

(Hv) to that at a standard oxygen pressure (H�), producing the same biological 

effect: 

xAh 
 HvH�Nf (3.5)  

as illustrated in Figure 3.4a. The OER decreases with increasing LET, and carbon 

ions can therefore be quite efficient against hypoxic cells, compared to protons and 

photons (Figure 3.4b). Hypoxia will therefore in general increase the RBE for carbon 

ions, while protons generally do not have high enough LET to make any significant 

difference in OER compared to photons, except towards the range of the proton 

beam (Wenzl and Wilkens 2011).  

Tumor hypoxia arises when the supply of oxygen from the vasculature is less 

than the oxygen consumption in the tumor tissue (Koch and Evans 2015), and the 

level of hypoxia is frequently quantified by the partial oxygen pressure (pO2). The 
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pO2 values at hypoxic conditions are generally below 8-10 mmHg (Silvoniemi 2018), 

while the normal pO2 in tissues may vary from this and up to almost 160 mmHg. 

While there is currently no perfect method for estimating tumor hypoxia, positron 

emission tomography (PET) imaging is normally the preferred method for detecting 

hypoxia in clinical scenarios (Fleming et al 2015).  

Several methods for overcoming the issue with hypoxia in radiotherapy 

have been proposed. One method is to increase the oxygen levels in the tumor 

before treatment, and with this removing the problem before irradiation. An 

important goal here has been to modify the level of hemoglobin before the start of 

radiotherapy, however, this has not been observed to correct tumor hypoxia 

(Welsh et al 2017, Silvoniemi 2018). Other approaches, including breathing of 

carbogen (mixture of 98% oxygen and 5% carbon dioxide) to increase the tumor 

blood flow, have shown some potential, however, not enough to defend the 

inclusion of these methods in clinical practice (Silvoniemi 2018). Another method is 

to modify the treatment plan to take the oxygen levels into account. This includes 

dose painting, where increased radiation dose is prescribed to hypoxic subvolumes 

of the tumor (Malinen and Søvik 2015), and LET painting, where instead the LET is 

increased in the hypoxic areas in the tumor (Bassler et al 2014). Methods for 

including the OER in biological dose calculations have also been proposed 

(Tinganelli et al 2015, Scifoni et al 2013, Bopp et al 2016, Strigari et al 2018). 

 

Figure 3.4: Survival fractions of aerobic and hypoxic cells irradiated with protons with dose-

averaged LET of 17 keV/μm (a), and OER as a function of LET calculated at 10% cell survival with 

pO2 of 160 mmHg and 0.01 mmHg for aerobic and hypoxic conditions, respectively (b). Figure to 

the left is based on data from Prise et al (1990), while figure to the right is created using OER model 

by Wenzl and Wilkens (2011a).  
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4. Treatment Planning  

In radiotherapy, the goal is to irradiate the tumor with the prescribed dose while 

sparing the surrounding healthy tissue as well as possible. This requires careful 

treatment planning. To plan a treatment, computed tomography (CT) images of the 

patient are acquired, and several volumes are delineated: the gross tumor volume 

(GTV) describing the primary tumor; the clinical target volume (CTV) describing the 

extent of microscopic tumor spread around the GTV; the planning target volume 

(PTV) which adds margins around the CTV to allow for planning or delivery 

uncertainties; and relevant organs at risk (OAR) (Burnet et al 2004). A treatment 

planning system (TPS) is subsequently used to create the treatment plan. Dose 

volume histograms (DVHs) coupled with 2D dose distributions are used to get an 

overview of the dose in different regions of interest and to evaluate and compare 

the treatment plan to the prescribed target dose and dose constraints for the OAR.  

4.1  Treatment planning systems  

4.1.1 Analytical treatment planning systems  

Clinically, fast treatment planning is a requirement, leading to a compromise 

between accuracy and computation time. Clinical dose distributions are therefore 

commonly planned and optimized in fast analytical dose calculation algorithms, 

which generally rely on pencil beam algorithms to calculate the dose (Schuemann 

et al 2015). Advanced treatment planning techniques use inverse treatment 

planning, where a dose is prescribed to the PTV, dose constraints are set to the 

OARs, and the TPS will use this to optimize the treatment plan to the best possible 

biological dose distribution.  

The TPS will use patient information given in a DICOM (Digital Imaging and 

Communications in Medicine) format. The files required to perform treatment 

planning are DICOM CT images, which have anatomical information of the patient, 

and DICOM RT Struct, containing information on the delineated structures. After 

creating a treatment plan, information on this plan will be stored in the DICOM RT 
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Plan file, including (but not limited to) information on the treatment beams, dose 

prescription, patient setup, gantry angles, isocenter position and information on 

range shifters. Information on the dose distribution calculated by the TPS can be 

found in the DICOM RT Dose files and can be used to plot the dose distribution and 

DVHs. 

4.1.2 Monte Carlo based treatment planning tool 

While fast analytical TPSs are required for day-to-day clinical treatment planning, 

they have some limitations, especially in difficult and non-standard treatment 

scenarios, involving for instance tissue heterogeneities or metallic implants 

(Mairani et al 2013). Monte Carlo codes will give more accurate dose calculations, 

and are therefore considered the “gold standard” for dosimetric calculations 

(Kozłowska et al 2019). A second issue with commercial TPSs is that they generally 

do not include any RBE models for protons or only include one RBE model for 

carbon ions, making research impractical. Mairani et al (2013) therefore created a 

Monte Carlo based treatment planning tool, using the FLUKA Monte Carlo code 

(Böhlen et al 2014, Ferrari et al 2005). This tool re-optimizes an initial treatment 

plan, created for instance in a clinical TPS. The re-optimization can be performed 

with any RBE model which follows the general RBE formula given in Equation (3.3) 

in Section 3.2 and which is implemented FLUKA. While this tool works well for 

research, it uses much more computational time than the commercial TPSs and is 

therefore not ideal for clinical use.  

4.2 Recalculation of treatment plans in FLUKA 

Our group at the University of Bergen has an in-house made system based on the 

FLUKA Monte Carlo code for recalculation of intensity modulated proton therapy 

treatment plans applying different RBE models (Fjæra et al 2017). This tool can 

automatically translate the information on the treatment plan from DICOM files to 

files readable by FLUKA. This includes information on the radiation beam (beam 

energies, spot positions, spot sizes, spot weights and beam directions), which 

FLUKA reads through the source user routine, and scripts for translating the CT 
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image into FLUKA geometry and scoring regions. The RBE model used in the 

recalculation is defined in the fluscw (FLUence SCoring Weight) user routine. After 

the simulation, the quantities scored by FLUKA can be converted into a biological 

dose distribution in a DICOM RT Dose format. The tool also includes a script for 

plotting and comparing RT Dose files. 

