# SENSITIVITY THEOREMS IN INTEGER LINEAR PROGRAMMING 

W. COOK*<br>Institut für Ökonometrie und Operations Research, University of Bonn, FR Germany**

A.M.H. GERARDS

Department of Econometrics, Tilburg University, Holland

A. SCHRIJVER***<br>Department of Econometrics, Tilburg University, Holland, and Mathematical Centre, Kruislaan 412, Amsterdam, Holland

É. TARDOS*
Institut für Ökonometrie und Operations Research, University of Bonn, FR Germany
Received 15 March 1985
Revised manuscript received 22 August 1985

We consider integer linear programming problems with a fixed coefficient matrix and varying objective function and right-hand-side vector. Among our results, we show that, for any optimal solution to a linear program $\max \{w x: A x \leqslant b\}$, the distance to the nearest optimal solution to the corresponding integer program is at most the dimension of the problem multiplied by the largest subdeterminant of the integral matrix $A$. Using this, we strengthen several integer programming 'proximity' results of Blair and Jeroslow; Graver; and Wolsey. We also show that the Chvátal rank of a polyhedron $\{x: A x \leqslant b\}$ can be bounded above by a function of the matrix $A$, independent of the vector $b$, a result which, as Blair observed, is equivalent to Blair and Jeroslow's theorem that 'each integer programming value function is a Gomory function.'

Key words: Integer Linear Programming, Chvátal Rank, Cutting Planes, Sensitivity Analysis.

## 1. Introduction

For a given integer program max $\{w x: A x \leqslant b, x$ integral $\}$, how does the set of optimal solutions change as the vectors $w$ and $b$ are varied? Early work on this topic was carried out by Gomory $[14,15]$, who considered the connection between optimal solutions to an integer program and its linear programming relaxation for a range of right-hand-side vectors $b$. His work was continued and extended by Wolsey [28]. Other studies have been made by Blair and Jeroslow [1, 2, 3].

[^0]In this paper, we consider several different aspects of the problem. We first show (Theorem 1) that, for any optimal solution to a linear program $\max \{w x: A x \leqslant b\}$, where $A$ is an integral matrix, the distance to the nearest optimal solution to the corresponding integer program is at most the number of variables multiplied by the largest subdeterminant of $A$. This implies results of Blair and Jeroslow [2], von zur Gathen and Sieveking [10], and Wolsey [28]. Next (Theorem 5), we sharpen a result of Blair and Jeroslow [1], which implies that a change in the right-hand-side vector cannot produce more than an affine change in the optimal value of an integer program. We then show (Theorem 6) that for any nonoptimal integral solution to $\max \{w x: A x \leqslant b, x$ integral $\}$ there exists an integral solution nearby (for a fixed matrix $A$ ) which has a greater objective value. This improves a result of Graver [16] and Blair and Jeroslow [3]. Finally, we show (Theorem 10) that the Chvátal rank of a polyhedron $\{x: A x \leqslant b\}$ can be bounded above by a function of the matrix $A$, independent of the vector $b$.

We assume throughout the paper that all polyhedra, matrices, and vectors are rational. The $l_{\infty}$-norm of a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ is denoted by $\|x\|_{\infty}=$ $\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$ and the $l_{1}$-norm is denoted by $\|x\|_{1}=\sum\left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$. For a matrix $A$, we denote by $\Delta(A)$ the maximum of the absolute values of the determinants of the square submatrices of $A$. If $A$ is an $m \times n$ matrix and $b$ is an $m$-component vector, then $(A \mid b)$ denotes the matrix obtained by adjoining $b$, as an $n+1$ st column, to $A$. The greatest integer less than or equal to a number $\beta$ is denoted by $\lfloor\beta\rfloor$.

For basic results in the theory of polyhedra and integer linear programming, the reader is referred to Schrijver [26] and Stoer and Witzgall [27].

## 2. Proximity results

We begin with a theorem on the distance between optimal solutions to an integer program and its linear programming relaxation.

Theorem 1. Let $A$ be an integral $m \times n$ matrix and let $b$ and $w$ be vectors such that $A x \leqslant b$ has an integral solution and $\max \{w x: A x \leqslant b\}$ exists. Then
(i) for each optimal solution $\bar{x}$ to $\max \{w x: A x \leqslant b\}$ there exists an optimal solution $z^{*}$ to $\max \{w x: A x \leqslant b, x$ integral $\}$ with $\left\|\bar{x}-z^{*}\right\|_{\infty} \leqslant n \Delta(A)$
and
(ii) for each optimal solution $\bar{z}$ to $\max \{w x: A x \leqslant b, x$ integral $\}$ there exists an optimal solution $x^{*}$ to $\max \{w x: A x \leqslant b\}$ with $\left\|\bar{z}-x^{*}\right\|_{\infty} \leqslant n \Delta(A)$.

Proof. Let $\bar{x}$ and $\bar{z}$ be optimal solutions to $\max \{w x: A x \leqslant b\}$ and $\max \{w x: A x \leqslant$ $b, x$ integral $\}$ respectively. Split $A$ into submatrices $A_{1}, A_{2}$ such that $A_{1} \bar{x} \geqslant A_{1} \bar{z}$ and $A_{2} \bar{x}<A_{2} \bar{z}$. Since $a_{i} \bar{x}<b_{i}$ for each inequality $a_{i} x \leqslant b_{i}$, of $A x \leqslant b$, with $a_{i}$ a row of $A_{2}$, the dual variables corresponding to the rows of $A_{2}$ are equal to zero in every
optimal solution to the dual linear program of $\max \{w x: A x \leqslant b\}$. So there exists a vector $y^{1} \geqslant 0$ such that $y^{1} A_{1}=w$. This implies that $w \tilde{x} \geqslant 0$ for each vector $\tilde{x}$ in the cone $C=\left\{x: A_{1} x \geqslant 0, A_{2} x \leqslant 0\right\}$. Let $G$ be a finite set of integral vectors which generates $C$ (so $C$ is the set of vectors which can be written as a nonnegative linear combination of vectors in $G)$. Using Cramer's rule, we may assume that $\|g\|_{\infty} \leqslant \Delta(A)$ for each $g \in G$. As $\bar{x}-\bar{z} \in C$, there exists, by Carathéodory's theorem, a set $\left\{g^{1}, \ldots, g^{t}\right\} \subseteq G$ and numbers $\lambda_{i} \geqslant 0, i=1, \ldots, t$, such that $\bar{x}-\bar{z}=\lambda_{1} g^{1}+\cdots+\lambda_{t} g^{t}$, where $t$ is the dimension of $C$.

