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Sensitivity to a frequency-dependent circular polarization in an isotropic
stochastic gravitational wave background

Tristan L. Smith1 and Robert Caldwell2
1Department of Physics & Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
2Department of Physics & Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

(Received 24 September 2016; published 22 February 2017)

We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave
background (ISGWB) as a function of frequency for ground- and space-based interferometers and
observations of the cosmic microwave background. The origin of a circularly polarized ISGWBmay be due
to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency
dependent. We present calculations within a coherent framework which clarifies the basic requirements for
sensitivity to circular polarization, in distinction from previous work which focused on each of these
techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein
Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular
polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide
range in frequencies of current and planned observations (10−18 Hz ≲ f ≲ 100 Hz) will be critical to
determining the physics that underlies any positive detection of circular polarization in the ISGWB. We
also identify a desert in circular polarization sensitivity for frequencies between 10−15 Hz≲ f ≲ 10−3 Hz,
given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational
wave polarization.

DOI: 10.1103/PhysRevD.95.044036

I. INTRODUCTION

Starting with the first stargazers, our knowledge of the
heavens has come in the form of electromagnetic waves.
The intensity and polarization of these massless messengers
have been shown to contain a wealth of information about
the physics and astrophysics of distant objects and the
conditions along the line of sight, extending to the earliest
moments after the primordial universe became transparent.
Now the same is coming true for gravitational waves [1].
In this paper we consider the frequency-dependent

sensitivity of the most common gravitational wave detec-
tion techniques to a net circular polarization of an isotropic
stochastic gravitational wave background (ISGWB). Since
gravitational waves have two polarizations, any stochastic
gravitational wave background can be expanded in terms
of the standard four Stokes parameters: I, Q, U, and V.
However, given the spin-2 nature of gravitational waves,
the Q and U linear polarizations are only nonzero for
anisotropic backgrounds (with the first nonzero contribu-
tion at the quadrupole). On the other hand both I and V are
scalar quantities, and as such, may be nonzero for isotropic
backgrounds. Since most stochastic gravitational wave
backgrounds are predicted to be nearly isotropic we only
consider the sensitivity of the most common techniques to
the intensity, I, and level of circular polarization, V.
The detection of a nonzero circularly-polarized ISGWB

would indicate new fundamental physics [2]. Leading
examples consist of inflationary models in which the
inflaton couples to the parity-odd Chern-Simons scalar

of a U(1) vector field, as in Refs. [3,4], or the inflaton
couples similarly to a non-Abelian SU(2) gauge field, as in
chromo-natural inflation [5,6] or gauge-flation [7,8] and its
variants [9–15]. Through different mechanisms, these
scenarios all generate a primordial spectrum of gravita-
tional waves with a scale-dependent chiral asymmetry,
whereby the spectra for left- and right-circular polarizations
differ. An inflaton that couples directly to the gravitational
Chern-Simons scalar [16–18], quantum gravity schemes
[19–26], and net helicity in the matter sector (e.g.
Refs. [27–29]) will also generate an asymmetry. In many
of these scenarios, the degree of chirality is scale depen-
dent. To highlight one particular scenario, which helps
motivate our interest in a nonzero circularly-polarized
ISGWB, we consider the case of chromo-natural and
gauge-flation as shown in Fig. 1. In these models, there
is typically a break in the gravitational wave spectrum at
some wave number k� that roughly corresponds to the
horizon scale when the anisotropic shear in the gauge field
becomes important. At wave numbers k ≪ k� the spectrum
is tilted slightly red, as predicted in canonical slow-roll
inflationary models. At wave numbers k ≫ k�, however, an
instability drives a blue tilt of the spectrum in one circular
polarization whereas the other polarization remains tilted
red. This situation is illustrated in the accompanying
figure [30]. The blue tilt extends to high frequencies,
opening the possibility of detection across a wide range
of frequencies by the cosmic microwave background
(CMB), satellite, and ground-based detectors.
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Numerous gravitational wave observatories are on line
or in planning stages. LIGO and VIRGO are already
taking data; Pulsar Timing arrays (PTAs) may expect to
see a signal in the near future; LIGO India and KAGRA
are under development; and a global network of ground-
based interferometers has been proposed, under the name
Einstein Telescope. Technology is already developing for
space-based observatories such as the Evolved Laser
Interferometer Space Antenna (eLISA) [31] (recently
renamed LISA) and the Big Bang Observer (BBO)
[32]. These independent but complementary observatories
are sensitive to different frequencies. On the largest scales
(i.e., frequencies of f ≃ 10−18 Hz) we may detect gravi-
tational waves through their effects on the CMB.
Observations of both the intensity (i.e., temperature)
and linear polarization of the CMB give information
about the properties of a stochastic gravitational wave
background on scales equal to the size of the observable
universe. The autocorrelation of the temperature and B-
mode polarization provides an estimate of the intensity of
a possible ISGWB whereas the cross-correlation of the
temperature and B-mode polarization as well as the cross-
correlation of the E and B-mode polarization provide
estimates of the level of net circular polarization. Pulsar
timing arrays (PTAs) are most sensitive to gravitational
waves at frequencies f ≃ 10−9 Hz. However, because of
the effective geometry of the detector—the fact that we
measure each pulse time of arrival at the Earth—PTAs are
not sensitive to the circular polarization of an ISGWB.
At moderate frequencies, f ≃ 1 Hz, space-based laser
interferometers can be made to be sensitive to the circular

polarization of an ISGWB by correlating the signals
recorded by two independent observatories lying in
different planes. Finally at high frequencies
(f ≃ 100 Hz) the correlation between signals of
ground-based laser interferometers are already sensitive
to the circular polarization of the ISGWB.
Previous work has considered the sensitivity to the

circular polarization of the ISGWB for ground-based
and space-based gravitational wave observatories.
References [33–38] consider the sensitivity of ground-
based and space-based interferometers and Refs. [39–41]
consider the sensitivity of measurements of CMB polari-
zation. Much of this is included in the exhaustive review
in Ref. [42]. We extend this work in several ways. First,
this paper presents the sensitivity to circular polarization
in a consistent framework for each observatory. This
allows us to gain a clearer intuition for what type of
observatory will provide useful information on the
circular polarization as well as provide formulas which
can be used to calculate the sensitivity of future observa-
tories. Second, while previous work calculated the
sensitivity to a flat spectrum (i.e., Ωgw ¼ constant), we
present the full sensitivity curves, which determines the
frequency range associated with each observatory and
allows a comparison of the sensitivity to nonflat spectra.
Finally, we consider the sensitivity of several observato-
ries (such as the Einstein Telescope) which were not
included in previous work.
This paper is organized as follows: In Sec. II we

discuss the basic physics of a gravitational wave detector,
present a calculation of the optimal signal to noise,
discuss the properties of the ISGWB, and present the
method we use to calculate the sensitivity curves. In
Sec. III we calculate the sensitivity curves for space-
based observatories. In Sec. IV we calculate the sensi-
tivity curves for a network of ground-based observatories.
In Sec. V we calculate the sensitivity curves for obser-
vations of the CMB. In Sec. VI we present our
conclusions.