4.3 Clinically applied RBE models in carbon ion therapy 

The main RBE models in clinical use are the local effect model (LEM) version I in 

Europe and the microdosimetric kinetic model (MKM) in Japan. The main model in 

Japan was previously a model developed by Kanai and co-workers (Kanai et al 

1999), and this model is still applied at some centers (Fossati et al 2018). However, 

less was known about heavy-ion RBE when the Kanai model was developed and it is 

therefore based on several oversimplifications, ignoring for instance RBE 

dependencies on dose (Inaniwa et al 2015). Therefore, when the National Institute 

of Radiological Sciences (NIRS) in Japan changed their beam delivery system in 

2011, the RBE model was changed from the Kanai model to the MKM (Inaniwa et al 

2015). At the startup of carbon ion therapy at the Institute of Modern Physics (IMP) 

in China, a constant RBE of 2.5-3 was applied, however, the limitations of this 

strategy were fully acknowledged, also by the IMP (Fossati et al 2018). The MKM 

and LEM I give very different dose distributions, as seen in Figure 4.1. Therefore, to 

transfer clinical protocols between Europe and Japan, conversion factors must be 

applied, as done at Centro Nazionale di Adroterapia Oncologica (CNAO) in Italy 

(Molinelli et al 2016). 

 
Figure 4.1: Biological dose in water as computed by the MKM (NIRS approach, blue), the LEM I 

(chordoma, green) and LEM IV (chordoma, red). The corresponding physical dose (black) is also 

shown. The depth dose distributions were obtained through FLUKA Monte Carlo simulations. 
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4.3.1 Microdosimetric kinetic model  

The MKM predicts the cell survival response after ion irradiation from the specific 

energy deposited in a subcellular structure referred to as the ‘domain’. The model 

also includes a saturation correction for expressing the decrease of RBE due to the 

overkill effect in high specific energy regions (Kase et al 2006). Therefore, when 

applying the MKM, the main parameter to estimate is the saturation-corrected 

dose-mean specific energy of the domain delivered in a single event (���� ) (Kase et 

al 2006).  

The MKM applied in Japan is slightly modified from the general MKM. This 

model was introduced clinically at NIRS in Japan in 2011, simultaneously with the 

introduction of a new beam delivery method (Inaniwa et al 2015). At this point, the 

Japanese had almost 20 years of experience with carbon ion therapy, and they 

wanted to continue utilizing this experience. The reference radiation was therefore 

selected to be the center of a carbon ion SOBP with a width of 60 mm and energy 

of 350 MeV/u, assumed to be representative of clinical experience with carbon ion 

therapy at NIRS (Inaniwa et al 2015). Also, a scaling factor was introduced to the 

MKM, to make it possible to continue to use clinical protocols from the original 

system based on the Kanai model (Inaniwa et al 2015, Kanai et al 1999), as 

illustrated in Figure 4.2. In the Kanai model, the dose distribution is rescaled to 

utilize the clinical experience gained with fast neutron therapy at NIRS .  

 
Figure 4.2: Dose planning of a 350 MeV/u carbon ion beam applying Japanese clinical dose systems: 

The original system applying the Kanai model (a) and updated system applying the MKM model (b). 

The figure is reprinted from Inaniwa et al (2015) with permission from IOP Publishing. 
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4.3.2 Local effect model  

The LEM was developed and implemented for treatment planning within the 

carbon ion pilot project performed at GSI, Germany (Krämer and Scholz 2000), and 

is now applied in all European carbon ion therapy facilities. The LEM has been 

further developed since the first version, and the newest version is currently the 

LEM IV. However, only the first version has yet been applied clinically (Solov’yov 

2017). The LEM I and IV varies significantly, as illustrated in Figure 4.1, and as the 

LEM I is the model applied clinically, further explanations of the LEM refers to the 

LEM I. 

The LEM is based on the concept of ‘local dose’, defined as the expectation 

value of the energy deposition at any position in the radiation field for a given 

pattern of particle trajectories (Friedrich et al 2013a). The biological damage in a 

small subvolume of the cell nucleus is, in the LEM, solely determined by the local 

dose in that subvolume, independent of the particular radiation type leading to 

that local dose (Scholz and Elsässer 2007). While this is similar to the approach in 

the MKM, it is in the LEM applied to much smaller volumes (Scholz and Elsässer 

2007). To calculate the local dose from the particles in the LEM, the radial dose 

distribution, estimated by a track structure model from Scholz & Kraft (1996), is 

needed together with the size of the critical target (Scholz et al 1997).  



22 

  



23 

5. Thesis Objective 

The overall goal of this project has been to contribute to the work of improving 

biological dose calculations in proton and carbon ion therapy. Increasing the 

accuracy of the biological dose calculations in clinical particle therapy may 

significantly improve treatments and working toward this goal is therefore 

important for the treatment outcome of patients. The work in this thesis involved 

performing Monte Carlo simulations to achieve more accurate in vitro RBE data, to 

study an existing clinical RBE model and to develop new methods for biological 

dose calculations in particle therapy. The specific objectives of each of the papers 

are described in the following. 

Paper I:  

� To implement and benchmark the low-energy proton beam cell irradiation 

experiment at the Oslo Cyclotron Laboratory in the FLUKA Monte Carlo code 

� To estimate LETd and LET spectra in the cell irradiation positions properly, using 

the FLUKA implementation 

Paper II and III:  

� To implement the biological dose model applied clinically in carbon ion therapy 

in Japan (the MKM) in FLUKA (Paper II) 

� To use the FLUKA implementation to study the sensitivity of the MKM with 

respect to uncertainties in model parameters (Paper III) 

Paper IV and V:  

� To develop a method which includes patient oxygen levels acquired from [18F]-

EF5 PET images in proton biological dose calculations (Paper IV) 

� To implement this biological dose calculation method in FLUKA (Paper IV) and in 

the FLUKA based treatment planning tool (Paper V) 

� To study the effect of hypoxia on the proton biological dose distribution (Paper 

IV and V)  
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6. Materials and Methods 

6.1 Implementation of a cell irradiation setup in FLUKA 

The Oslo Cyclotron Laboratory (OCL) has an MC-35 cyclotron (Scanditronix, Lund, 

Sweden), which was used in a cell irradiation experiment. The setup of this 

experiment (illustrated in Figure 6.1) was implemented in the FLUKA Monte Carlo 

code (Paper I), in order to estimate the dose, LET spectra and LETd in the cell 

irradiation positions. The setup geometry was first implemented in FLUKA, and 

then the initial beam parameters (beam energy, energy spread and lateral shape of 

the beam) were determined. The beam parameters were determined by comparing 

Monte Carlo simulated dose with dose measurements acquired using an Advanced 

Markus ionization chamber and Gafchromic (EBT3) dosimetry films at the three cell 

irradiation positions. 

After implementation, the Monte Carlo simulations were used to estimate 

spatial variations in dose and LET in the cell irradiation positions. Water equivalent 

material was used in the cell positions in the simulations, instead of implementing 

the actual cell compositions. The resulting LET spectra were compared with LET 

spectra from a fictive 80 MeV proton beam (representing a clinical low-energy 

proton beam), at positions with equal LETd values.  

 

Figure 6.1: The cell irradiation setup at the Oslo Cyclotron Laboratory: the cell container (a), 

ionization chamber (b), monitor chamber (c) and beam exit window (tungsten) (d). During cell 

irradiation the ionization chamber is removed and replaced by the cell container.  
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6.1.1 LET calculations  

 The LET spectra were estimated at selected depths in the cell irradiation positions 

using the USRYIELD scoring card in FLUKA. This was done by dividing the cell 

irradiation positions into several regions and defining the scoring depths at the 

boundary crossings between two and two regions. The LET was estimated for 

protons (both primary and secondary) only.  