To verify (i), let

$$
\begin{equation*}
z^{*}=\bar{z}+\left\lfloor\lambda_{1}\right\rfloor g^{1}+\cdots+\left\lfloor\lambda_{t}\right\rfloor g^{t}=\bar{x}-\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right) g^{1}-\cdots-\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right) g^{t} . \tag{1}
\end{equation*}
$$

Since $\bar{z}$ is integral and $g^{1}, \ldots, g^{t}$ are integral, $z^{*}$ is also integral. Furthermore,

$$
\begin{aligned}
& A_{2} z^{*}=A_{2} \bar{z}+\left\lfloor\lambda_{1}\right\rfloor A_{2} g^{1}+\cdots+\left\lfloor\lambda_{t}\right\rfloor A_{2} g^{t} \leqslant A_{2} \bar{z} \quad \text { and } \\
& A_{1} z^{*}=A_{1} \bar{x}-\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right) A_{1} g^{1}-\cdots-\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right) A_{1} g^{t} \leqslant A_{1} \bar{x} .
\end{aligned}
$$

So $A z^{*} \leqslant b$. Now since $w g^{i} \geqslant 0$ for $i=1, \ldots, t$, we have that $w z^{*} \geqslant w \bar{z}$ and, hence, that $z^{*}$ is an optimal solution to $\max \{w x: A x \leqslant b, x$ integral $\}$. (This implies that $w g^{i}=0$ for all $i \in\{1, \ldots, t\}$ with $\lambda_{i} \geqslant 1$, a fact which is used below.) Finally,

$$
\begin{equation*}
\left\|\bar{x}-z^{*}\right\|_{\infty}=\left\|\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right) g^{1}+\cdots+\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right) g^{t}\right\|_{\infty} \leqslant\left\|g^{1}\right\|_{\infty}+\cdots+\left\|g^{t}\right\|_{\infty} . \tag{2}
\end{equation*}
$$

So $\left\|\bar{x}-z^{*}\right\|_{\infty} \leqslant t \Delta(A) \leqslant n \Delta(A)$.
To verify (ii), let

$$
\begin{equation*}
x^{*}=\bar{x}-\left\lfloor\lambda_{1}\right\rfloor g^{1}-\cdots-\left\lfloor\lambda_{t}\right\rfloor g^{t}=\bar{z}+\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right) g^{1}+\cdots+\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right) g^{t} . \tag{3}
\end{equation*}
$$

Using the above arguments, it follows that $A x^{*} \leqslant b$ and $\left\|\bar{z}-x^{*}\right\|_{\infty} \leqslant n \Delta(A)$. Since $w g^{i}=0$ for all $i \in\{1, \ldots, t\}$ with $\lambda_{i} \geqslant 1$, we have $w x^{*}=w \bar{x}$. So $x^{*}$ is an optimal solution to $\max \{w x: A x \leqslant b\}$.

This result strengthens a theorem of Blair and Jeroslow [2, Theorem 1.2], who showed that for any fixed matrix $A$ and fixed vector $w$, there exists a constant $T$ such that for any optimal solution $\bar{x}$ to $\max \{w x: A x \leqslant b\}$, there exists an optimal solution $\bar{z}$ to $\max \{w x: A x \leqslant b, x$ integral $\}$ such that $\|\bar{x}-\bar{z}\|_{\infty} \leqslant T$ (assuming that $A x \leqslant b$ has an integral solution). (In fact, an analysis of Blair and Jeroslow's proof (see also the proof of [1, Theorem 2.1(1)]) will show that $T$ is independent of $w$.) Similarly, the following consequence of Theorem 1 strengthens a result of Blair and Jeroslow [1, Theorem 2.1(2), 3, Corollary 4.7] on the difference between the optimal value of an integer program and its linear programming relaxation.

Corollary 2. Let $A$ be an integral $m \times n$ matrix and let $b$ and $w$ be vectors such that $A x \leqslant b$ has an integral solution and $\max \{w x: A x \leqslant b\}$ exists. Then

$$
\begin{equation*}
\max \{w x: A x \leqslant b\}-\max \{w x: A x \leqslant b, x \text { integral }\} \leqslant n \Delta(A)\|w\|_{1} . \tag{4}
\end{equation*}
$$

Another consequence of Theorem 1 is the following result of von zur Gathen and Sieveking [10] (which implies that integer programming (feasibility) is in the class NP).

Corollary 3. Let $A$ be an integral $m \times n$ matrix and $b$ an integral $m$-component vector. Then if $A x \leqslant b$ has an integral solution, then it has one with components at most $(n+1) \Delta((A \mid b))$ in absolute value.

Proof. Suppose that $A x \leqslant b$ has an integral solution. There exists a vector $\bar{x}$ with $A \bar{x} \leqslant b$ such that the nonzero components of $\bar{x}$ are given by $B^{-1} \tilde{b}$ for some submatrix $B$ of $A$ and some part $\tilde{b}$ of $b$. We have $\|\bar{x}\|_{\infty} \leqslant \Delta((A \mid b))$. By Theorem 1, there exists an integral vector $\bar{z}$ such that $A \bar{z} \leqslant b$ and $\|\bar{z}-\bar{x}\|_{\infty} \leqslant n \Delta(A)$. So

$$
\begin{equation*}
\|\bar{z}\|_{\infty} \leqslant\|\bar{z}-\bar{x}\|_{\infty}+\|\bar{x}\|_{\infty} \leqslant n \Delta(A)+\Delta((A \mid b)) \leqslant(n+1) \Delta((A \mid b)) . \tag{5}
\end{equation*}
$$

A third consequence of Theorem 1 is a result of Wolsey [28], which shows that an integer program can be solved by first solving its linear programming relaxation and then checking a finite set of lower dimensional 'correction vectors'. Wolsey [28] works with linear programs of the form $\max \{w x: A x=b, x \geqslant 0\}$, where $A$ is an $m \times n$ matrix of rank $m$. If such a linear program has an optimal solution, then it has one of the form $\bar{x}_{B}=B^{-1} b, \bar{x}_{N}=0$ where $B$ is a basis of $A$ (that is, a $m \times m$ nonsingular submatrix of $A$ ), $x_{B}$ are those variables corresponding to columns of $B$ and $x_{N}$ are those variables corresponding to columns of $N$ (the submatrix of $A$ formed by those columns not in $B$ ). Such a basis $B$ is an optimal basis.

Corollary 4. Let $A$ be an integral $m \times n$ matrix of rank $m$. Then there exists a finite set $V$ of nonnegative, integral $(n-m)$-component vectors such that: For any vectors $b$ and $w$ for which $\max \{w x: A x=b, x \geqslant 0\}$ has an optimal solution and any,optimal basis $B$, if $A x=b, x \geqslant 0$ has an integral solution then for some vector $v \in V$ an optimal solution to $\max \{w x: A x=b, x \geqslant 0$, $x$ integral $\}$ is $\bar{x}_{N}=v, \bar{x}_{B}=B^{-1} b-B^{-1} N v$.

Proof. Let $V=\left\{v \in Z^{n-m}:\|v\|_{\infty} \leqslant n \Delta(A), v \geqslant 0\right\}$. Suppose that $B$ is an optimal basis for $\max \{w x: A x=b, x \geqslant 0\}$ and let $\bar{x}_{B}=B^{-1} b, \bar{x}_{N}=0$ be the corresponding optimal solution. By Theorem 1, there exists an optimal solution $\bar{z}$ to $\max \{w x: A x=b$, $x \geqslant 0, x$ integral $\}$ with $\|\bar{x}-\bar{z}\|_{\infty} \leqslant n \Delta(A)$. Thus $\left\|\bar{z}_{N}\right\|_{\infty} \leqslant n \Delta(A)$, which implies that $\bar{z}_{N} \in V$.

For a fixed matrix $A$, Theorem 1 shows that optimal solutions to an integer program $\max \{w x: A x \leqslant b, x$ integral $\}$ and its linear programming relaxation are near to each other. Our next theorem, which is a sharpened form of the integer programming 'strong proximity result' of Blair and Jeroslow [1], shows that for small changes in the right-hand-side vector $b$, optimal solutions to the corresponding integer programs are near to each other. Assertion (i) extends results of Hoffman [19] and Mangasarian [23].