II. DETECTING THE GRAVITATIONAL
WAVE BACKGROUND

We consider the detection of gravitational waves by an
interferometer, generalizing the design concept of LIGO
[43]: the relative shift in the phase of light beams traveling
between test masses in the two arms of an interferometer
is used to detect the presence of a gravitational wave. A
schematic diagram of an interferometer is shown in Fig. 2.
The effect of a gravitational wave on this relative phase can
be simply calculated from knowledge of the motion of null
geodesics in a nearly flat spacetime [44,45]. The following
calculation closely follows the calculation presented in
Ref. [46]. To define the gravitational wave transfer function
we expand the gravitational wave background in plane
waves:

FIG. 1. The gravitational wave power spectrum Sh is shown for
left- (red, dashed) and right-circular (blue, solid) polarizations in
a gauge-flation scenario. The power spectrum for a single
polarization in an equivalent slow-roll inflationary scenario is
also shown (yellow, solid). The normalization of the vertical axis
is arbitrary. There is a wave number k� set by the parameters of
the model; at wave numbers k ≪ k� the spectrum is chirally
symmetric with a slight red tilt, nT < 0; at wave numbers k ≫ k�
the chiral symmetry is broken and one hand dominates over the
other with a blue tilt, nT ≃ 0.2 in the case shown above.
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habð~x; tÞ ¼
Z

∞

−∞
df
Z

d2n̂
X
P

~hPðf; n̂ÞePabðn̂Þei2πfðt−n̂·~xÞ;

ð1Þ

where ePab is the polarization tensor. For a P ¼ þ;×
polarized plane wave propagating in the n̂ ¼ ðcosϕ sin θ;
sinϕ sin θ; cos θÞ direction, the polarization tensors may be
written

eþabðn̂Þ ¼ m̂am̂b − n̂an̂b ð2Þ

e×abðn̂Þ ¼ m̂an̂b þ n̂am̂b ð3Þ

m̂≡ ðsinϕ;− cosϕ; 0Þ ð4Þ

n̂≡ ðcosϕ cos θ; sinϕ cos θ;− sin θÞ ð5Þ

so that ePabðn̂ÞeP
0;abðn̂Þ ¼ 2δPP0 and m̂, n̂ are Newman-

Penrose vectors. These polarization tensors can also be
written in a circular polarization basis,

eRabðn̂Þ ¼
eþabðn̂Þ þ ie×abðn̂Þffiffiffi

2
p ; ð6Þ

eLabðn̂Þ ¼
eþabðn̂Þ − ie×abðn̂Þffiffiffi

2
p : ð7Þ

We can use this expansion to express the phase accumu-
lated along a single arm of the interferometer as

φ12ðt1Þ ¼ φ0

�
1þ

Z
∞

−∞
df
Z

d2n̂
X
P

~hPðf; n̂ÞePabðn̂Þ

× ei2πfðt1−n̂·~x1ÞDabðl̂12 · n̂; fÞ
�
; ð8Þ

where t1 is the time at which the light left mass 1, ~x1 is the
location of mass 1, ~x1 þ Ll̂12 is the location of mass 2, and
the single-arm transfer function is given by

Dabðl̂ · n̂; fÞ≡ 1

2
l̂al̂bMðl̂ · n̂; fÞ; ð9Þ

where

Mðl̂ · n̂; fÞ≡ sinc

�
f
2f�

ð1 − l̂ · n̂Þ
�
ei½f=ð2f�Þð1−l̂·n̂Þ�

¼ if�
f

eif=f�ð1−l̂·n̂Þ − 1

1 − l̂ · n̂
ð10Þ

and f� ≡ ð2πLÞ−1 is the characteristic frequency scale of
the detector. Note that for a single arm the response is
approximately equal to 1 for f ≪ f� and decreases as 1=f
for f ≫ f�.
In order to get a sense of how the sensitivity curve is

calculated let us build up our detector starting with a single
arm. The change in phase of the light beam as it passes from
one end of the arm and then back again is

s1ðtÞ≡ Δφ12ðt − 2LÞ þ Δφ21ðt − LÞ þ n1ðtÞ; ð11Þ

where ΔφðtÞ≡ ½φðtÞ − φ0�=φ0 and n1ðtÞ is a noise term. It
is useful to consider the Fourier transform of the signal,

~s1ðfÞ ¼ Δ ~φ12ðfÞe−i2πfð2LÞ þ Δ ~φ21ðfÞe−i2πfL þ ~n1ðfÞ;
ð12Þ

where ~AðfÞ≡ R T=2−T=2 dtAðtÞe−i2πft and

Δ ~φijðfÞ ¼
Z

∞

−∞
df0δTðf − f0Þ

Z
d2n̂e−i2πf

0n̂·~xi

× ~hPðf0; n̂ÞePabðn̂ÞDabðl̂ij · n̂; f0Þ; ð13Þ

where δTðf − f0Þ≡ Tsinc½ðf − f0ÞπT�; we have
limT→∞δTðf − f0Þ ¼ δðf − f0Þ. To measure the stochastic
background we need to correlate this signal with one from
another arm:

s3ðtÞ≡ Δφ34ðt − 2LÞ þ Δφ43ðt − LÞ þ n3ðtÞ: ð14Þ

The correlation of any two of the phase differences from
these measurements is

hΔ ~φijðfÞΔ ~φ�
klðf0Þi ¼

1

2

Z
∞

−∞
df00δTðf − f00Þ

× δTðf0 − f00ÞSPP0
h ðf00Þ

×Rij;kl
PP0 ðf00Þ; ð15Þ

FIG. 2. A schematic figure showing the geometry of the four
detectors we are considering in this calculation.
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Rij;kl
PP0 ðf00Þ≡

Z
d2n̂
4π

ei2πf
00n̂·ð~xk−~xiÞDabðl̂ij · n̂; f00Þ

× eabP ðn̂ÞD�
cdðl̂kl · n̂; f00ÞecdP0 ðn̂Þ; ð16Þ

where R is the response function, and we assume the
correlation between the gravitational wave Fourier modes
takes the form

h ~hPðf; n̂Þ ~h�P0 ðf0; n̂0Þi ¼ 1

2
SPP

0
h ðfÞδðf − f0Þ δ

ð2Þðn̂ − n̂0Þ
4π

:

ð17Þ
Since the observatories operate over a time-scale of
several years, T ∼ 108 s, and at frequencies 10−5 Hz≲ f ≲
103 Hz we always have fT ≫ 1 and δTðfÞ can be well-
approximated as a Dirac delta function so that

hΔ ~φijðfÞΔ ~φ�
klðf0Þi≃ 1

2
SPP

0
h ðfÞRij;kl

PP0 ðfÞδTðf − f0Þ

≡ 1

2
SsðfÞδTðf − f0Þ; ð18Þ

where SsðfÞ is the signal power spectrum.