The LETd for protons was estimated in FLUKA using the fluscw user routine. 

This user routine multiplies the particle fluence (K) by a user defined quantity. The 

LET was estimated in fluscw using the internal FLUKA function GETLET(), and from 

this, the quantities @AB� y K and @AB y K were scored in each scoring voxel. As 

the LETd for protons was estimated, K is the proton fluence. The LETd in each voxel 

was then found by dividing these two scored values, following the method 

described in Section 2.3.  

6.2 Study of the microdosimetric kinetic model  

The biological dose model applied at NIRS in Japan (the MKM) was implemented in 

FLUKA (Paper II) by defining the radiosensitivity parameters _ and ( in the fluscw 

user routine. This makes it possible to score _ y @AB y K, z( y @AB y K and 

@AB y K in FLUKA, where K is the particle fluence and @AB y K is the dose to 

water (see Equation (2.3) in Section 2.3). From this, the RBE was calculated as in 

Equation (3.3) in Section 3.2. In the MKM, ( is a constant, while _ is a function of 

the saturation-corrected dose-mean specific energy of the domain delivered in a 

single event (��M� ), which cannot be estimated directly in FLUKA. Tables connecting 

the particle energy to ��M� fwere therefore created, and a method for reading these 

tables was implemented in the fluscw user routine. To quantify the agreement 

between the FLUKA implementation and the NIRS TPS, comparisons were done 

between our specific energy calculations and biological dose estimates and 

corresponding calculations from Japan.  

The sensitivity of the MKM to uncertainties in model parameters was then 

studied (Paper III). The MKM input parameters are the domain radius, �{ , the 

nucleus radius, |{ N and the radiosensitivity parameters _	 and (, and the values of 
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these parameters applied clinically are based on human salivary gland tumor (HSG) 

cells. The sensitivity study was done by varying the model parameters by 

}~�N ��N ����, as well as comparing the HSG parameter set with parameter sets 

estimated using V79, CHO and T1 cells. Each time either �{ N |{  or ( was changed, 

new specific energy tables had to be generated for FLUKA. The impact of the 

variations was studied on spread-out Bragg peak scenarios in water, and on a clivus 

chordoma patient.  

6.2.1 Estimating the saturation-corrected dose-mean specific energy  

When creating tables for estimating ��M� , the first step is to calculate the specific 

energy, �. This is the energy imparted to the domain divided by the mass of the 

domain, and was estimated based on the same method and assumptions as in 

Inaniwa et al (2010): the domain is assumed to be a cylindrical volume; the 

trajectories of the incident ions are parallel to the cylindrical axis of the domain; 

changes in ion trajectory and speed during the passage of the domain can be 

neglected; the ions constantly generate dose-track structures specific to the ion 

type and energy; and the whole target is composed of water. The specific energy to 

the domain from an ion was estimated using the Kiefer-Chatterjee (KC) track 

structure model (Section 2.4.2). The KC model gives the local dose as a function of 

track radius �, ion type (given by the effective charge of the ion,f����), particle 

energy , and LET. This dose will in the following be referred to as 

H�*o���� N �N ,N @ABq, see Paper III for the entire function. 

When an ion has an impact parameter -, i.e. a trajectory in the distance - 

from the center of the domain, there are three possible scenarios for a given 

distance (�t � �
�C�) from the track which describes the volume of the domain 

receiving dose, as illustrated in Figure 6.2. The specific energy to the domain for 

this impact parameter will then be the sum of the dose contributions to the domain 

from each given distance from the ion trajectory multiplied by the volume receiving 

this dose, divided by the total volume of the domain: 
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�o-N ���� N ,N @ABq 
 � M��o����N��4��C�N�NPQRqOC�1��NC�N	3�
����� 


� M��o����N��4��C�N�NPQRqOC�1��NC�N	3�
���� . 

(6.1) 

Here, | is the length of the domain, C�1�t N C�N -3 and C/1�t N C�N -3 are, 

respectively, the volume and area of the domain receiving dose H�*o����N �t �
�
�C�N ,N @ABq, �{  is the domain radius, C� is the step size between the different 

distances from the trajectory and � is the number of steps applied in the 

calculation. The relationship between energy and LET for each particle was found 

from stopping power tables. To calculate C/1�t N C�N -3, the three cases illustrated in 

Figure 6.2 must be considered.  

In case I, �t ` - � �{ , and here the area of the domain which receives dose 

H�*o���� N �t � �
�C�N ,N @ABq is the area of a circle with radius �t  minus the area of a 

circle with radius �t � C�: 

C/1�t N C�3 
 � O o�t� � 1�t � C�3�q. (6.2) 

In case II, �t ` - � �{  and �t ` �{ � -, and here, the area equals the area of 

interception between two circles with radius �t  and �{  minus the area of 

interception between two circles with radius 1�t � C�3 and �{ . The area of 

interception between two circles can be calculated using the following: 

/1|�N |�N -3 
 |�����4� �{�p���4����	�� ' ` |�����4� �{�p���4����	�� ' �
�
�z1�- ` |� ` |�31- ` |� � |�31- � |� ` |�31- ` |� ` |�3, (6.3)�

where |� and |� are the radii of the two circles, and - is the impact parameter 

(Weisstein 2003). In case III, - � �{ ` �t , and therefore larger than the maximum 

impact parameter where the ions can still give an energy deposition to the domain. 

In this case, no dose is given to the domain. 

In the MKM version described in Kase et al (2006) and applied clinically at 

NIRS, the ����  is given by 

���� 
 f L ��$����1�3��ST
L ���1�3��ST

. (6.4) 

Here, ��1�3 is the probability density of � deposited by a single energy-deposition 

event of the domain and �W��  represents the saturation-corrected specific energy. 
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When mono-energetic ion irradiation is considered, �W��  and � can be described as 

a function of the impact parameter. In this case it was shown by Inaniwa et al 

(2010) that ���� , for a given ion charge, LET and energy, can be generated using the 

following: 

���� 
 f L ��$�1	3�1	3O��	�	�ZT
L �1	3O��	�	�ZT

� � ��$�1	�3�1	�3O��	�C	� � �1	�3O��	�C	� , (6.5) 

where C- is the size of the impact parameter steps used in the summation and  � 

is the maximum impact parameter where the ions can still give an energy 

deposition to the domain. The function �¡9¢1-3 is given in Appendix A in Paper III, 

and is a function of �1-3 and three constants: the domain radius (�{), the nucleus 

radius (|£), and the radiosensitivity parameter (]  

 
Figure 6.2: The three scenarios to account for when calculating the specific energy given by an ion 

to the domain with radius rd������� given impact parameter -� the domain will receive all dose given 

by the ion for this track radius r (case I), the domain will only receive part of dose from the ion 

(case II) and the domain will not receive any dose (case III). The part colored in red illustrates the 

area which receives a given dose. 