Theorem 5. Let $A$ be an integral $m \times n$ matrix and let $b, b^{\prime}$, and $w$ be vectors such that $\max \{w x: A x \leqslant b\}$ and $\max \left\{w x: A x \leqslant b^{\prime}\right\}$ each have optimal solutions. Then
(i) for each optimal solution $\bar{x}$ to $\max \{w x: A x \leqslant b\}$ there exists an optimal solution $\bar{x}^{\prime}$ to $\max \left\{w x: A x \leqslant b^{\prime}\right\}$ with $\left\|\bar{x}-\bar{x}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)\left\|b-b^{\prime}\right\|_{\infty}$, and
(ii) if $A x \leqslant b$ and $A x \leqslant b^{\prime}$ each have integral solutions, then for each optimal solution $\bar{z}$ to $\max \{w x: A x \leqslant b, x$ integral $\}$ there exists an optimal solution $\bar{z}^{\prime}$ to $\max \left\{w x: A x \leqslant b^{\prime}\right.$, $x$ integral\} with $\left\|\bar{z}-\bar{z}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)\left(\left\|b-b^{\prime}\right\|_{\infty}+2\right)$.

Proof. We first show part (i) in the case where $w$ is the zero vector, that is, if $\bar{x}$ is a solution of $A x \leqslant b$ then $A \bar{x}^{\prime} \leqslant b^{\prime}$ for some $\bar{x}^{\prime}$ with $\left\|\bar{x}-\bar{x}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)\left\|b-b^{\prime}\right\|_{\infty}$. Suppose such an $\bar{x}^{\prime}$ does not exist. Then the system

$$
\begin{align*}
& A x \leqslant b^{\prime} \\
& x \leqslant \bar{x}+\varepsilon 1  \tag{6}\\
& -x \leqslant-\bar{x}+\varepsilon 1
\end{align*}
$$

(where $\varepsilon=n \Delta(A)\left\|b-b^{\prime}\right\|_{\infty}$ and $1=(1, \ldots, 1)^{\mathrm{T}}$ ) has no solution. By Farkas' Lemma, we have

$$
\begin{equation*}
y A+u-v=0, \quad y b^{\prime}+u(\bar{x}+\varepsilon 1)+v(-\bar{x}+\varepsilon 1)<0 \tag{7}
\end{equation*}
$$

for some nonnegative vectors $y, u, v$. As $A x \leqslant b^{\prime}$ has a solution, we have $u+v \neq 0$. We may assume $\|u+v\|_{1}=1$. We may also assume, by Carathéodory's theorem, that the positive components of $y$ correspond to linearly independent rows of $A$. So the positive part of $y$ is equal to $B^{-1}(-\tilde{u}+\tilde{v})$ for some parts $\tilde{u}, \tilde{v}$ of $u, v$ and some submatrix $B$ of $A$. Hence, $\|y\|_{1} \leqslant n \Delta(A)\|u-v\|_{1} \leqslant n \Delta(A)\|u+v\|_{1}=n \Delta(A)$. Now we have the contradiction

$$
\begin{align*}
& 0>y b^{\prime}+u(\bar{x}+\varepsilon 1)+v(-\bar{x}+\varepsilon 1)=y b^{\prime}-y A \bar{x}+\varepsilon\|u+v\|_{1} \\
& \quad \geqslant y\left(b^{\prime}-b\right)+\varepsilon \geqslant-\|y\|_{1}\left\|b-b^{\prime}\right\|_{\infty}+\varepsilon \geqslant 0 . \tag{8}
\end{align*}
$$

We next show part (i) in general. Let $\bar{x}$ be an optimal solution to $\max \{w x: A x \leqslant b\}$ and let $x^{*}$ be any optimal solution to $\max \left\{w x: A x \leqslant b^{\prime}\right\}$. Let $A_{0} x \leqslant b_{0}$ be those inequalities from $A x \leqslant b$ that are satisfied by $\bar{x}$ with equality. Then $y A_{0}=w$ for some $y \geqslant 0$ (by the duality theorem of linear programming). Since $\bar{x}$ satisfies:

$$
\begin{equation*}
A \bar{x} \leqslant b, \quad A_{0} \bar{x} \geqslant A_{0} x^{*}-\left\|b-b^{\prime}\right\|_{\infty} 1 \tag{9}
\end{equation*}
$$

and since $x^{*}$ is a solution of $\left[A x \leqslant b^{\prime}, A_{0} x \geqslant A_{0} x^{*}\right]$, we have from above that $\left[A \bar{x}^{\prime} \leqslant b^{\prime}, A_{0} \bar{x}^{\prime} \geqslant A_{0} x^{*}\right]$ for some $\bar{x}^{\prime}$ with $\left\|\bar{x}-\bar{x}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)\left\|b-b^{\prime}\right\|_{\infty}$. As $w \bar{x}^{\prime}=$ $y A_{0} \bar{x}^{\prime} \geqslant y A_{0} x^{*}=w x^{*}$, we have that $\bar{x}^{\prime}$ is an optimal solution to $\max \left\{w x: A x \leqslant b^{\prime}\right\}$.

Finally, we show part (ii). Suppose that $A x \leqslant b$ and $A x \leqslant b^{\prime}$ each have integral solutions and let $\bar{z}$ be an optimal solution to $\max \{w x: A x \leqslant b, x$ integral $\}$. By Theorem 1(ii), there exists an optimal solution $x^{*}$ to $\max \{w x: A x \leqslant b\}$ with $\left\|\bar{z}-x^{*}\right\|_{\infty} \leqslant n \Delta(A)$. Part (i), above, implies that there exists an optimal solution $\bar{x}^{\prime}$ to $\max \left\{w x: A x \leqslant b^{\prime}\right\}$ with $\left\|x^{*}-\bar{x}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)\left\|b-b^{\prime}\right\|_{\infty}$. Now, by Theorem $1(\mathrm{i})$, there exists an optimal
solution $\bar{z}^{\prime}$ to $\max \left\{w x: A x \leqslant b^{\prime}, x\right.$ integral $\}$ with $\left\|\bar{x}^{\prime}-\bar{z}^{\prime}\right\|_{\infty} \leqslant n \Delta(A)$. Putting this together, we have

$$
\begin{align*}
\left\|\bar{z}-\bar{z}^{\prime}\right\|_{\infty} & \leqslant\left\|\bar{z}-x^{*}\right\|_{\infty}+\left\|x^{*}-\bar{x}^{\prime}\right\|_{\infty}+\left\|\bar{x}^{\prime}-\bar{z}^{\prime}\right\|_{\infty} \\
& \leqslant n \Delta(A)\left(\left\|b-b^{\prime}\right\|_{\infty}+2\right) . \tag{10}
\end{align*}
$$

A result related to Theorem 1 was proven by Graver [16] (see also Blair and Jeroslow [3, Lemma 4.3]), who showed that for every integral matrix $A$ there exists a finite 'test set' $L$ of integral vectors such that: For any objective vector $w$ and right-hand-side vector $b$ and any nonoptimal feasible solution $z$ to the integer program $\max \{w x: A x \leqslant b, x$ integral $\}$ there exists a vector $l \in L$ such that $z+l$ is a feasible solution with greater objective value. The following result shows that if $A$ is an $m \times n$ integral matrix, then we can take as a 'test set' simply the set of integral vectors with components at most $n \Delta(A)$ in absolute value. (An analysis of Blair and Jeroslow's proof [3, Lemma 4.3] will give a similar result.)