A. The optimal signal to noise ratio

Imagine a collection of N signals, f~siðfÞg, from which
we can construct the frequency-dependent estimator as

Ĉðf; f0Þ≡ 1

2
Wijðf; f0Þ~siðfÞ~s�jðf0Þ; ð19Þ

where the weight matrix is symmetric, Wijðf; f0Þ ¼
W�jiðf0; fÞ, an even function in f and f0, and zero along
the diagonal, Wiiðf; f0Þ ¼ 0. From this estimator we can
construct the frequency-integrated estimator

Ĉ≡ 1

2

Z
∞

−∞
dfdf0Wijðf; f0Þ~siðfÞ~s�jðf0Þ: ð20Þ

The expectation value of the estimator is

hĈi ¼ 1

4

Z
∞

−∞
dfdf0δTðf − f0ÞWijðf; f0ÞSs;ijðfÞ; ð21Þ

where, for example, with i ¼ 1 and j ¼ 3 we have

Ss;13ðfÞ ¼ SPP
0

h ðfÞ½R12;34
PP0 ðfÞ þR21;43

PP0 ðfÞ
þ e−i2πfLR12;43

PP0 ðfÞ þ ei2πfLR21;34
PP0 ðfÞ�: ð22Þ

Assuming the noise power spectrum takes the form

h ~niðfÞ ~n�jðf0Þi ¼ 1
2
SðiÞn ðfÞδijδTðf − f0Þ and that we are

dealing with weak, noise dominated signals so that

SðiÞn ðfÞ ≫ Ss;ijðfÞ, then the variance of this estimator is
given by

σ2
Ĉ
≃ hĈ2i ¼ 1

8

Z
∞

−∞
dfdf0Wijðf;f0ÞSðiÞn ðfÞW�

ijðf;f0ÞSjnðf0Þ:

ð23Þ

The signal-to-noise ratio (SNR) of this measurement is then
given by

SNR≃ 1ffiffiffi
2

p
R∞
−∞dfdf0δTðf−f0ÞWijðf;f0ÞSs;ijðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

∞
−∞dfdf0Wijðf;f0ÞSðiÞn ðfÞW�

ijðf;f0ÞSðjÞn ðf0Þ
q :

ð24Þ

To determine what filter function Wijðf; f0Þ will maximize
the SNR, we introduce a noise-weighted inner product

ðAij; BijÞ≡
Z

∞

−∞
dfdf0Aijðf; f0ÞB�

ijðf; f0ÞSðiÞn ðfÞSðjÞn ðf0Þ:

ð25Þ

With this the SNR can be written as

SNR ¼ 1ffiffiffi
2

p
ðWijðf; f0Þ; Ss;ijðfÞδT ðf−f0Þ

SðiÞn ðfÞSðjÞn ðf0Þ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWijðf; f0Þ;W�

ijðf; f0ÞÞ
q : ð26Þ

It is clear that this will be maximized if Wijðf; f0Þ ¼
λSs;ijðfÞδTðf − f0Þ=½SðiÞn ðfÞSðjÞn ðf0Þ�, where λ is some nor-
malization. With this choice, the optimal SNR is given by

SNR ¼
�
T
X
i<j

Z
∞

−∞
df

S2s;ijðfÞ
SðiÞn ðfÞSðjÞn ðfÞ

�1=2
: ð27Þ

B. Stochastic background

Consider an ISGWB with zero mean. If there is a net
polarization then the variance is given by

� hh�þðf; n̂Þhþðf0; n̂0Þi hh�þðf; n̂Þh×ðf0; n̂0Þi
hh�×ðf; n̂Þhþðf0; n̂0Þi hh�×ðf; n̂Þh×ðf0; n̂0Þi

�

¼ 1

2
δðf − f0Þ δ

ð2Þðn̂ − n̂0Þ
4π

�
I þQ U þ iV

U − iV I −Q

�
; ð28Þ

¼ 1

2
δð3Þð~k − ~k0Þ

�
I þQ U þ iV

U − iV I −Q

�
: ð29Þ

The overall intensity, I, and circular polarization, V, are
scalar quantities, and hence can be measured through the
monopole of the stochastic background; the Q and U are
spin-4 quantities and hence do not contribute to an
isotropic, stochastic, background. Since we are considering
an isotropic background, for the rest of this discussion we
will take Q ¼ U ¼ 0. This leads to the result
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hΔ ~φijðfÞΔ ~φ�
klðf0Þi ¼

1

2
½RI

ij;klðfÞIðfÞ
þRV

ij;klðfÞVðfÞ�δðf − f0Þ; ð30Þ
where

RI
ij;klðfÞ ¼

1

4π

Z
d2n̂½Fþ

ijðn̂; fÞF�þ
kl ðn̂; fÞ

þ F×
ijðn̂; fÞF�×

kl ðn̂; fÞ�; ð31Þ

RV
ij;klðfÞ ¼

i
4π

Z
d2n̂½Fþ

ijðn̂; fÞF�×
kl ðn̂; fÞ

− F×
ijðn̂; fÞF�þ

kl ðn̂; fÞ�; ð32Þ

and where

FP
ijðn̂; fÞ≡ e−i2πfn̂·~xiePabðn̂ÞDabðl̂ij · n̂; fÞ: ð33Þ

Without loss of generality we can place ~xi at the origin of
our coordinate system, ~xk along the z-axis, and l̂ij in the
x-z plane so that ~xk ¼ Dẑ and l̂ij ¼ cos αx̂þ sin αẑ. Most
gravitational wave observatories, such as LIGO, LISA,
and PTAs, effectively have only three masses which, as a
result, are necessarily coplanar. The same is true for most
designs for futuristic space-based gravitational wave
observatories such as the Big Bang Observer (BBO) and
the Decihertz Gravitational Wave Observatory (DECIGO),
each of which have advanced stages with six masses
[32,47]. In the case of a coplanar observatory, we can
also write l̂kl ¼ cos βx̂þ sin βẑ. It is straightforward to
show that in this case if we reflect about the plane of the
observatory (i.e., ϕ → −ϕ) we have Fþ

ijðn̂; fÞ → Fþ
ijðn̂; fÞ

and F×
ijðn̂; fÞ → −F×

ijðn̂; fÞ so that RV
ij;klðfÞ ¼ 0. This

result is not surprising: for a planar observatory a
right-handed gravitational wave coming from “above” is
indistinguishable from a left-handed gravitational wave
traveling from “below.” Therefore only those observatories
constructed from masses which are noncoplanar will be
sensitive to the circular polarization of an isotropic sto-
chastic gravitational wave background. This means that
PTAs are only sensitive to the intensity of the ISGWB.

C. Sensitivity curve

With an expression for the SNR we write the total SNR
as the sum of the sliding integral:

SNR2 ¼
X
fi

2T
Z

fiþΔf=2

fi−Δf=2

S2sðfÞ
Sn;1ðfÞSn;3ðfÞ

df

≡X
fi

SNR2ðfiÞ: ð34Þ

Writing SsðfÞ≡SPP
0

h ðfÞRPP0 ðfÞ¼ð3H2
0Þ=ð4π2Þf−3ΩPP0

gw ðfÞ
RPP0 ðfÞ [48] we can write the minimum-detectable

gravitational wave background within a bandwidth Δf
as (i.e., a sensitivity curve) [46]

ΩPP0;min
gw ðfiÞ≃ SNR0

�
2T
Z

fiþΔf=2

fi−Δf=2

�
3H2

0

4π2

�
2

×
RPP0 ðfÞ

f6Sn;1ðfÞSn;3ðfÞ
df

�
−1=2

: ð35Þ

For all of the sensitivity curves we take Δf ¼ 0.05fi,
H0 ¼ 72 km=s=Mpc [49], and T ¼ 10 years. An ISGWB
spectrum that exceeds this sensitivity curve will be detect-
able with an SNR≳ SNR0. When quoting a minimum

detectable ISGWB, ΩðI;VÞ
gw; min ¼ const, we use Eq. (34) to

determine the amplitude of a flat spectrum (ΩðI;VÞ
gw ¼

cons× tan t) which gives an SNR ¼ 1.