6.2.2 Recalculation of carbon ion treatment plans 

The carbon ion treatment plans applied in Paper II and III were originally optimized 

with commercial TPSs and then recalculated with different biological dose models 

in FLUKA. The commercial TPSs were either the NIRS TPS (applying the Kanai 

model) or the Syngo (VC11B, Siemens AG, Erlangen, Germany) TPS at CNAO 

(applying the LEM I). The treatment plans were recalculated using CNAO’s in-

house-made scripts for converting CT information and beam information from the 

original treatment plan to a format readable by FLUKA. 

Treatment plans originally optimized with the Kanai model were 

reoptimized with the MKM in FLUKA to test the FLUKA implementation of the 
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MKM. While the Kanai model and the MKM differs, they both provide uniform 

clinical dose distributions to the targets, consistent with the dose prescription 

(Inaniwa et al 2015). These treatment plans were passively delivered plans, 

requiring the beam in FLUKA to be properly collimated on the patient’s tumor and 

modulated by ridge filters to be equivalent to the plan delivered at NIRS.  

Treatment plans originally optimized at CNAO were recalculated in FLUKA 

using an implementation (created at CNAO) of the CNAO beamline geometry in 

FLUKA (illustrated in Figure 6.3). In the FLUKA implementation of the CNAO 

beamline, the beamline is fixed, and when simulating a patient irradiated from 

multiple angles, the patient geometry (Figure 6.3d) is rotated and not the 

beamline.  

 

Figure 6.3: Illustration of the CNAO beamline in FLUKA, from the geometry editor in FLUKA’s 
graphical user interface (flair): vacuum pipe (a), the two beam monitoring chambers (b), air (c) and 
patient structure obtained from a CT DICOM image (e). 

6.3 A biological dose method accounting for hypoxia 

To include cell oxygen levels, as well as the RBE, in biological dose calculations, a 

biological dose method based on the RBE and the OER was developed (Paper IV). 

The method applies an existing variable RBE model which is based on the LQ model 

(see Equation (3.3) in Section 3.2), and adapts the model to hypoxia by modifying 

the aerobic radiosensitivity parameters of the particles, _� and (�, to be functions 

of the OER: 

_v 
 m¤
¥Q¦1§Ng3, (6.6) 
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z(v 
 z�¤
¥Q¦1§Ng3, (6.7) 

where ¨ is the LETd and © is the pO2. The OER given by the following:  

xAh1¨N ©v3 
 zm�1§Ngª34«�1gª3 O¬d1­34m1§Ngª3
zm�1§Ng¤34«�1g¤3 O¬d1­34m1§Ng¤3 O

�1g¤3
�1gª3, (6.8) 

with _1¨N ©3 and (1©3 defined as: 

_1¨N ©3 
 1��p��O§3Ogp1�®p�¯O§3O�
gp� ,  (6.9) 

z(1©3 
 s�Ogps�O�
gp� ]  (6.10) 

Here, K is a parameter which controls the rate of change in OER with pO2 and is set 

to 3 mmHg and a1, a2, a3, a4, b1 and b2 are model parameters found by fit of in vitro 

data. The OER model was based on Wenzl & Wilkens (2011), however, with the 

model parameters modified to proton in vitro data only.  

The method was implemented in FLUKA (Paper IV) and in the FLUKA based 

treatment planning tool (Paper V). To demonstrate model performance, SOBPs in 

water phantoms with pO2 varying for strongly hypoxic (0.01 mmHg) to aerobic (30 

mmHg) was applied in Paper IV, while a SOBP scenario in a water phantom with 

pO2 varying with depth was applied in Paper V. The method was also demonstrated 

(in both Paper IV and V) on a head and neck cancer patient with pO2 levels 

estimated from [18F]-EF5 PET images.  

6.3.1 Recalculating proton plans  

Recalculation of proton treatment plans with the biological dose model accounting 

for hypoxia (Papers IV and V) was based on our in-house made system for 

recalculation of treatment plans in FLUKA, described in Section 4.2. In this system, 

the patient is always kept still, while the beam is rotated around it. The main 

modification of our in-house system was the implementation of the hypoxia 

adapted biological dose calculation method in FLUKA. In addition, the script for 

converting scored quantities into DICOM RT Dose files was modified to both store 

the correct biological dose and the pO2 values in separate files, to enable plotting 

of both the biological dose distribution and of the patient pO2 distribution.  
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The FLUKA implementation was done using the fluscw user routine, as with 

the implementation of the MKM described in Section 6.2. The difference to the 

MKM implementation was the description of the _ and ( parameters. In the 

hypoxia model they are functions of _� and (�  (aerobic radiosensitivity 

parameters), which in proton therapy often is functions of the LETd, and of the OER, 

which is a function of pO2 and LETd. The LETd was estimated as described in Section 

6.1.1, while the pO2 values were implemented in FLUKA by tables connecting the 

particle position to pO2, as described in the following.  

6.3.2 Creating pO2 tables 

When creating the pO2 tables for FLUKA, the first step was to estimate the pO2 

corresponding to each PET voxel. The pO2 values were estimated from [18F]-EF5 PET 

images, by creating a conversion curve from PET uptake to pO2, based on PET 

uptake in organs with known pO2 values (described in detail in Appendix A in Paper 

IV). Then, the coordinate system of the PET image was converted to the FLUKA 

coordinate system, based on our in-house made tool for FLUKA based treatment 

plan recalculation (Section 4.2). Here, isocenter of the treatment plan is the origin 

of the coordinate system.  

The pO2 table included information on the voxel size in each direction (C-, 

CU and C�), and on the position of each separate voxel and its pO2 value. In the 

fluscw routine, it is possible to obtain information on the particle position 1-N UN �3. 
Therefore, to make the table readable by fluscw, the starting position of each 

separate pO2 voxel was described with its coordinate 1-t N Ut N �t3] Then, the fluscw 

routine could find the voxel corresponding to the particle position, by using an if-

sentence corresponding to -t � - � -t ` C-, Ut � U � Ut ` CU and �t � � � �t `
C�. The pO2 value in this voxel was then assigned to the particle at this position.  

6.3.3 Implementation in the FLUKA based treatment planning tool 

The biological dose model accounting for hypoxia was implemented in the FLUKA 

based treatment planning tool, to enable optimization of treatment plans with this 

model (Paper V). The workflow of the FLUKA based treatment planning tool is given 

in Figure 6.4. First, an initial guess of the treatment plan, generally from a 
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commercial TPS, is recalculated in FLUKA, where _H and z(H are scored. Then, 

the optimizer calculates the RBE according to Equation (3.3) in Section 3.2. The 

fluscw user routine from Paper IV was used to score _H and z(H, however, some 

format modifications had to be done as the optimizer runs on the FLUKA 

development version. Prescription dose to PTV and constraints to relevant OARs, as 

well as the photon radiosensitivity parameters, were given in separate files which 

the optimizer reads. The optimization was done using the dose difference 

optimization algorithm described in Mairani et al (2013). 

 
Figure 6.4: Workflow of the procedure for dose optimization with the Monte Carlo based treatment 

planning tool. Adapted from workflow chart by Mairani et al (2013).  