Theorem 6. Let $\max \{w x: A x \leqslant b, x$ integral $\}$ be an integer program with $A$ an integral $m \times n$ matrix. Then, for each integral solution $z$ of $A x \leqslant b$, either $z$ is an optimal solution to the integer program or there exists an integral solution $\bar{z}$ of $A x \leqslant b$ with $\|z-\bar{z}\|_{\infty} \leqslant$ $n \Delta(A)$ and $w \bar{z}>w z$.

Proof. Let $z$ be an integral solution of $A x \leqslant b$. If $z$ is not an optimal solution to $\max \left\{w x: A x \leqslant b, x\right.$ integral\}, then there exists an integral solution $z^{*}$ of $A x \leqslant b$ with $w z^{*}>w z$. Split $A$ into submatrices $A_{1}, A_{2}$ such that $A_{1} z^{*} \geqslant A_{1} z$ and $A_{2} z^{*}<A_{2} z$. As in the proof of Theorem 1, we have $z^{*}-z=\lambda_{1} g^{1}+\cdots+\lambda_{t} g^{i}$ for some numbers $\lambda_{i} \geqslant 0, i=1, \ldots, t$, and integral vectors $g^{1}, \ldots, g^{t}$ contained in the cone $C=$ $\left\{x: A_{1} x \geqslant 0, A_{2} x \leqslant 0\right\}$ with $\left\|g^{i}\right\|_{\infty} \leqslant \Delta(A)$ for $i=1, \ldots, t$, where $t$ is the dimension of $C$.

If $\lambda_{1} \geqslant 1$, then we have that $z+g^{1}=z^{*}-\left(\lambda_{1}-1\right) g^{1}-\lambda_{2} g^{2}-\cdots-\lambda_{t} g^{t}$ is an integral solution of $A x \leqslant b$. So if $\lambda_{1} \geqslant 1$ and $w g^{1}>0$, then we may set $\bar{z}=z+g^{1}$. Thus, we may assume that $w g^{i} \leqslant 0$ for all $i \in\{1, \ldots, t\}$ such that $\lambda_{i} \geqslant 1$. Let

$$
\begin{equation*}
\bar{z}=z^{*}-\left\lfloor\lambda_{1}\right\rfloor g^{1}-\cdots-\left\lfloor\lambda_{t}\right\rfloor g^{t}=z+\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right) g^{1}+\cdots+\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right) g^{t} \tag{11}
\end{equation*}
$$

We have that $\bar{z}$ is an integral solution of $A x \leqslant b$ with

$$
\begin{equation*}
\|z-\bar{z}\|_{\infty} \leqslant\left(\lambda_{1}-\left\lfloor\lambda_{1}\right\rfloor\right)\left\|g^{1}\right\|_{\infty}+\cdots+\left(\lambda_{t}-\left\lfloor\lambda_{t}\right\rfloor\right)\left\|g^{t}\right\|_{\infty} \leqslant n \Delta(A) . \tag{12}
\end{equation*}
$$

Since $w g^{i} \leqslant 0$ for each $i \in\{1, \ldots, t\}$ such that $\left\lfloor\lambda_{i}\right\rfloor>0$, we have $w \bar{z} \geqslant w z^{*}$. Thus $w \vec{z}>w z$.

For a linear system $A x \leqslant b$, let $\{x: A x \leqslant b\}_{I}$ denote the convex hull of its integral solutions. The following result of Wolsey [28, Theorem $\left.2^{\prime}\right]$, on the defining systems of $\{x: A x \leqslant b\}_{I}$ as $b$ varies, will be used in the next section. We use the proof
technique of Blair and Jeroslow [3, Theorem 6.2], together with Theorem 6 to prove this result, as this allows us to bound the size of certain coefficients, as stated below.

Theorem 7. For each integral $m \times n$ matrix $A$, there exists an integral matrix $M$, with entries at most $n^{2 n} \Delta(A)^{n}$ in absolute value, such that for each vector $b$ for which $A x \leqslant b$ has an integral solution there exists a vector $d_{b}$ such that $\{x: A x \leqslant b\}_{I}=\left\{x: M x \leqslant d_{b}\right\}$.

Proof. We may assume that $A \neq 0$. Let $K$ be the cone generated by the rows of $A$. If $b$ is a vector such that $A x \leqslant b$ has an integral solution, then, by linear programming duality, $\max \{w x: A x \leqslant b, x$ integral $\}$ exists if and only if $w \in K$. Let $L=$ $\left\{z \in Z^{n}:\|z\|_{\infty} \leqslant n \Delta(A)\right\}$ and for each $T \subseteq L$ let $G(T)$ be a finite set of integral vectors which generates the cone $C(T)=\{w: w z \leqslant 0$ for all $z \in T\} \cap K$. Finally, let $M$ be the matrix with rows $\bigcup\{G(T): T \subseteq L\}$.

Suppose that $b$ is a fixed vector such that $A x \leqslant b$ has an integral solution. By replacing $b$ by $\lfloor b\rfloor$ if necessary, we may assume that $b$ is integral. Let $d_{b}$ be the minimal vector (with respect to the $\leqslant$ ordering) such that $\{x: A x \leqslant b\}_{I} \subseteq$ $\left\{x: M x \leqslant d_{b}\right\}$. (Since each row of $M$ is in the cone $K$, each component of $d_{b}$ is finite.) To prove that $\{x: A x \leqslant b\}_{I} \supseteq\left\{x: M x \leqslant d_{b}\right\}$, we will show that each valid inequality for $\{x: A x \leqslant b\}_{I}$ is implied by $M x \leqslant d_{b}$.

Let $\bar{w} x \leqslant t$ be an inequality such that $\bar{w} \neq 0$ and $\{x: A x \leqslant b\}_{I} \subseteq\{x: \bar{w} x \leqslant t\}$. We may assume that $t=\max \{\bar{w} x: A x \leqslant b, x$ integral $\}$. Let $\bar{z}$ be an integral solution of $A x \leqslant b$ such that $\bar{w} \bar{z}=t$. Now let $\bar{T}=\{z \in L: A(\bar{z}+z) \leqslant b\}$. Since $\bar{z}$ is an optimal solution to $\max \{\bar{w} x: A x \leqslant b, x$ integral $\}$, we have that $\bar{w} \in C(\bar{T})$. So there exist nonnegative numbers $\lambda_{g}$, for $g \in G(\bar{T})$, such that $\sum\left\{\lambda_{g} g: g \in G(\bar{T})\right\}=\bar{w}$. By Theorem $6, \bar{z}$ is an optimal solution to $\max \{g x: A x \leqslant b, x$ integral $\}$ for each $g \in G(\bar{T})$. Thus, letting $g(b)=\max \{g x: A x \leqslant b, x$ integral $\}$ for each $g \in G(\bar{T})$, we have

$$
\begin{equation*}
\sum\left\{\lambda_{g} g(b): g \in G(\bar{T})\right\}=\sum\left\{\lambda_{g} g \bar{z}: g \in G(\bar{T})\right\}=\bar{w} \bar{z}=t . \tag{13}
\end{equation*}
$$

So $\bar{w} x \leqslant t$ is a nonnegative linear combination of inequalities in $M x \leqslant d_{b}$, and, hence, is implied by $M x \leqslant d_{b}$.