III. SPACE-BASED INTERFEROMETERS

A space-based interferometer that is sensitive to the
circular polarization of the ISGWB can consist of two
equilateral triangles with barycenters separated by a dis-
tance D (see Fig. 3) [33,34]. In order to calculate the
sensitivity for the nominal design for various space-
based gravitational wave observatories let us now consider
the correlated signals between two identical equal-arm
Michelson interferometers to a stochastic gravitational
wave background. In this case we can form several different
signals. For example, the Michelson signals at vertices 1
and 3 can be written

sAðtÞ≡ 1

2
½Δφ12ðt − 2LÞ þ Δφ21ðt − LÞ

− Δφ13ðt − 2LÞ − Δφ31ðt − LÞ�; ð36Þ

sCðtÞ≡ 1

2
½Δφ31ðt − 2LÞ þ Δφ13ðt − LÞ

− Δφ32ðt − 2LÞ − Δφ23ðt − LÞ�: ð37Þ

The specific forms of these Michelson signals have been
chosen to ensure that their laser phase noise cancels [46].
We are also interested in forming another signal, defined by

sBðtÞ≡ sAðtÞ þ 2sCðtÞ; ð38Þ

where the “B” signal has been defined this way so that its
total noise is uncorrelated with signal A over the frequen-
cies where the space-based interferometers are most sensi-
tive (see Appendix A).
The correlation between the signals (denoted by X ¼ A,

B and Y ¼ A, B) measured at each interferometer can be
written as

PXY
s ðfÞ ¼ IðfÞRXY

I ðfÞ þ VðfÞRXY
V ðfÞ ð39Þ

where
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RXY
I ðfÞ≡ 1

4π

Z
d2n̂½FXþðn̂; fÞF�Yþ ðn̂; fÞ

þ FX
×ðn̂; fÞF�Y

× ðn̂; fÞ�; ð40Þ

RXY
V ðfÞ≡ i

4π

Z
d2n̂½FXþðn̂; fÞF�Y

× ðn̂; fÞ

− FX
×ðn̂; fÞF�Yþ ðn̂; fÞ�; ð41Þ

and

FX
Pðn̂; fÞ≡Mab

X ðn̂; fÞePabðn̂Þ: ð42Þ

From the expressions for the response functions it is obvious
that RAA

V ¼RBB
V ¼0, RAB

I ¼RBA
I , and RAB

V ¼−RBA
V . For

the Michelson interferometer the transfer function
Mab

X ðn̂; fÞ is given by [46]

Mab
A ðn̂; fÞ≡ 1

2
e−2πifn̂·~x1 ½ðl̂12 ⊗ l̂12ÞFmðl̂12 · n̂; fÞ

− ðl̂13 ⊗ l̂13ÞFmðl̂13 · n̂; fÞ�; ð43Þ

Mab
B ðn̂; fÞ≡Mab

A ðn̂; fÞ þ e−2πifn̂·~x3

× ½ðl̂31 ⊗ l̂31ÞFmðl̂31 · n̂; fÞ
− ðl̂32 ⊗ l̂32ÞFmðl̂32 · n̂; fÞ�; ð44Þ

and

Fmð~u · n̂; fÞ≡ 1

2

�
sinc

�
fð1 − ~u · n̂Þ

2f�

�

× exp
�
−i

f
2f�

ð3þ ~u · n̂Þ
�

þ sinc

�
fð1þ ~u · n̂Þ

2f�

�

× exp

�
−i

f
2f�

ð1þ ~u · n̂Þ
��

: ð45Þ

We can now find signal combinations to form an
estimator sensitive to the intensity and circular polarization
of an ISGWB. The correlations are

ĈIðf; f0Þ ¼ ½~sA1 ðfÞ þ ~sB1 ðfÞ�½~s�A2 ðf0Þ þ ~s�B2 ðf0Þ�; ð46Þ

ĈVðf; f0Þ ¼ ~sA1 ðfÞ~s�B2 ðf0Þ − ~sB1 ðfÞ~s�A2 ðf0Þ; ð47Þ

which have expectation values

hĈIðf; f0Þi ¼
1

2
IðfÞ½RAA

I ðfÞ þRBB
I ðfÞ

þ 2RAB
I ðfÞ�δTðf − f0Þ

≡ 1

2
Ss;IðfÞδTðf − f0Þ; ð48Þ

hĈVðf; f0Þi ¼ VðfÞRAB
V ðfÞδTðf − f0Þ

≡ 1

2
Ss;VðfÞδTðf − f0Þ: ð49Þ

As discussed in Appendix A the noise is uncorrelated
between signal A and B so that the noise spectrum
associated with each of these signals can be written

Sn;IðfÞ ¼ ½Sn;AðfÞ þ Sn;BðfÞ�2 ð50Þ

Sn;VðfÞ ¼ Sn;AðfÞSn;BðfÞ; ð51Þ

where we have

Sn;AðfÞ ¼ 4ðSn;sðfÞ þ 2Sn;aðfÞ½1þ cos2ðf=f�Þ�Þ; ð52Þ

Sn;BðfÞ ¼
3

2
Sn;AðfÞ; ð53Þ

and Sn;sðfÞ and Sn;aðfÞ is the shot-noise power spectrum
and acceleration noise power spectrum, respectively.
We calculate the sensitivity to circularly polarized

gravitational waves for two planned space-based gravita-
tional wave interferometers: the Laser Interferometer Space
Antenna (LISA) [31].1 and BBO [32]2 The last stage of
BBO calls for a six-mass configuration similar to what is
shown in Fig. 3. Current designs for LISA only include a
three-mass equilateral configuration. We include estimates
for an “advanced” LISAwith six masses in order to explore

FIG. 3. Two equal arm Michelson interferometers rotated by
180 degrees and separated by a distance D.

1We note that during a recent symposium in Zurich eLISA has
been renamed LISA.

2Since both BBO and DECIGO are similar in design we only
present noise curves for BBO. We also note that one should
regard BBO/DECIGO as a straw-man design for the most
sensitive gravitational wave detector in the ∼Hz frequency band
using technology that is only slightly beyond the current state of
the art.
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its potential sensitivity to circularly polarized gravita-
tional waves.
The parameters for LISA and BBO are shown in Table 1.

The expression for the SNR for both the intensity and
circular polarization allows us to determine the distance
between the two observatories which maximizes the signal
to noise to the circular polarization. We have performed this
calculation for LISA and BBO whose noise properties are
described in Appendix A. As shown in Fig. 4 we can see
that both the intensity and circular polarization are detected
at the same SNR for LISA if D=L≃ 7 and for BBO if
D=L≃ 2. This figure also shows that at these separations
the sensitivity to the intensity, compared to D ¼ 0, is
degraded by about 10% in each case. Since the arm-length
of LISA has yet to be determined we also considered an
arm-length of L ¼ 2 × 109 m and L ¼ 3 × 109 m. We
found that the overall sensitivity of these arm-lengths to
the intensity and polarization is the same as when L ¼
109 m but that they occur at smaller separations with
D=L ¼ 3.75 and D=L ¼ 2.5, respectively.
We are now in a position to calculate the sensitivity

curves for both observatories. Figure 5 shows the fre-
quency-dependent sensitivity curves for both LISA and

BBO and Table III. By construction these detectors are
equally sensitive to the intensity and circular polarization,
but there are important differences between the sensitivity
curves. First, the curve for the circular polarization rises
more sharply at low frequencies. Expanding in small
frequencies the intensity sensitivity curve rises as f−5=2

whereas the circular polarization rises as f−7=2. We also
find that the most sensitive frequency, fmin, is shifted
between the intensity and circular polarization with
fmin
I ¼ 3.6 × 10−3 Hz, fmin

V ¼ 5.1 × 10−3 Hz for LISA
and fmin

I ¼ 0.25 Hz, fmin
V ¼ 0.35 Hz for BBO.