6.4 Ethical considerations 

The patient data applied in this study was provided by CNAO (Paper II and III) and 

Turku University Hospital (Paper IV and V) and was used with permission from 

these facilities. All patient material was anonymized, and the patients from Turku 

University Hospital were part of a study registered at ClinTrials.Gov under No. NCT 

01774760.  
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7. Summary of Results 

7.1 More accurate knowledge of the LET for cell experiments  

7.1.1 Paper I: LET estimations at cell irradiation positions at the OCL 

In Paper I, the experimental setup for cell irradiation at the Oslo Cyclotron 

Laboratory (OCL) was implemented in the FLUKA Monte Carlo (MC) code. 

Comparisons between FLUKA simulated dose and measured dose data at three 

potential cell irradiation positions showed that the experiment was carried out 

with a 15.5 MeV proton beam. A MC simulated 80 MeV proton beam (representing 

a low-energy proton beam at clinical facilities) was included for comparisons.  

The OCL LETd were found to increase from 4-7 keV/μm at the beam 

entrance to 34-35 keV/μm at the proton range, R80 (Figure 7.1a). This was 

significantly higher than the 80 MeV proton beam LETd, which was less than 15 

keV/μm at the proton range. The LET spectra broadened with beam depth (Figure 

7.1b). However, the OCL LET spectra were still considerably narrower than the 80 

MeV proton beam spectra which resulted in the same LETd values. The setup can 

therefore be used to study the RBE-LET relationship of protons with narrow LET 

spectra and high LETd values. However, as the LETd varies rapidly at these energies, 

accurate dosimetry and MC simulations are essential for reducing uncertainties.  

 
Figure 7.1: Depth dose profile (gray) of the OCL proton beam with corresponding LETd (black) (a) 

and LET spectra (b), estimated at one of the cell irradiation positions. The LET spectra were 

estimated at the beam entrance, E (black), Bragg peak, BP (blue), particle range, R80 (green) and 

center of distal dose fall-off, cddf (red), as illustrated by circles in (a). The figure is reprinted from 

Paper I with permission from Taylor & Francis Group. 
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7.2 Study of a clinical RBE model  

7.2.1 Paper II: Implementation of the MKM in FLUKA 

In Paper II, the RBE model used for carbon ion therapy at NIRS in Japan (the MKM) 

was implemented in FLUKA. The MKM is based on the saturation-corrected dose-

mean specific energy (��M� ) to small subvolumes of the cell nucleus called domains. 

Calculations of specific energy and ��M�  were in good agreement with the 

calculations applied at NIRS (Figure 7.2). Small differences in the calculated ��M�  

were observed for helium ions at low energies, resulting from the choice of energy 

versus LET input table, as the accuracy of these tables depends on how they are 

estimated. However, the observed differences were shown to not affect 

agreements with experimental data at clinically relevant energies. 

Comparisons between carbon ion biological dose calculations performed 

using the FLUKA implementation and the NIRS TPS showed a satisfactorily 

agreement, with median target RBE deviations of at most 3% for the applied 

patient cases (prostate and pancreas). Larger differences were observed for RBE 

values registered for small portions of the target volume. However, these 

differences were still small enough to be attributed to differences between the MC 

detailed particle transport and the analytical method of the TPS. The 

implementation enables direct comparisons in FLUKA between the biological doses 

estimated using the LEM and the MKM for given treatment scenarios. 

 
Figure 7.2: Comparison between our calculations and calculations from NIRS: the specific energy, �, 

as a function of impact parameter (a) and the saturation-corrected dose-mean specific energy, ��M� N 
as a function of kinetic energy for six ion types (hydrogen to carbon). The figure is reprinted from 

Paper II with permission from IOP Publishing. 



37 

7.2.2 Paper III: Sensitivity study of the MKM model parameters 

A sensitivity study of the MKM was performed in Paper III, to assess potential 

under- or over-dosage of a tumor and surrounding healthy tissue due to errors in 

the model parameters. Variations in the domain radius, �{ , had the largest impact 

on the biological dose estimations, as seen in Figure 7.3 for a carbon ion SOBP in 

water. This was not surprising, as �{  represents the sensitive volume in the MKM, 

and the estimated specific energy is highly dependent on the size of this volume. 

Variations in the nucleus radius, |£, resulted mainly in changes in the biological 

dose toward the particle range. This was because |£ is only used in the saturation 

correction at high specific energy regions, found at the distal end of the beam. 

Variations in the radiosensitivity parameters _	 and ( resulted in small and almost 

reverse changes in the biological dose. Generally, the relative changes in the 

biological dose were less than the percentage change of the parameter. 

The carbon ion SOBP in water was also recalculated applying the MKM with 

input parameters based on V79, T1 and CHO cells. This gave mostly higher 

biological doses than the HSG SOBPs, with a few exceptions at the beam entrance. 

While the parameter sets differed significantly, the combined effect of each 

parameter set resulted in moderate differences across calculated biological doses. 

Also, while an increase in biological dose was observed towards the particle range 

for the V79, T1 and CHO calculated SOBPs, all parameter sets resulted in a flat 

SOBP when two opposing beams were combined. A clinical case (clivus chordoma 

tumor) showed the same dependencies on parameters as the SOBPs in water.  

 
Figure 7.3: Depth dose profiles in water for a 3 Gy(RBE) carbon ion SOBP, optimized with nominal 

HSG parameters and recalculated with HSG parameters increased (a) and decreased (b) separately 

by 25 %, respectively. The figure is reprinted from Paper III with permission from IOP Publishing. 
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7.3 Including hypoxia in biological dose calculations  

7.3.1 Paper IV: Development and implementation of a hypoxia model in FLUKA 

A biological dose calculation method which accounts for hypoxia and RBE was 

developed for proton therapy and implemented in FLUKA in Paper IV. The 

biological dose decreased with decreasing pO2 values, similar to the respective OER, 

both when applying an RBE of 1.1 (DRBE1.1) and the variable RBE model by Rørvik et 

al (2017) (DROR). The OER was mostly constant throughout the beam, with a slight 

decrease at high LETd. This decrease was most prominent at low oxygen levels; at 

the most extreme hypoxic condition applied in the study (0.01 mmHg) the OER 

value went from 2.7 at the beam entrance to 2.3 at the distal end of the beam.  

The pO2 values on a voxel-by-voxel basis in a head and neck cancer patient 

were estimated from [18F]-EF5 PET images, showing areas with low pO2 in the PTV. 

At the corresponding locations, the biological dose was lower than the prescribed 

dose, as illustrated in Figure 7.4. The PTV had pO2 values in the range of 2.2 - 60 

mmHg, with mean pO2 of 16.8 mmHg. The resulting median target biological doses 

calculated using DOER,RBE1.1 and DOER,ROR was a factor 1.12 and 1.11 lower than the 

DRBE1.1 and DROR biological doses, respectively. This corresponds well with the OER at 

16.8 mmHg for low-LET radiation. The results show that neglecting the effect of 

hypoxia in proton therapy could potentially compromise the expected tumor 

control probability and should, together with RBE variations, therefore be kept in 

mind in clinical practice. 