To bound the size of the entries in $M$, notice that Cramer's rule implies that there exists an integral matrix $D$ such that $K=\{x: D x \leqslant 0\}$ and each entry of $D$ having absolute value at most $\Delta(A)$. Thus, for each $T \subseteq L$ the cone $C(T)$ is defined by a linear system $F x \leqslant 0$ for some integral matrix $F$ with entries at most $n \Delta(A)$ in absolute value. Using Cramer's rule, it follows that for each $T \subseteq L$ the cone $C(T)$ can be generated by a finite set of integral vectors, each of which has components which are at most $n!(n \Delta(A))^{n} \leqslant n^{2 n} \Delta(A)^{n}$ in absolute value.

For an integral matrix $A$, the bound given above on the size of the entries in $M$ is polynomial in $n$ and the size of the largest entry in $A$, and is independent of the number of rows of $A$. Thus, this bound implies the result, of Karp and Papadimitriou [21], that if a polyhedron $P \subseteq Q^{n}$ can be defined by a system of integral linear inequalities, each of which has size at most $\sigma$, then the convex hull of the integral
points in $P$ can be defined by a system of linear inequalities, each of which has size bounded above by a polynomial function of $n$ and $\sigma$.

Remarks. (1) Blair and Jeroslow [1, 2] proved their results in the more general context of mixed integer programming. It is straightforward, however, to modify the proof of Theorem 1 to obtain the following mixed integer programming result:

Let $A$ be an integral $m \times k$ matrix, $B$ an integral $m \times(n-k)$ matrix, and $w, v$, and $b$ vectors such that $\max \{w x+v y: A x+B y \leqslant b, x$ integral $\}$ has an optimal solution. Then, for each optimal solution $\left(x^{1}, y^{1}\right)$ to $\max \{w x+v y: A x+B y \leqslant b\}$, there exists an optimal solution $\left(x^{2}, y^{2}\right)$ to $\max \{w x+v y: A x+B y \leqslant b, x$ integral $\}$ such that $\left\|\left(x^{1}, y^{1}\right)-\left(x^{2}, y^{2}\right)\right\|_{\infty} \leqslant n \Delta((A \mid B))$. And, for each optimal solution $\left(x^{3}, y^{3}\right)$ to $\max \{w x+v y: A x+B y \leqslant b, x$ integral $\}$, there exists an optimal solution $\left(x^{4}, y^{4}\right)$ to $\max \{w x+v y: A x+B y \leqslant b\}$ such that $\left\|\left(x^{3}, y^{3}\right)-\left(x^{4}, y^{4}\right)\right\|_{\infty} \leqslant n \Delta((A \mid B))$.

Using this, one can prove the mixed integer programming analogues of Corollary 2, Corollary 3, and Theorem 5(ii).

In a similar way, one can obtain an analogue of Theorem 6. Note, however, that the mixed integer programming version of Theorem 6 does not imply a finite 'test set' result for mixed integer programs. This is due to the fact that, unlike the integer programming case, there may exist infinitely many vectors in $\{(x, y): x$ integral, $\left.\|(x, y)\|_{\infty} \leqslant n \Delta(A \mid B)\right\}$. Thus one cannot use the proof of Theorem 7 to obtain an analogous result for mixed integer programming. (In fact, the mixed integer programming analogue of Theorem 7 is not true, since, for example, the convex hull of $\left\{\left(x_{1}, x_{2}\right): x_{1} \geqslant 0, x_{2} \geqslant 0, x_{1}+x_{2} \leqslant 1, x_{2} \leqslant \alpha, x_{1}\right.$ integral $\}$, for any $\alpha$ such that $0<\alpha<1$, has $x_{1}+(1 / \alpha) x_{2} \leqslant 1$ as a facet-inducing inequality.) Similarly, the mixed integer programming version of Theorem 1 does not imply a mixed integer analogue of Corollary 4.

However, observe that if $A, B$ and $b$ are integral and max $\{w x+v y: A x+B y \leqslant$ $b, x$ integral\} has an optimal solution then it has one such that the denominator of each component of the vector $y$ is the determinant of a square submatrix of $B$. This observation can be used to prove a mixed integer analogue of Corollary 4 and a finite 'test set' consequence of Theorem 6 for the case where $b$ is integral. This latter finite 'test set' result can be used to modify the proof of Theorem 7 to obtain the following:

Let $A$ be an integral $m \times k$ matrix and let $B$ be an integral $m \times(n-k)$ matrix. Then there exist integral matrices $M$ and $N$, each with entries at most $n^{2 n} \Delta(B)^{2 n} \Delta((A \mid B))^{n}$ in absolute value, such that for each integral vector $b$ for which $\{(x, y): A x+B y \leqslant b, x$ integral $\}$ is nonempty, there exists a vector $d_{b}$ such that $\left\{(x, y): M x+N y \leqslant d_{b}\right\}$ is equal to the convex hull of $\{(x, y): A x+B y \leqslant b, x$ integral $\}$.
(2) The proof of Theorem $5(i)$ remains valid, even when $A$ is an irrational matrix, if we replace $\Delta(A)$ by $\Delta^{\prime}(A)$, the maximum, over all invertible submatrices $B$ of $A$, of the absolute values of the entries of $B^{-1}$.

## 3. The Chvátal rank of matrices

If all vectors in a polyhedron $P$ satisfy the linear inequality $a x \leqslant \beta$, where $a$ is an integral vector and $\beta$ is a number, then each integral vector in $P$ satisfies the Chvátal cut $a x \leqslant\lfloor\beta\rfloor$. Denote by $P^{\prime}$ the set of vectors which satisfy every Chvátal cut of $P$. It is easy to see that $P_{I} \subseteq P^{\prime}$, where $P_{I}$ denotes the convex hull of integral vectors in $P$. Schrijver [24], continuing the work of Chvátal [5] and Gomory [13], proved that $P^{\prime}$ is a polyhedron and that $P^{(t)}=P_{I}$ for some natural number $t$, where $P^{(0)}=P$ and $P^{(i)}=P^{(i-1)^{\prime}}$ for all $i \geqslant 1$. The least number $t$ such that $P^{(t)}=P_{I}$ is the Chvátal rank of $P$. Results on the Chvátal rank of combinatorially described polyhedra can be found in Boyd and Pulleyblank [4] and Chvátal [5, 6, 7].

We define the Chvátal rank of matrix $A$ to be the supremum over all integral vectors $b$ of the Chvátal rank of $\{x: A x \leqslant b\}$. It is convenient also to define the strong Chvátal rank of $A$, which is the Chvátal rank of the matrix

$$
\left[\begin{array}{r}
I \\
-I \\
A \\
-A
\end{array}\right] .
$$

Then the well-known theorem of Hoffman and Kruskal [20] is that an integral matrix has strong Chvátal rank 0 if and only if it is totally unimodular. Moreover, Hoffman and Kruskal showed that an integral matrix $A$ has Chvátal rank 0 if and only if $A^{T}$ is unimodular. (A matrix $C$ is called unimodular if for each submatrix $B$ consisting of $r(:=r a n k C)$ linearly independent columns of $C$, the g.c.d. of the subdeterminants of $B$ of order $r$ is 1.) In Edmonds and Johnson [9] and Gerards and Schrijver [11], characterisations of classes of matrices having Chvátal rank 1 are given. The main result of this section is that every matrix has a finite Chvátal rank.

To prove this result we need the following theorem of Cook, Coullard, and Turán [8]. For completeness, a proof of this result is given below. In the proof, we use a lemma of Schrijver [24] which implies that if $F$ is a face of a polyhedron $P$ then $P^{(k)} \cap F \subseteq F^{(k)}$ for all $k \geqslant 0$. We also use the fact that if $T$ is an affine transformation from $Q^{n}$ to $Q^{n}$ which maps $Z^{n}$ onto $Z^{n}$, then for any polyhedron $P \subseteq Q^{n}$ we have $T\left(P^{(k)}\right)=T(P)^{(k)}$ for all $k \geqslant 0$.