IV. SENSITIVITY OF GROUND-BASED
INTERFEROMETERS

Ground-based interferometers monitor the relative phase
at a single vertex. A stochastic background would appear in
the correlation between pairs of interferometers. In the
presence of a circularly polarized background the correla-
tion between detector i and j takes the form

FIG. 4. Left panel: The minimum detectableΩðI;VÞ
gw as a function

of the separation between the two observatories for LISA;
sensitivity to the intensity I is shown in solid blue, sensitivity
to the circular polarization V is shown in dashed orange. Right

panel: The minimum detectable ΩðI;VÞ
gw as a function of the

separation between the two observatories for BBO; sensitivity
to the intensity I is shown in blue, sensitivity to the circular
polarization V is shown in orange. In both cases we have assumed
a ten-year-long observation.

TABLE I. Parameters for LISA from Ref. [31], BBO from
Ref. [32].

Parameter LISA BBO

L (m) 109 5 × 107

Sn;sðfÞ ðHz−1Þ 1.15 × 10−40 8 × 10−50

Sn;aðfÞ×
ðHz=fÞ−4 ðHz−1Þ

1.3 × 10−50×
ð1þ 10−4 Hz=fÞ

2.3 × 10−52

ΩIgw;min 5.0 × 10−13 1.4 × 10−17

ΩVgw;min 5.0 × 10−13 1.4 × 10−17

FIG. 5. Left panel: The sensitivity curve for ΩðI;VÞ
gw for

LISA assuming a separation between the two observatories of
D=L ¼ 7, and a 10-year-long observation. The solid blue curve
shows the sensitivity to the intensity and the dashed orange curve
shows the sensitivity to the circularly polarized background. Note
that the sensitivity curve for V has a smaller opening angle. Right
panel: The same as in the left panel but for BBO and D=L ¼ 2.

TABLE II. Positions (Lat, Long) and orientation angles α (all in
degrees) of the ground-based detectors considered in this paper.
The minimum detectable Ωgw includes all previously listed
observatories. When all five observatories are correlated the
sensitivity to the intensity of the ISGWB is improved by a factor
of approximately two whereas the sensitivity to the level of
circular polarization is improved by about a factor of three.

Lat Long α ΩIgw;min ΩVgw;min

LIGO (H) 46.45 −119.41 171 � � � � � �
LIGO (L) 30.56 −90.77 242 � � � � � �
Virgo (V) 43.63 10.5 115.6 1.3 × 10−10 4.6 × 10−10

LIGO India (I) 10.02 77.76 58.2 � � � � � �
KAGRA (K) 36.42 137.3 75 1.1 × 10−10 2.0 × 10−10
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h~siðfÞ~s�jðf0Þi ¼
1

2
½IðfÞRij

I ðfÞ þ VðfÞRij
V ðfÞ�δTðf − f0Þ:

ð54Þ

In order to extract the intensity and circular polarization
information we need to consider the correlation between
another pair of observatories, k and l (at least one of which
needs to be different from i and j):

Ĉij;klðI;VÞðf; f0Þ ¼
�
~siðfÞ~s�jðf0Þ
Rij

ðV;IÞ
−
~skðfÞ~s�l ðf0Þ

Rkl
ðV;IÞ

�
; ð55Þ

with the expectation values

hĈij;klðI;VÞðf; f0Þi ¼
1

2
fIðfÞ; VðfÞg

 
Rij

ðI;VÞ
Rij

ðV;IÞ
−
Rkl

ðI;VÞ
Rkl

ðV;IÞ

!

× δTðf − f0Þ: ð56Þ

We derive the optimal signal to noise for a network of
ground-based observatories in Appendix B and find that

½ðSNRÞðI;VÞ�2 ¼ T
X
i<j

Z fIðfÞ; VðfÞg½Rij
ðI;VÞðfÞ�2

SðiÞn ðfÞSðjÞn ðfÞ
df;

ð57Þ

where SðiÞn is the noise spectrum for each observatory. In
what follows we will assume that all observatories share
the same noise spectrum given in Ref. [50]. We note
that in order to separate the intensity from the level of
circular polarization we need at least three well-separated
observatories.
Ground-based interferometers have noise spectra

which restrict their sensitivity to frequencies 10 Hz≲ f ≲
103 Hz. The length of their arms is of order 1 km which
corresponds to f� ≃ 106 Hz. This means that we always
have f=f� ≪ 1 so that the transfer function in Eq. (43)
takes the simplified form [51]

T abðn̂; fÞ≃ 1

2
ðl̂a

12l̂
b
12 − l̂a

13l̂
b
13Þ: ð58Þ

We note that with this approximation, the response of a
ground-based observatory can be written analytically as

shown in Refs. [36,37,51] and, for completeness, are
reproduced in Appendix B.
The sensitivity of the world-wide network of ground-

based gravitational wave observatories depends on the
location of each observatory on the Earth as well as
the relative orientation of their interferometer arms. The
location of each observatory is specified by its latitude and
longitude and the orientation by the angle α which is
measured counterclockwise from due east at each observa-
tory (i.e., the standard ϕ̂ in a spherical basis). In order to
disentangle the intensity and circular polarization we need
to consider the correlation between two other interferom-
eters. In this case we choose to use LIGO-Hanford (H),
LIGO-Livingston (L), LIGO-India (I), Virgo (V), and
KAGRA (K) (previously known as the Large Scale
Cryogenic Gravitational Wave Telescope [52]). Of these
observatories LIGO-India’s location and orientation has yet
to be determined. For LIGO-India we take the location and
orientation determined in Ref. [53] to optimize the polari-
zation reconstruction and effective angular resolution of a
multiobservatory detection of a periodic source. We show
the location and arm-orientation for all five current and
planned ground-based detectors in Table II.
We show the sensitivity to both the intensity and circular

polarization of a stochastic gravitational wave background
in Fig. 6. First we consider correlations between the signal
measured by the LIGO Hanford, LIGO Livingston, and
Virgo observatories, shown in the left panel of Fig. 6. With
this limited set of observatories there is a significant
difference between the sensitivities to the intensity and
the circular polarization, with the sensitivity to the intensity
about four times greater than to the circular polarization.
When we include LIGO India and KAGRA this difference
is reduced to about a factor of two. The curves in Fig. 6 also
show that the sensitivity to the circular polarization does
not have a smooth minimum, but instead varies signifi-
cantly with frequency. This needs to be taken into account

TABLE III. Positions (Lat, Long) of possible locations for the
Einstein Telescope.

Lat Long ΩIgw;min ΩVgw;min

Gyöngyösoroszi 47.78 19.93 8.63 × 10−14 2.0 × 10−11

Canfranc, Spain 42.71 0.52 8.63 × 10−14 1.78 × 10−11

Sos Enattos 40.47 9.483 8.63 × 10−14 1.89 × 10−11

FIG. 6. Left panel: The sensitivity of currently built ground-
based observatories (LIGO Hanford and Livingston, Virgo). The
solid blue and dashed orange curves show the sensitivity to the
intensity and circular polarization. Right panel: The sensitivity
curve for the five current and planned ground-based observatories
listed in Table III and a 10-year-long observation.
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when assessing the ability for a ground-based network to
detect a frequency dependent circular polarization.