 
Figure 7.4: Head and neck cancer patient; pO2 map (a), DOER,RBE1.1 biological dose (b) and dose 
difference between DRBE1.1 and DOER,RBE1.1 biological doses (c). The PTV is delineated in pink. The pO2 
table includes only pO2 values inside and directly around the PTV, while outside the table the pO2 
was set to 60 mmHg. The pO2 in voxels receiving doses below 0.7 Gy(RBE) according to the DRBE1.1 
dose is set transparent.  



39 

7.3.2 Paper V: Optimization of treatment plans with the hypoxia model 

In Paper V, the hypoxia model from Paper IV was implemented in a FLUKA based 

treatment planning tool. The tool was demonstrated on two proton SOBP scenarios 

(single and opposing fields) in a simulated water phantom and for the head and 

neck cancer patient from Paper IV. The water phantom had pO2 levels varying with 

depth in the beam direction. Optimization of the SOBP scenarios in water resulted 

in similar dose distributions, with a nearly homogeneous biological dose 

distribution to the target (Figure 7.5) in both cases. The corresponding RBE 

distribution (where only the proton dose accounts for hypoxia) were seen to follow 

the oxygen levels almost in a stepwise manner. The RBE in the most hypoxic region 

(2.5 mmHg) was a factor of 1.43 below the RBE of 1.1 at non-hypoxic regions. This 

is close to the OER at 2.5 mmHg for low-LET radiation.  

The patient pO2 was estimated from [18F]-EF5 PET images. The patient plan 

was reoptimized with the hypoxia model, resulting in a median PTV dose of 70.8 

Gy(RBE), agreeing satisfactorily with the prescribed dose of 70 Gy(RBE). However, 

the dose to one of the parotid glands was increased considerably compared to the 

original Eclipse optimized treatment plan which did not account for hypoxia. Still, 

as the contra-lateral parotid gland was almost completely spared, the probability of 

xerostomia (dry mouth) would be small for this case. Taking account of the RBE and 

OER in biological dose optimization can give a more beneficial physical dose 

distribution to the tumor, however, it may lead to violation of normal tissue 

constraints. 

 
Figure 7.5: Biological dose distributions (black) optimized with the Monte Carlo based optimizer 
(MC OPT) using the hypoxia model (solid line) and with the Eclipse TPS using a constant RBE of 1.1 
(dashed line), with corresponding RBE distributions (red). *The MC OPT RBE is not a directly an RBE 
distribution, as only the proton parameters accounts for hypoxia and not the photon parameters. 
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8. Discussion 

The RBE is currently applied in treatment planning in particle therapy to account 

for the different biological effectiveness across radiation qualities. This makes it 

possible to use treatment protocols from conventional radiotherapy (or from 

earlier clinical experience with particles) in particle therapy. It also makes it 

possible in treatment planning to optimize a homogeneous biological dose to the 

target, as done in clinical carbon ion therapy. The accuracy of the estimated RBE is 

therefore important for the treatment received by particle therapy patients. In this 

thesis, the RBE and biological dose has been studied using the FLUKA Monte Carlo 

code. Initially, a cell irradiation experiment was implemented in FLUKA to enable 

accurate dose and LET estimates in the cell irradiation positions (Paper I). In the 

next project, the RBE model applied clinically in Japan (the MKM) was implemented 

in FLUKA (Paper II), and further investigated through a sensitivity study of the 

model input parameters (Paper III). Finally, a biological dose method which 

accounts for hypoxia and RBE was developed and implemented in FLUKA (Paper IV) 

and in a FLUKA based treatment planning tool Paper V).  

Monte Carlo simulations are useful in particle therapy, as they can provide 

additional and more accurate information on how the radiation interact in tissue 

compared to analytical treatment planning systems. The physics models of FLUKA 

have been shown to reproduce measured depth and lateral dose profiles in water 

well for all clinically interesting ions. They have, in addition, been shown to treat 

the transport and interaction of primary particles and produced fragments 

consistently for protons and ion beams at therapeutic energies (Battistoni et al 

2016). FLUKA is applied at the leading European particle therapy centers CNAO and 

Heidelberg Ion-beam Therapy Center (HIT), both in research and to guide 

treatment planning decisions when needed (Parodi et al 2012, Tessonnier et al 

2014). FLUKA has also been used to support developments of some commercial 

analytical TPSs (Battistoni et al 2016). FLUKA may therefore be a helpful tool when 

we get our first proton centers to Norway in a few years. 
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8.1 Improving RBE measurement data 

While a constant RBE of 1.1 is currently applied clinically in proton therapy, it is 

becoming widely accepted that the proton RBE is variable and that proton therapy 

could benefit from including a variable RBE in treatment planning (Willers et al 

2018). However, the currently existing proton RBE models estimate considerable 

different RBE values, complicating the introduction of variable RBE in clinical 

proton therapy (Rørvik et al 2018). In carbon ion therapy, the RBE varies 

significantly and must be accounted for clinically. However, the clinically applied 

carbon ion RBE models estimate vastly different biological dose distributions for 

the same irradiation scenarios. Better RBE data are therefore required to increase 

the accuracy of the RBE estimates, both for proton and carbon ion therapy. The aim 

of Paper I was to improve in vitro RBE data for protons. This was done by providing 

an accurate description of the dose and (in particular) the LET distribution in a cell 

irradiation experiment, which subsequently has been used in several cell irradiation 

studies (Rykkelid 2017, Baker 2018, Tormodsrud 2019).  

In proton RBE models, the LET is commonly described by the LETd (Rørvik et 

al 2018). While there is currently an abundance of in vitro RBE-LET data which can 

be used for RBE models, the data are associated with large uncertainties (Paganetti 

2014). Most published in vitro RBE experiments do not provide the LETd at the 

measurement points, and when it has been reported it is often roughly estimated 

from stopping power tables, based on the beam energy (Paganetti 2014). To 

ensure accurate LET estimations of the beam, it is therefore important with proper 

implementation of the experimental setup in Monte Carlo codes (Durante et al 

2019). This was also emphasized in an editorial following the publication of Paper I 

(Grassberger and Paganetti 2017), which highlighted how Paper I and similar 

studies are necessary in paving the way for clinically biological treatment 

modelling, by decreasing experimental error by characterizing the incoming beam 

properly. 

In addition to having a proper implementation of the experimental setup, it 

is important to report how the LET values were calculated, as this influences the 
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estimated values. In this thesis, the LETd and LET spectra have been estimated 

based on primary and secondary protons only, which has also been typical in other 

studies (Yepes et al 2019, Granville and Sawakuchi 2015). Grassberger and 

Paganetti (2011) showed that secondary protons have a significant influence on the 

clinical LETd distribution and should therefore be included in biological 

optimization. Including other secondary particles may also have a significant impact 

on the LETd estimation and can even double the LETd value (Grzanka et al 2018). 

Another difference in reported LET values arises from whether the LET to water or 

to tissue is estimated, as these can differ significantly (Wilkens and Oelfke 2004). In 

this thesis, the LET to water was scored, as dose to water is the standard to report 

in radiotherapy (IAEA 2000). The LET can also be scored volumetrically or across the 

boundary of two regions (Guan et al 2015). The LETd was, in this thesis, scored 

volumetrically, in a grid equal to the dose grid, while the LET spectra were scored 

across boundaries. The LETd could also be scored across boundaries, however, this 

method has some limitations when scoring the LETd from irradiation scenarios with 

several beams. 