Theorem 9. If $P \subseteq Q^{n}$ is a polyhedron with $P \cap Z^{n}=\emptyset$, then $P^{\left(n^{2 n} 2^{n^{3}}\right)}=\emptyset$.

Proof. The proof is by induction on $n$. It is easy to see that the result is true for $n=1$. Suppose $n \geqslant 2$ and that for all polyhedra $G \subseteq Q^{n-1}$ with $G \cap Z^{n-1}=\emptyset$, we have $G^{\left(\gamma_{n-1}\right)}=\emptyset$, where $\gamma_{n-1}=(n-1)^{2(n-1)} 2^{(n-1)^{3}}$.

Let $P \subseteq Q^{n}$ be a polyhedron with $P \cap Z^{n}=\emptyset$. It follows from a result of Grötschel, Lovász, and Schrijver [18] that there exists a nonzero integral vector $w$ such that $\left|w\left(x-x^{\prime}\right)\right|<n(n+1) 2^{(1 / 2) n^{2}}$ for all $x, x^{\prime} \in P$. (In the case where $P$ is a bounded polyhedron, the existence of such a vector $w$ was shown by Lenstra [22], see also

Grötschel, Lovász, and Schrijver [17].) Let

$$
\begin{equation*}
\gamma_{n}=n^{2 n_{2} n^{3}} \geqslant n(n+1) 2^{(1 / 2) n^{2}}\left(\gamma_{n-1}+1\right)+1 . \tag{14}
\end{equation*}
$$

We will complete the proof by showing that $P^{\left(\gamma_{n}\right)}=\emptyset$.
We may assume that the components of $w$ are relatively prime integers. Let $\beta=\lfloor\max \{w x: x \in P\}\rfloor$. It follows that $P^{(1)} \subseteq\{x: w x \leqslant \beta\}$. If $P^{(1)}=\emptyset$ we are finished, so suppose not. Let $G=P^{(1)} \cap\{x: w x=\beta\}$. Since $\{x: w x=\beta\}$ contains integral vectors, there exists an affine transformation $T$ which maps $Z^{n}$ onto $Z^{n}$ and $\{x: w x=\beta\}$ onto $\left\{x: x_{n}=0\right\}$. Let $\bar{G}=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in Q^{n-1}:\left(x_{1}, \ldots, x_{n-1}, 0\right) \in\right.$ $T(G)\}$. By assumption, $\bar{G}^{\left(\gamma_{n-1}\right)}=\emptyset$. But this implies that $T(G)^{\left(\gamma_{n-1}\right)}=\emptyset$ and hence that $G^{\left(\gamma_{n-1}\right)}=\emptyset$. Thus, by the lemma of Schrijver [24] mentioned above, we have $P^{\left(\gamma_{n+1}+1\right)} \cap G=\emptyset$. So $\quad P^{\left(\gamma_{n-1}+2\right)} \subseteq\{x: w x \leqslant \beta-1\}$ : Since $P \subseteq\{x: w x>$ $\left.\beta-n(n+1) 2^{(1 / 2) n^{2}}\right\}$, repeating this procedure at most $n(n+1) 2^{(1 / 2) n^{2}}-1$ times, we obtain the empty set. Hence $P^{\left(\gamma_{n}\right)}=\emptyset$.

We will also make use of the following consequence of this theorem.
Corollary 9. Let $P \subseteq Q^{n}$ be a polyhedron such that $P \cap Z^{n} \neq \emptyset$ and let $w$ be an integral vector such that $q=\max \left\{w x: x \in P_{I}\right\}$ exists. Then $P^{(r)} \subseteq\{x: w x \leqslant q\}$, where $r=$ $\left(n^{2 n} 2^{n^{3}}+1\right)(\lfloor\max \{w x: x \in P\}\rfloor-q)+1$.

Proof. Let $\beta=\lfloor\max \{w x: x \in P\}\rfloor$, which exists since $q$ exists. We have $P^{(1)} \subseteq$ $\{x: w x \leqslant \beta\}$. If $q=\beta$ we are finished, so suppose $q<\beta$. Let $G=P^{(1)} \cap\{x: w x=\beta\}$. Since $G \cap Z^{n}=\emptyset$, we have $G^{\left(n^{2 n} 2^{n^{3}}\right)}=\emptyset$, by Theorem 8. Using the lemma of Schrijver [24], this implies that $P^{\left(n^{2 n} 2^{n^{3}}+1\right)} \cap\{x: w x=\beta\}=\emptyset$. So $P^{\left(n^{2 n} 2^{3}+2\right)} \subseteq\{x: w x \leqslant \beta-1\}$. Repeating this operation $(\beta-q-1)$ times, we have $P^{(r)} \subseteq\{x: w x \leqslant q\}$.

We are now ready to prove our finite Chvátal rank theorem.

Theorem 10. The Chvátal rank of an integral $m \times n$ matrix $A$ is at most $2^{n^{3}+1} n^{5 n} \Delta(A)^{n+1}$.

Proof. Let $M$ be an integral matrix satisfying the conditions given in Theorem 7, for the matrix $A$. We have $\max \left\{\|m\|_{1}: m\right.$ is a row of $\left.M\right\} \leqslant n^{2 n+1} \Delta(A)^{n}$. Let

$$
\begin{equation*}
k=\left(n^{2 n} 2^{n^{3}}+1\right)\left(n^{2 n+2} \Delta(A)^{n+1}\right)+1 \tag{15}
\end{equation*}
$$

and let $P=\{x: A x \leqslant b\}$ for some vector $b$. Since $k \leqslant 2^{n^{3}+1} n^{5 n} \Delta(A)^{n+1}$, it suffices to show that $P^{(k)}=P_{I}$. If $P \cap Z^{n}=\emptyset$, then, by Theorem $8, P^{(k)}=\emptyset=P_{I}$. Suppose $P \cap Z^{n} \neq \emptyset$. We have $P_{I}=\left\{x: M x \leqslant d_{b}\right\}$ for some vector $d_{b}$. Let $m$ be a row of $M$ and let $q=\max \left\{m x: x \in P_{I}\right\}$. By Corollary 2,

$$
\begin{equation*}
\max \{m x: x \in P\}-q \leqslant n \Delta(A)\|m\|_{1} \leqslant n^{2 n+2} \Delta(A)^{n+1} \tag{16}
\end{equation*}
$$

Thus, by Corollary $9, P^{(k)} \subseteq\{x: m x \leqslant q\}$. So $P^{(k)} \subseteq\left\{x: M x \leqslant d_{b}\right\}$, which implies that $P^{(k)}=P_{I}$.