A. The Einstein Telescope

The Einstein Telescope (ET) is a proposed next-
generation ground-based gravitational wave observatory. It
is currently planned to consist of six Michelson interferom-
eters each with an opening angle of 60° oriented relative to
each other to form an equilateral triangle. Three of the
interferometers are designed to optimize sensitivity to “high”
frequency (HF) gravitational waves (f ∼ 10 − 104 Hz) and
three to optimize “low” frequencies (f ∼ 1–250 Hz). The
arm-length of these interferometers will be 10 km, compared
to the 3–4 km arm-lengths of current observatories.
Furthermore, the ET is planned to be built underground
in order to better isolate it from seismic activity. Based on
measurements of seismic activity, the ET may be built at one
of three sites in Europe (Gyöngyösoroszi mine, Hungary;
LSC, Canfranc, Spain; Sos Enattos mine, Sardinia, Italy).
Since the ET forms an equilateral triangle, we take the signal
it will measure as being produced at three vertices each with
a noise spectral density given by the ET-D configuration
described in Ref. [54].
The correlated signal between the three vertices of the

ET is sensitive to the intensity of the ISGWB but, because
the vertices are coplanar, is insensitive to circular polari-
zation. However, when the signals are correlated with the
global ground-based gravitational wave observatory net-
work, the addition of the ET greatly improves the network’s
sensitivity to both the intensity and circular polarization of
the ISGWB, as shown in Table IV A and in Fig. 7.
We investigated whether one of the possible sites for the

ET yielded a network of ground-based observatories with
significantly improved sensitivity over the other two. We
also investigated whether a particular orientation for the ET
maximized the network’s sensitivity. Although locating the
ET at Canfrac, Spain yields a marginally more sensitive
network to circularly polarized gravitational waves, the
improvement is minimal. We also investigated whether
particular orientations of ET would yield a more sensitive
network and found that changing the orientation has a
negligible effect on the sensitivity to the intensity and can
change the sensitivity to the level of circular polarization by
at most 10%.

It is interesting to note that the three sites considered for
the ET, along with the current and planned sites for the other
gravitational wave observatories, is highly concentrated in
the northern hemisphere. We explored the possibility of
building an ET-like observatory in the southern hemisphere
(near Pretoria, South Africa with latitude 25.7° S and
longitude 28.2° E.) and found that the overall sensitivity
to the intensity is unchanged with ΩI

gw;min ¼ 8.63 × 10−14

but the level of circular polarization is improved by more
than a factor of two,ΩV

gw;min ¼ 7.92 × 10−12, as compared to
the values in Table III.

V. CMB SENSITIVITY

At the largest scales, measurements of the CMB provide
us with a tool that has the potential to detect gravitational
waves at frequencies f ≃ 10−18 Hz. The presence of
gravitational waves on these scales induces correlated
fluctuations in both the intensity and polarization of the
CMB [57,58]. Expanding the intensity and polarization
measurements in the appropriate spin-weighted multipole
moments, we can write the gravitational-wave induced
correlations as integrals over IðkÞ and VðkÞ:

CXX0¼TT;EE;BB;TE
l ¼ ð4πÞ2

Z
k2dkIðkÞΔGW;X

l ðkÞΔGW;X0
l ðkÞ;

ð59Þ

CXX0¼TB;EB
l ¼ ð4πÞ2

Z
k2dkVðkÞΔGW;X

l ðkÞΔGW;X0
l ðkÞ;

ð60Þ

where ΔGW;X
l ðkÞ are the transfer functions which encode

the physics of photon transport from the surface of last
scattering to today. The noise at each multipole can be
written

TABLE IV. Noise parameters for the Planck satellite [55] and
CMBPol [56]. Since each observation is of the full sky we take
fsky ¼ 0.7 to account for the subtraction of the galaxy.

ΘFWHM

NET
(μK

ffiffiffi
s

p
)

Tobs
(years) ΩIgw;min ΩVgw;min

Planck 7 62 1.2 1.53 × 10−14 1.76 × 10−14

CMBpol 5 2.8 4 2.13 × 10−17 2.19 × 10−16

FIG. 7. Left panel: The sensitivity of the Einstein Telescope
(ET). Since the ET consists of phase measurements at the vertices
of an equilateral triangle, it is not intrinsically sensitive to the
level of circular polarization in the ISGWB. Right panel: When
we correlate the ET signal with other current and planned ground-
based gravitational wave observatories the network is sensitive to
the circular polarization, shown in the dashed-orange curve.
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NX1X2;X3X4

l ¼ 1

2lþ 1
ð ~CX1X3

l
~CX2X4

l þ ~CX1X4

l
~CX2X3

l Þ; ð61Þ

with

~CXX0
l ≡ CXX0;s

l þ δXX0
4πσ2X
Npix

el
2σ2b ; ð62Þ

where CXX0;s
l is the scalar (i.e., non gravitational-wave)

contribution to the power spectrum, σb ≡ θFWHM=
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
and we have assumed that the cross-correlated noise
vanishes, σX is the pixel noise, and Npix ¼ 4πθ−2FWHM is
the number of pixels. Under the null hypothesis a nonzero
CBB
l is produced through weak lensing and CTB;s

l ¼
CEB;s
l ¼ 0.
From the expression for the noise covariance under the

null hypothesis we have

NTT;BB
l ¼ 0; ð63Þ

NTB;EB
l ¼

~CTE;s
l

~CBB
l

2lþ 1
; ð64Þ

NEB;EB
l ¼

~CEE;s
l

~CBB
l

2lþ 1
; ð65Þ

NTB;TB
l ¼

~CTT
l

~CBB
l

2lþ 1
: ð66Þ

The SNR for the ISGWB intensity from CMB experiments
is dominated by the TT and BB measurements so that

ðSNRÞ2I ¼
X
l

½CTT;GW
l �2
NTT;TT

l

þ ½CBB;GW
l �2
NBB;BB

l

; ð67Þ

ðSNRÞ2V
¼
X
l

½CTB
l �2NEB;EB

l − 2CEB
l CTB

l NTB;EB
l þ ½CEB

l �2NTB;TB
l

NEB;EB
l NTB;TB

l − ½NTB;EB
l �2 :

ð68Þ

In order to estimate the sensitivity curve of the CMB to
the intensity and circular polarization of the ISGWB we
note that the transfer function peaks at a wave number
l ¼ klτ0 where τ0 is the conformal time today. This
allows us to write the power spectra as a function of wave
number kl:

CXX0
l ≃ ð4πÞ2fIðklÞ; VðklÞgτ−10 k2lΔX

l ðklÞΔX0
l ðklÞ: ð69Þ

Therefore the SNR can be written as the sum of the square
of each of the scale-dependent SNRs:

SNR2
ðI;VÞ ≃

X
l

SNR2
ðI;VÞðklÞ: ð70Þ

Using the same approach described in the previous sections
this allows us to calculate the frequency-dependent sensi-
tivity of CMB observations (after noting that k ¼ 2πf=c) to
both the intensity and the circular polarization of a ISGWB
as detailed in Appendix C and shown in Fig. 8.
The oscillations in these sensitivity curves follow the

acoustic oscillations in the spectra. In particular, the
significant increase in sensitivity around f ≃ 10−18 Hz
corresponds to the reionization bump at l≃ 4 and the
second dip corresponds to the horizon at decoupling at
l≃ 100. It is also interesting to note that Planck is equally
(in)sensitive to the intensity and circular polarization of the
ISGWB whereas CMBpol is significantly more sensitive to
the intensity.