Most variable RBE models for protons are, as mentioned, based on the LETd. 

However, when comparing the low-energy OCL proton beam with an 80 MeV 

proton beam (Paper I), significantly different LET spectra were observed for the 

same LETd values. Similar results were found by Howard et al (2018), who 

compared a 71 MeV proton beam and a 160 MeV proton beam, and observed clear 

differences in lineal energy spectra for the same dose-averaged lineal energy. Also, 

it can be shown that estimating the RBE from the LETd is only appropriate if the 

relationship between the RBE and LET is linear. This emphasizes the hypothesis in 

Rørvik et al (2017) that proton RBE models based on the LET spectrum may be 

more appropriate than models based on the LETd. Grün et al (2019) further showed 

that the RBE can only be accurately reflected by the LETd for narrow LET 

distributions. If the inaccuracy of using the LETd for expressing the RBE in a mixed 

field is large enough to be clinically relevant, it should be studied further. However, 

only full Monte Carlo software like FLUKA is currently able to produce the full LET 
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spectra of a beam. To implement an RBE model based on the LET spectrum in a 

commercial TPS, an analytical algorithm for the full LET spectrum must therefore be 

created, unless the commercial TPS is MC based. Similar considerations might also 

be relevant in carbon ion therapy, where the RBE is often characterized by the 

frequency or dose mean values of the specific energy (Grün et al 2019).  

While LET is the most widely used quantity describing the radiation quality, 

microdosimetric quantities may be more accurate to use, as these will reflect the 

statistical nature and the spatial patterns of energy depositions in the ion track 

(Liamsuwan et al 2014). Microdosimetric quantities may also, unlike the LET, be 

measured directly in the beam. However, applying microscopic quantities presents 

some challenges. Liamsuwan et al (2014) showed that the dose-averaged lineal 

energy (U�) depended to a large degree on the target size, with decreasing U� with 

increasing target size. This was also observed in our sensitivity study in Paper III, 

where the radius of the domain had a large impact on the estimated saturation-

corrected dose-mean specific energy.  

RBE models are generally based on in vitro data. However, the 

radiosensitivity of cell lines might not reflect a clinical scenario perfectly. Studies on 

in vivo and clinical RBE should therefore give a more realistic picture of the RBE in a 

clinical beam. However, there are only a limited number of such studies (Sørensen 

et al 2017). To better utilize existing in vivo RBE data, Lühr et al (2017) introduced a 

beam quality factor Q, as an alternative to the LET, to quantify the RBE. By applying 

Q, which is a function of the charge and energy of the ion, in RBE estimates, the 

RBE dependency on ions which exists with the LET can be removed. This makes it 

possible to utilize in vivo data for heavier particles when determining the proton 

RBE.  

A few years ago, there was still no clinical evidence suggesting that the 

proton RBE deviated significantly from the applied value of 1.1 (Paganetti 2015). 

However, several newer in vivo studies have shown that the RBE of 1.1 is most 

likely an underestimation (Sørensen et al 2017, Saager et al 2018). Recent studies 

have also found clinical evidence that support a variable RBE. Peeler et al (2016) 
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showed that changes on post treatment MR images in children treated with proton 

therapy depended on both the physical dose and the LET, and a study on chest-wall 

patients by Underwood et al (2018) supports the hypothesis of a variable clinical 

proton RBE. Eulitz et al (2019) further studied post MR images in four glioma 

patients treated with proton therapy and showed that non-uniform distributions of 

necrotic lesions within the brain were highly correlated with a combination of dose 

and LET.  

8.2 Applying variable RBE models clinically 

Variable RBE models are currently applied clinically in carbon ion therapy, with the 

leading models being the LEM I in Europe and the MKM in Japan. These models 

estimate significantly different RBE values for the same scenarios (see Figure 4.1 in 

Section 4.3), and carbon ion treatment protocols can therefore not be directly 

interchanged between European and Japanese facilities. It is therefore of high 

clinical relevance to have the possibility of making direct comparisons between the 

two models. This was the goal of Paper II, and was achieved by implementing the 

MKM in FLUKA, where the LEM had already been implemented (Mairani et al 

2010). The significant differences between the models also make it relevant to 

assess possible uncertainties in the models, which was conducted in Paper III. 

While the MKM and LEM I estimate significantly different biological dose 

distributions, they are based on some conceptual similarities. In both models the 

main target is the cell nucleus, which is divided into small independent 

subvolumes. Also, the summation of the local effect in these subvolumes 

determines the cell survival probability in both models (Kase et al 2008). However, 

the size of the subvolumes and the dose-effect curves are different between the 

models (Kase et al 2008). The endpoint of the applied clinical models also differs; 

the clinical MKM uses parameters based on HSG cells while the clinical LEM uses a 

general 1_5(3	 of 2 Gy (Fossati et al 2012). The MKM applied at NIRS also uses a 

carbon ion beam as reference radiation, and not photons as used in LEM. 

Japan has the longest clinical experience in carbon ion therapy. While the 

originally applied Kanai model (Kanai et al 1999) included many simplifications, its 
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appropriateness was demonstrated by the observed local tumor control (Inaniwa 

et al 2015). To make use of this experience, CNAO in Italy adapt their clinical 

protocols to Japanese protocols by applying conversion factors (target median dose 

ratios). These factors were estimated by Fossati et al (2012) and later confirmed by 

Molinelli et al (2016), and are computed as median target ratios. While the 

conversion factors are based on the Kanai model, the target dose is the same with 

the Kanai model and the clinically applied MKM model. However, as seen earlier 

(Figure 4.1 in Section 4.3 and Paper II), the difference between the LEM I and the 

MKM or Kanai model is not only a generic scaling difference. Applying scaling 

factors to convert normal tissue constraints between the facilities may therefore be 

a problem. Dale et al (2019) showed that the dose constraints applied for the optic 

nerve at CNAO, based on NIRS constraints, are conservative, and they proposed 

new and safe dose constraints for this OAR. They also stressed the need for 

validation of OAR constraints for both RBE models. Having the FLUKA tool available 

for recalculating treatment plans with both LEM I and MKM (Paper II) is therefore 

useful, as it can provide exact dose distributions for comparisons. 

The LEM has been further developed several times, with LEM IV being the 

newest model version. The main concept of the LEM, i.e. equal local dose should 

result in equal biological effect, is conserved in the LEM IV (Elsässer et al 2010). 

However, in the LEM IV, the biological response is directly related to the double-

strand break pattern (Giovannini et al 2016). The LEM IV has a stronger 

dependence on the LET than the LEM I, and studies suggests that the LEM I is best 

at predicting the RBE at low-LET regions, while the LEM IV is most accurate in high-

LET regions (Karger and Peschke 2018, Saager et al 2018). However, as there are 

currently not enough data to assess whether the LEM I or the LEM IV is best at 

describing clinical scenarios, the LEM I is still applied clinically in Europe (Gillmann 

et al 2019). 