Remarks. (1) A consequence of Theorem 10 is that the number of ChvátaI cuts that must be added to a linear system $A x \leqslant b$ to obtain a defining system for $\{x: A x \leqslant b\}_{I}$ can be bounded above by a function of the matrix $A$, independent of the right-handside vector $b$. Indeed, for each linear system $A x \leqslant b$ with $A$ an integral $m \times n$ matrix of Chvátal rank $t$, the polyhedron $\{x: A x \leqslant b\}_{I}$ is the solution set of a system of inequalities

$$
\begin{align*}
& A x \leqslant b,  \tag{17}\\
& \alpha_{i} x \leqslant \beta_{i} \quad(i=1, \ldots, N)
\end{align*}
$$

where $N \leqslant 2^{n} t n^{t n} S^{n}$ (with $S$ denoting the maximum of the absolute values of the entries of $A$ ) and for each $k=1, \ldots, N$, the inequality $\alpha_{k} x \leqslant \beta_{k}$ is a Chvátal cut for the polyhedron $\left\{x: A x \leqslant b, \alpha_{i} x \leqslant \beta_{i}, i=1, \ldots, k-1\right\}$. To prove this, we use the result of Schrijver [24] that if $P=\{x: M x \leqslant d\}$, where $M$ is integral and $M x \leqslant d$ is a totally dual integral system, then $P^{\prime}=\{x: M x \leqslant\lfloor d\rfloor\}$. (A linear system $M x \leqslant d$ is a totally dual integral system if $\min \{y d: y M=w, y \geqslant 0\}$ can be achieved by an integral vector for each integral $w$ for which the minimum exists.) Giles and Pulleyblank [15] proved that every polyhedron can be defined by such a totally dual integral system (see also Schrijver [25]). Their proof, together with Carathéodory's theorem, implies that if $D x \leqslant f$ is a linear system with $D$ an integral $m \times n$ matrix, each entry of which has absolute value at most $T$, then there exists a totally dual integral system $D^{\prime} x \leqslant f^{\prime}$ with $\left\{x: D^{\prime} x \leqslant f^{\prime}\right\}=\{x: D x \leqslant f\}$ such that each entry of $D^{\prime}$ is an integer with absolute value at most $n T$. This implies that if $P=\{x: A x \leqslant b\}$, then for each $i=1, \ldots, t$ the polyhedron $P^{(i)}$ can be defined by a linear system $M^{i} x \leqslant b^{i}$ where each inequality is a Chvátal cut for $P^{(i-1)}$ and where $M^{i}$ is an integral matrix having at most $\left(2 n^{i} S\right)^{n}$ rows. (This technique for bounding the size of $M^{i}$ is also used in Boyd and Pulleyblank [4].)
(2) Professor C. Blair pointed out to us several relations of his and Jeroslow's work with our results. Especially, the fact that each matrix has a finite Chvátal rank can be seen to be equivalent to their result that 'each integer programming value function is a Gomory function'. Here we shall discuss this relation.

A function $f: \mathbb{Q}^{m} \rightarrow \mathbb{Q}$ is a Gomory function if there exist rational matrices $M_{1}, \ldots, M_{t}$ so that $M_{1}, \ldots, M_{t-1}$ are nonnegative, and so that, for each $b \in \mathbb{Q}^{m}$,

$$
\begin{equation*}
f(b)=\max _{j}\left(M_{1}\left\lceil M_{2}\left\lceil\cdots\left\lceil M_{\imath} b\right\rceil \cdots\right\rceil\right\rceil\right)_{j} \tag{18}
\end{equation*}
$$

(here $\lceil$,$\rceil denotes component-wise upper integer parts; M_{t}$ has $m$ columns, and $M_{i}$ has the same number of rows as $M_{i-1}$ has columns ( $i=2, \ldots, t$ ); the maximum ranges over all coordinates $j$ of the vector ( $M_{i}\left\lceil M_{2}\left\lceil\cdots\left\lceil M_{t} b\right\rceil \cdots\right\rceil\right\rceil$ ). )

Blair and Jeroslow [3, Theorems 5.1 and 5.2] showed:

Blair-Jeroslow Theorem. For each rational $m \times n$-matrix $A$ and row vector $c \in \mathbb{Q}^{n}$ with $\min \{c x: A x=0, x \geqslant 0\}$ finite, there exist Gomory functions $f, g: \mathbb{Q}^{m} \rightarrow \mathbb{Q}$ so that, for
each $b \in \mathbb{Q}^{m}$,
(i) $f(b) \leqslant 0$ if and only if $\{x \mid x \geqslant 0 ; A x=b ; x$ integral $\}$ is nonempty;
(ii) $g(b)=\min \{c x \mid x \geqslant 0 ; A x=b ; x$ integral $\} \quad$ if $f(b) \leqslant 0$.

Proposition. The Blair-Jeroslow theorem is equivalent to each rational matrix having finite Chvátal rank.

Proof (sketch). I. We first show that the Blair-Jeroslow theorem implies that each rational matrix has a finite Chvátal rank. One easily checks that it suffices to derive from the Blair-Jeroslow theorem that for each rational matrix $A$ and vector $b$, the Chvátal rank of the polyhedron $\{x \mid x \geqslant 0 ; A x=b\}$ has an upper bound only depending on $A$.

Choose a rational matrix $A$. By Theorem 7, there exists a matrix $C$ so that for each vector $b$ there exists a vector $d_{b}$ with $\{x \mid x \geqslant 0 ; A x=b\}_{I}=\left\{x \mid x \geqslant 0 ; C x \leqslant d_{b}\right\}$.

Take any row $c$ of $C$. By the Blair-Jeroslow theorem there exist Gomory functions $f$ and $g$ with the properties described in (19). Hence there exist matrices $M_{1}, \ldots, M_{t}$ and $N_{1}, \ldots, N_{t^{\prime}}$, so that $M_{1}, \ldots, M_{t-1}, N_{1}, \ldots, N_{t^{\prime}-1} \geqslant 0$ and, for each $b \in \mathbb{Q}^{m}$,

$$
\begin{align*}
& \min \{c x \mid x \geqslant 0 ; A x=b ; x \text { integral }\}=\max \left\{u M_{1}\left\lceil M_{2} \cdots\left\lceil M_{t} b\right\rceil \cdots\right\rceil\right. \\
& \left.\quad+v N_{1}\left\lceil N_{2} \cdots\left\lceil N_{t} b\right\rceil \cdots\right\rceil \mid u \geqslant 0 ; v \geqslant 0 ; v 1=1\right\} . \tag{20}
\end{align*}
$$

Without loss of generality, $t=t^{\prime}$ (otherwise add some matrices $I$ ). By taking for $b$ any column of $A$ one sees that for each $u \geqslant 0, v \geqslant 0$ with $v 1=1$ one has:

$$
\begin{equation*}
u M_{1}\left\lceil M_{2} \cdots\left\lceil M_{t} A\right\rceil \cdots\right\rceil+v N_{1}\left\lceil N_{2} \cdots\left\lceil N_{\mathbf{t}} A\right\rceil \cdots\right\rceil \leqslant c \tag{21}
\end{equation*}
$$

Hence, for each $b$,

$$
\begin{align*}
& \min \{c x \mid x \geqslant 0 ; A x=b ; x \text { integral }\} \\
& \quad \leqslant \max \left\{w\left\lceil P_{2} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil \mid w \geqslant 0 ; w\left\lceil P_{2} \cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil \leqslant c\right\} \tag{22}
\end{align*}
$$

where

$$
P_{i}:=\left[\begin{array}{cc}
M_{i} & 0  \tag{23}\\
0 & N_{i}
\end{array}\right] \quad(i=2, \ldots, t-1), \quad P_{t}:=\left[\begin{array}{c}
M_{t} \\
N_{t}
\end{array}\right]
$$

((22) follows by taking $\left.w:=\left(u M_{1} v N_{1}\right)\right)$.
By applying LP-duality to the maximum in (22) we see that for each $b$ :

$$
\begin{align*}
& \min \{c x \mid x \geqslant 0 ; A x=b ; x \text { integral }\} \\
& \quad \leqslant \min \left\{c x \mid x \geqslant 0 ;\left\lceil P_{2} \cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil x \leqslant\left\lceil P_{2} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil\right\} \tag{24}
\end{align*}
$$