VI. CONCLUSIONS

As shown in this paper, most of the common techniques
used to detect the ISGWB will be sensitive to both the
intensity and level of circular polarization. We have
summarized the sensitivity curves calculated in this paper
in Fig. 9: the solid blue curves show the sensitivity to the
intensity and the dashed orange curves show the sensitivity
to the level of circular polarization.
As shown in Fig. 9, we have presented our results in

terms of the minimum-detectable fractional gravitational
wave energy density in the intensity and circular polari-
zation, but there are other ways of quantifying the ampli-
tude of the stochastic gravitational wave background.
Many other studies which consider circularly polarized
background focus on the fractional circularly polarized
power Δχ ¼ ΩV

gw=ΩI
gw [39–41]; with this definition we

have 0 ≤ Δχ ≤ 1–so that Δχ ¼ 1 corresponds to a fully
circularly polarized background. Assuming no correlation
between the intensity and circular polarization, the
uncertainty with which we can determine Δχ is given by
σΔχ ≃ΩV

gw;min=ΩI
gw where we assumed that the intensity of

FIG. 8. The sensitivity of CMB observations to the intensity
(solid blue) and circular polarization (dashed orange) for both
Planck (left panel) and CMBpol (right panel). Our noise model
and parameters for these two instruments are specified in
Appendix C.
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the ISGWB is well measured, ΩI
gw;min=ΩI

gw ≪ 1. We can
see thatΔχ can only be measured forΩI

gw > ΩV
gw;min. As we

have determined, there are some detection techniques, such
as CMBpol and ground-based detectors, for which the
intensity of an ISGWB may just peak up above the noise,
but since ΩV

gw;min > ΩI
gw;min, we have σΔχ > 1. In these

cases we will only measure the level of circular polarization
if the intensity of the ISGWB is large enough
(ΩI

gw > ΩV
gw;min) so that σΔχ < 1.

Space-based detectors will be sensitive to both the
intensity and circular polarization as long as they utilize
more than three inertial masses. We have considered the
case where these detectors operate as a constellation of two
equilateral triangles. The two triangles must be separated
by some distance, and there is a distance at which the
overall sensitivity to both the intensity and circular polari-
zation are equal, in agreement with Ref. [34]. In addition to
this we found that this optimal distance has a strong
dependence on the specifications of the observatory—for
LISA we found that the optimal distance D≃ 7L whereas
for BBO D≃ 2L.
Ground-based detectors are sensitive to both the intensity

and circular polarization as long as we correlate the signal
from at least three widely separated sites. This means that
the current collection of ground-based detectors (LIGO
Hanford and LIGO Livingston) are not capable of sepa-
rating out these two signals. However, with VIRGO and
KAGRA soon to turn on, the ground-based network will
become sensitive to both signals. We find that this total
network sensitivity is greatly enhanced if we include the
Einstein Telescope. Since the intrinsic sensitivity of the
Einstein Telescope to the intensity is significantly better
than current gravitational wave observatories, it has a
disproportionate effect on the overall sensitivity to the
intensity. However, it also significantly improves the net-
work’s sensitivity to the level of circular polarization.

We also found that if we were to locate the Einstein
Telescope in the southern hemisphere the improvement in
the total sensitivity to the level of circular polarization
further improves by another factor of two.
Observations of the temperature and polarization of the

CMB are sensitive to both the intensity and circular
polarization of the ISGWB. The correlation between the
CMB temperature and the E and B mode polarization
can isolate the effects of the ISGWB intensity from those
of the circular polarization. In agreement with Ref. [40]
we find that the Planck satellite is equally (in)sensitive
to the intensity and circular polarization of the ISGWB,
but that a future CMB satellite dedicated to measuring
the CMB polarization—CMBpol—will improve the
sensitivity by three orders of magnitude for the intensity
of the ISGWB and two orders of magnitude for the
circular polarization.
As opposed to reporting the sensitivity as a single

number, the calculation of sensitivity curves gives a
quantitative accounting of the frequency coverage by these
various observatories. Looking at the combination of all of
the observatories considered in this paper in Fig. 9, it is
interesting to note the absence of any detector operating at
frequencies between 10−15 Hz≲ f ≲ 10−3 Hz which will
be sensitive to the level of circular polarization. This 12
orders of magnitude is a wide swath of frequency space
inside of which we do not have any known technique to
detect the circular polarization of the isotropic gravitational
wave background (on the other hand PTAs are sensitive to
the circular polarization of an anisotropic background
[62]). This sensitivity desert calls out for new and creative
ideas on how to detect the level of circular polarization in
an ISGWB.
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APPENDIX A: NOISE IN A SPACE-BASED
LASER INTERFEROMETER

The interferometer signal is built out of phase measure-
ments made at each detector. These measurements take the
difference between the incoming light and the local light
signal. A gravitational wave interferometer will have three
(major) sources of noise: the laser phase noise, CðtÞ, shot
noise, nsðtÞ, and acceleration noise, ~naðtÞ. If we denote the
phase measurement made by detector j with a laser sent by
detector i by Nij then [46]

NijðtÞ ¼ Ciðt − LijÞ − CjðtÞ þ nsijðtÞ − l̂ij

· ½~naijðtÞ − ~najiðt − LijÞ�: ðA1Þ

For the equal-arm Michelson interferometer the laser phase
noise cancels and we have the autocorrelation of the
detector noise at vertices 1 and 2 (signals A and C,
respectively)

h ~NAðfÞ ~N�
Aðf0Þi ¼ 4ðSsðfÞ þ 2SaðfÞ½1þ cos2ðf=f�Þ�Þ

× δðf − f0Þ

≡ 1

2
PNðfÞδðf − f0Þ; ðA2Þ

h ~NCðfÞ ~N�
Cðf0Þi ¼

1

2
PNðfÞδðf − f0Þ: ðA3Þ

There is a nonzero cross-correlation between ~NA and ~NC
because of the common “arm” between vertices 1 and 3. A
full calculation of this cross correlation using the expres-
sions in Ref. [46] yields

h ~NAðfÞ ~N�
Cðf0Þi ¼ −2ð4SaðfÞ þ SsðfÞÞ cosð2f=f�Þ;

ðA4Þ

≃ −
1

4
PNðfÞδðf − f0Þ; ðA5Þ

where the approximate equality is accurate when
cosð2f=f�Þ≃ 1. Since this is true at the most sensitive
frequencies of both LISA and BBO it is a good approxi-
mation when calculating the optimal SNR for these
interferometers. Now for the B signal we have NBðtÞ ¼
NAðtÞ þ 2NCðtÞ so that

h ~NBðfÞ ~N�
Bðf0Þi ¼ h ~NAðfÞ ~N�

Aðf0Þi þ 4h ~NCðfÞ ~N�
Cðf0Þi

þ 4h ~NAðfÞ ~N�
Cðf0Þi; ðA6Þ

¼ 3

2
PNðfÞδðf − f0Þ; ðA7Þ

h ~NAðfÞ ~N�
Bðf0Þi ¼ h ~NAðfÞ½ ~N�

Aðf0Þ þ 2N�
Cðf0Þ�i

¼ 0: ðA8Þ

APPENDIX B: GROUND-BASED
INTERFEROMETER-NETWORK

RESPONSE AND NOISE

As discussed in Sec. IV, for each pair of pairs we can
form an estimator of the intensity and circular polarization