The large differences in the biological dose estimates between the various 

models enhances the importance of assessing the model uncertainties. The 

purpose of Paper III was therefore to study how uncertainties in the MKM input 
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parameters (domain radius, nucleus radius, _	 and () would impact the biological 

dose. This has been done partly for the LEM I (Chanrion et al 2014), and more 

comprehensively for the LEM IV (Böhlen et al 2012, Friedrich et al 2013b). For the 

MKM, however, only less extensive sensitivity studies had been performed 

(Remmes et al 2012, Mairani et al 2017). The sensitivity study in Paper III showed 

that uncertainties in the domain radius resulted in the greatest uncertainties in the 

MKM biological dose, with decreasing biological dose with increasing domain 

radius. Böhlen et al (2012) found for the LEM IV that the largest risk of 

misestimating was expected in the high-LET area inside and close to the PTV. The 

same was observed in Paper III when varying the entire MKM parameter sets. 

Friedrich et al (2013b) found, similar to us, that a change in model parameters (in 

this case the LEM IV parameters) resulted in a smaller percentage change in the 

resulting RBE.  To further reduce uncertainties, Friedrich et al (2013b) suggested 

using for instance biomarkers for a more personalized determination of input 

parameters. 

In proton therapy treatment planning, variable RBE is, as already 

mentioned, not yet implemented clinically. However, there is an awareness of the 

potential RBE issues during treatment, especially the fact that the RBE increases 

with increasing depth in patient. This is currently handled by careful selection of 

field angles, avoiding organs at risk at the distal end of the treatment fields 

(Paganetti et al 2019). However, there is a growing consensus in the scientific 

community that these measures are insufficient, and that incorporation of more 

detailed RBE parameters in proton therapy treatment planning is a necessary step 

to improve the quality of the treatment (Willers et al 2018). Currently at the MD 

Anderson Cancer Center in Texas, USA, the first clinical trial worldwide which 

includes variable RBE in proton therapy treatment planning is initiated (MD 

Anderson Cancer Center 2019). While this clinical trial only includes a relatively 

simple RBE model (LET optimization), it is a step in the direction towards including 

variable RBE in proton therapy. 
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8.3 Including hypoxia in biological dose calculations 

Hypoxia relates to poor treatment prognosis and outcome. This poses a significant 

problem in cancer treatment, as studies show that most types of solid tumors 

contains hypoxic regions of clinical significance (Dhani et al 2015, Evans et al 2009). 

Tumor hypoxia varies on a tumor-to-tumor basis, and the presence and extent of 

hypoxia must therefore be assessed in each patient to optimize the treatment 

(Koch and Evans 2015). Paper IV and V addressed this issue, by first developing a 

biological dose method adapted for hypoxia, and then by creating tools for 

recalculating and optimizing proton treatment plans with this method. The tools 

showed promising results, however, better estimation of the patient pO2 is 

required before applying the method clinically. Also, applying the method on more 

patients will be needed to demonstrate the robustness of the method.  

The feasibility of imaging hypoxia with PET has been clinically demonstrated 

in several cancer types (Kelada and Carlson 2014). Applying imaging modalities like 

PET and magnetic resonance imaging (MRI) for estimating hypoxia is non-invasive 

and feasible in a clinical setting. Several PET hypoxia tracers have already been 

used in completed or ongoing clinical trials on simultaneous dose escalation using a 

dose painting technique in photon therapy (Zhang et al 2016). However, it has been 

shown that the detection of hypoxia is still imperfect, and that the focus on hypoxia 

detection should continue (Bredell et al 2016). In the process of assessing how 

accurate the modalities are at estimating hypoxia, it could be interesting to 

compare different image modalities, like different PET tracers (e.g. [18F]-EF5, [18F]-

FMISO and [18F]-FDG) and different techniques of MRI (e.g. DCE-MR and DSC-MR). 

Detecting hypoxia only prior to treatment may also be insufficient, as the extent of 

hypoxia in the tumor will vary during treatment. However, as the treatment will 

most likely reduce the hypoxic region, it will still be beneficial to include hypoxia 

information from before treatment in the treatment plans (Lin et al 2008). 

Methods proposed for overcoming hypoxia during radiotherapy treatment 

is, as mentioned in Section 3.3, dose painting, LET painting and including the OER in 

biological dose calculations (as done in Paper IV and V). The last method has the 
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benefit of also having the possibility of directly including a variable RBE in the 

calculations. To quantify which method is best, tumor control probability (TCP) 

models and normal tissue complication probability models can be applied, as these 

types of models are commonly used to assess the outcome of radiotherapy 

(McNamara et al 2019). Malinen and Søvik (2015) estimated the TCP of dose and 

LET painting for protons, lithium ions and carbon ions and concluded that the 

clinical impact of LET painting was smaller than that of dose painting. Also, while 

combined dose and LET painting gave the highest TCPs overall, the increased effect 

was not substantial compared to dose painting alone.  

The OER decreases with increasing RBE, and carbon ions are therefore more 

effective in killing hypoxic tumors than protons and photons. Dose painting has 

therefore less of an effect in carbon ion therapy than proton therapy, as carbon 

ions are already quite effective without dose painting. This was observed by 

Malinen and Søvik (2015), and they also saw that LET painting had larger effect 

with carbon ions than protons. As the OER of carbon ions are lower than that of 

low-LET radiation like photons, the carbon RBE will be increased in hypoxic regions. 

The hypoxia tools created in Paper IV and V may be useful for further exploration of 

the potential of protons and carbon ions in treatment of hypoxic tumors.  
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9. Conclusions 

Particle therapy is an established alternative to conventional radiotherapy for many 

cancer types, with dosimetric advantages which makes it possible to better confine 

the dose to the tumor. However, uncertainties in the RBE and biological dose is a 

limitation which must be reduced for particle therapy to reach its full potential.  

By decreasing the uncertainties in in vitro RBE data, more accurate RBE 

models can be obtained. The Monte Carlo simulations of the OCL experiment 

showed a steep increase of LETd values around the Bragg peak, combined with 

steep dose gradients. This demonstrates that high spatial and dosimetric precision, 

obtained through accurate implementation of the beamline in a Monte Carlo code, 

is essential for correct assessment of the LETd during cell irradiation experiments.  

The implementation of the MKM in FLUKA has made direct comparisons of 

different RBE models possible. Having the possibility of direct comparisons 

between European and Japanese carbon ion dose distributions is beneficial when 

comparing clinical protocols. While uncertainties in the biological dose estimates 

are high, as shown by the significantly different dose distributions estimated by the 

models, uncertainties in the MKM parameters was shown to have a smaller impact 

on the estimated dose than the percentage uncertainty in the parameters. 

A biological dose calculation method which accounts for both the OER and 

the RBE was developed and implemented in FLUKA and in a FLUKA based 

treatment planning tool. Underdosage of the tumor volume was seen when not 

accounting for hypoxia. However, optimization of treatment plans with the hypoxia 

model showed good potential for treatment planning, with the median target dose 

equal to the prescription dose and with increased physical dose in hypoxic regions.  

Overall, this thesis has contributed to the knowledge on the RBE and 

biological dose calculations in proton and carbon ion therapy. With the increase in 

particle therapy facilities worldwide, including the upcoming startup of two 

Norwegian proton centers, improving the accuracy of RBE and biological dose 

calculations is more relevant than ever. 
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