Hence equality follows.
Let $t_{\text {max }}$ be the maximum of the $t$ above when $c$ runs over all rows of $C$. Then we know that the Chvátal rank of $\{x \mid x \geqslant 0 ; A x=b\}$ is at most $t_{\text {max }}$, for each $b \in \mathbb{Q}^{m}$.
II. We next show the reverse implication. Choose matrix $A$ and vector $c$. As, by assumption, the matrix

$$
\left[\begin{array}{r}
A \\
-A \\
I
\end{array}\right]
$$

has finite Chvátal rank, we know that there exist matrices $P_{1}, \ldots, P_{t}$ so that $P_{1}, \ldots, P_{t-1} \geqslant 0$ and so that, for each $b \in \mathbb{Q}^{m}$,

$$
\begin{align*}
& \{x \mid x \geqslant 0 ; A x=b\}_{I}=\left\{x \mid x \geqslant 0 ;\left\lceil P_{1}\left\lceil\cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil x\right.\right. \\
& \quad \geqslant\left\lceil P_{1}\left\lceil\cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil\right\} . \tag{25}
\end{align*}
$$

Hence, with LP-duality,

$$
\begin{align*}
\min & \{c x \mid x \geqslant 0 ; A x=b ; x \text { integral }\} \\
& =\min \left\{c x \mid x \geqslant 0 ;\left\lceil P_{1} \cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil x \geqslant\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil\right\} \\
& =\max \left\{y\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil \mid y \geqslant 0 ; y\left\lceil P_{1} \cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil \leqslant c\right\} . \tag{26}
\end{align*}
$$

Let the rows of the matrix $M$, say, be the vertices of the polyhedron $\{y \geqslant$ $\left.0 \mid y\left\lceil P_{1} \cdots\left\lceil P_{t} A\right\rceil \cdots\right\rceil \leqslant c\right\}$, and let the rows of the matrix $N$, say, be the extremal (infinite) rays of this polyhedron. Then the maximum in (26) is equal to:

$$
\begin{equation*}
\max \left\{u N\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil+v M\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil \mid u \geqslant 0 ; v \geqslant 0 ; v \mathbf{1}=1\right\} \tag{27}
\end{equation*}
$$

Hence defining, for $b \in \mathbb{Q}^{m}$,

$$
\begin{align*}
& f(b):=\max _{j}\left(N\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil\right)_{j}  \tag{28}\\
& g(b):=\max _{j}\left(M\left\lceil P_{1} \cdots\left\lceil P_{t} b\right\rceil \cdots\right\rceil\right)_{j}
\end{align*}
$$

gives Gomory functions satisfying (19).

## References

[1] C.E. Blair and R.G. Jeroslow, "The value function of a mixed integer program: I", Discrete Mathematics 19 (1977) 121-138.
[2] C.E. Blair and R.G. Jeroslow, "The value function of a mixed integer program: II", Discrete Mathematics 25 (1979) 7-19.
[3] C.E. Blair and R.G. Jeroslow, "The value function of an integer program", Mathematical Programming 23 (1982) 237-273.
[4] S.C. Boyd and W.R. Pulleyblank, "Facet generating techniques", in preparation.
[5] V. Chvátal, "Edmonds polytopes and a hierarchy of combinatorial problems", Discrete Mathematics 4 (1973) 305-337.
[6] V. Chvátal, "Edmonds polytopes and weakly hamiltonian graphs", Mathematical Programming 5 (1973) 29-40.
[7] V. Chvátal, "Cutting-plane proofs and the stability number of a graph", Report No. 84326-OR, Institut für Ökonometrie und Operations Research, Universität Bonn, FR Germany, 1984.
[8] W. Cook, C. Coullard and Gy. Turán, "On the complexity of cutting-plane proofs", in preparation.
[9] J. Edmonds and E.L. Johnson, "Matching: a well-solved class of integer linear programs", in: R.K. Guy, et al., eds., Combinatorial structures and their applications (Gordon and Breach, New York, 1970) pp. 89-92.
[10] J. von zur Gathen and M. Sieveking, "A bound on solutions of linear integer equalities and inequalities", Proceedings of the American Mathematical Society 72 (1978) 155-158.
[11] A.M.H. Gerards and A. Schrijver, "Matrices with the Edmonds-Johnson property", to appear.
[12] F.R. Giles and W.R. Pulleyblank, "Total dual integrality and integer polyhedra", Linear Algebra and its Applications 25 (1979) 191-196.
[13] R.E. Gomory, "An algorithm for integer solutions to linear programs", in: R.L. Graves and P. Wolfe (eds.), Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 269-302.
[14] R.E. Gomory, "On the relation between integer and noninteger solutions to linear programs", Proceedings of the National Academy of Science 53 (1965) 260-265.
[15] R.E. Gomory, "Some polyhedra related to combinatorial problems", Linear Algebra and its Applications 2 (1969) 451-558.
[16] J.E. Graver, "On the foundations of linear and integer linear programming I", Mathematical Programming 8 (1975) 207-226.
[17] M. Grötschel, L. Lovász and A. Schrijver, "Geometric methods in combinatorial optimization", in: W.R. Pulleyblank, ed., Progress in combinatorial optimization (Academic Press, New York, 1984) pp. 167-183.
[18] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and combinatorial optimization (Springer-Verlag, Berlin), to appear.
[19] A.J. Hoffman, "On approximate solutions of systems of linear inequalities", Journal of Research of the National Bureau of Standards 49 (1952) 263-265.
[20] A.J. Hoffman and J.B. Kruskal, "Integral boundary points of convex polyhedra", in: H.W. Kuhn and A.W. Tucker, eds., Linear inequalities and related systems, Annals of Mathematics Study 38 (Princeton University Press, Princeton, 1956) pp. 223-247.
[21] R.M. Karp and C.H. Papadimitriou, "On linear characterizations of combinatorial optimization problems", SIAM Journal on Computing 11 (1982) 620-632.
[22] H.W. Lenstra, "Integer programming with a fixed number of variables", Mathematics of Operations Research 8 (1983) 538-548.
[23] O.L. Mangasarian, "A condition number for linear inequalities and linear programs", in: G. Bamberg and O. Opitz, eds., Proc. of 6th Symposium über Operations Research, Universität Augsburg, September 7-9 (1981) (Verlagsgruppe Athenäum/Hain/Scriptor/Hanstein, Königstein, 1981) pp. 3-15.
[24] A. Schrijver, "On cutting planes", Annals of Discrete Mathematics 9 (1980) 291-296.
[25] A. Schrijver, "On total dual integrality", Linear Algebra and its Applications 38 (1981) 27-32.
[26] A. Schrijver, Theory of linear and integer programming (Wiley, Chichester, 1986).
[27] J. Stoer and C. Witzgall, Convexity and optimization in finite dimensions I (Springer-Verlag, Berlin, 1970).
[28] L.A. Wolsey, "The b-hull of an integer program", Discreet Applied Mathematics 3 (1981) 193-201.


[^0]:    * Supported by a grant from the Alexander von Humboldt Stiftung.
    ** Since September 1985: Department of Operations Research, Upson Hall, Cornell University, Ithaca, NY 14853, USA.
    *** Partially supported by the Sonderforschungbereich 21 (DFG), Institut für Ökonometrie und Operations Research of the University of Bonn, FR Germany.