Ĉij;klðI;VÞðf; f0Þ ¼
~siðfÞ~s�jðf0Þ
Rij

ðV;IÞðfÞ
−
~skðfÞ~s�l ðf0Þ
Rkl

ðV;IÞðfÞ
: ðB1Þ

We can then form the frequency-integrated estimator

Ĉij;klðI;VÞ ¼
Z

dfdf0WðI;VÞ
ij;kl ðf; f0ÞĈij;klðI;VÞðf; f0Þ; ðB2Þ

which has the expectation value

hĈij;klðI;VÞi ¼
1

2

Z
dfdf0fIðfÞ; VðfÞgWðI;VÞ

ij;kl ðf; f0Þ

×

�Rij
ðI;VÞðfÞ

Rij
ðV;IÞðfÞ

−
Rkl

ðI;VÞðfÞ
Rkl

ðV;IÞðfÞ
�
δTðf − f0Þ: ðB3Þ

We note that even though the expectation value
hĈij;klðI;VÞðf; f0Þi is not positive definite, the optimal estimator

derived in Sec. II Aweights these terms to ensure that they
always contribute positively to the overall signal to noise.
Any ground-based network with more than two observa-

tories will have more than one pair of pairs.3 In this case
we can improve the SNR by combining all possible
correlations:

ĈðI;VÞ ≡
X
ij;kl

Z
dfdf0WðI;VÞ

ij;kl ðf; f0ÞĈij;klðI;VÞðf; f0Þ; ðB4Þ

where the sum is over unique pairs of pairs without regard
to order.
By collecting the terms involving each estimator pair we

can write this in the form

3For example the LIGO Hanford (H) and Livingston (L) sites
along with VIRGO (V) provide three pairs of pairs: HL-HV,
HV-LV, HL-LV.
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ĈðI;VÞ ¼
1

2

Z
∞

−∞
dfdf0Wij

ðI;VÞðf; f0Þ~siðfÞ~s�jðf0Þ; ðB5Þ

where Wij
ðI;VÞðf; f0Þ has the properties discussed in

Sec. II A and is a linear combination of the weights
Wij;klðf; f0Þ that involve detectors ij. For example with
the three detectors at LIGO Hanford (H), LIGO Livingston
(L), and Virgo (V):

WHL
ðI;VÞ ¼

1

RHL
ðV;IÞ

ðWHL;HV
ðI;VÞ þWHL;LV

ðI;VÞ Þ; ðB6Þ

WHV
ðI;VÞ ¼

1

RHV
ðV;IÞ

ðWHV;LV
ðI;VÞ −WHL;HV

ðI;VÞ Þ; ðB7Þ

WLV
ðI;VÞ ¼ −

1

RLV
ðV;IÞ

ðWHL;LV
ðI;VÞ þWHV;LV

ðI;VÞ Þ: ðB8Þ

Given NO observatories, for each of the NP ¼
1=2NOðNO − 1Þ pairs there is a weight Wij that we
construct using 2ðNO − 2Þ of the NPP ¼ NPðNO − 2Þ pairs
of pairs Wij;kl. With this it is then straightforward to show
that the expectation value of this estimator is

hĈðI;VÞi ¼
1

4

Z
∞

−∞
dfdf0WðI;VÞ

ij ðf; f0ÞRij
ðI;VÞðfÞδTðf − f0Þ:

ðB9Þ

As shown in Sec. II A the optimal SNR for this estimator is
then given by

SNRðI;VÞ ¼
"
T
X
i<j

Z
∞

−∞
fIðfÞ; VðfÞg

½Rij
ðI;VÞðfÞ�2

SðiÞn ðfÞSðjÞn ðfÞ

#
1=2

:

ðB10Þ

As shown in Refs. [36,51] the ground-based response
functions can be written down analytically:

Rij
I ¼ 4

5
½Θ1ðy; βÞ cosð4δÞ þ Θ2ðy; βÞ cosð4ΔÞ�; ðB11Þ

Rij
V ¼ 4

5
Θ3ðy; βÞ sinð4ΔÞ; ðB12Þ

where δ≡ σ1−σ2
2

, Δ≡ σ1þσ2
2

,

Θ1ðy; βÞ≡ cos4
β

2

�
j0ðyÞ þ

5

7
j2ðyÞ þ

3

112
j4ðyÞ

�
; ðB13Þ

Θ2ðy; βÞ≡
�
−
3

8
j0ðyÞ þ

45

56
j2ðyÞ −

169

896
j4ðyÞ

�

þ
�
1

2
j0ðyÞ −

5

7
j2ðyÞ −

27

224
j4ðyÞ

�
cos β

þ
�
−
1

8
j0ðyÞ −

5

56
j2ðyÞ −

3

896
j4ðyÞ

�
cos 2β;

ðB14Þ

Θ3ðy; βÞ≡ − sin
β

2

�
−j1ðyÞ þ

7

8
j3ðyÞ

þ
�
j1ðyÞ þ

3

8
j3ðyÞ

�
cos β

�
; ðB15Þ

jnðyÞ is the nth spherical Bessel function, y≡ 2F sin β=2,
and F≡ f=f� with f� ≡ c=ð2πREÞ.
Since we are only interested in the isotropic background

the relative position of any two observatories on the surface
of the Earth is characterized by three angles: β is the
angular separation between the two corner detectors mea-
sured from the center of the Earth and σa;b which indicates
the angular orientation of the bisector of the interferometer
as measured counterclockwise relative to the great circle
that connects the two observatories. The distance between
the two observatories isD ¼ 2RE sin β=2. We can establish
these angles by imagining the two observatories as starting
in the same location (say at the pole of a sphere) and
oriented in the same direction. We then rotate observatory b
by an angle σ2 − σ1 and observatory a by σ1 − π=4 (this is
because σ1 is measured from the bisector). We then rotate
observatory b about the y-axis through an angle β and we
have established our two-observatory geometry.
In order to characterize the response of this network of

observatories to the intensity and circular polarization of a
stochastic gravitational wave background for each pair we
must specify the angles ðβ; σ1; σ2Þ. The latitude and
longitude of each observatory easily allows a calculation
of β for each pair. To determine σ1 and σ2 we must
construct the vector tangent to the surface at the Earth at the
location of each member of a pair of observatories that
points along the great circle (i.e., geodesic) that connects
the two. To calculate this for each pair we used the spherical
linear interpolation (SLERP) algorithm [63]. The para-
metric equation for the geodesic that connects two points
on the unit sphere, r̂1 and r̂2, is given by

Slerpð~r1; ~r2; tÞ ¼
sin½ð1 − tÞr̂1 · r̂2�

sin½r̂1 · r̂2�
r̂1 þ

sin½tr̂1 · r̂2�
sin½r̂1 · r̂2�

r̂2;

ðB16Þ

where 0 ≤ t ≤ 1. The tangent to the sphere along the

geodesic at any point is then given by ~T ¼ dSlerp=dt.
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With this tangent vector and the location of the two
observatories it is straightforward to calculate σ1 and σ2.

APPENDIX C: RESPONSE OF OBSERVATIONS
OF THE CMB

With the SNR for CMB experiments given in Eqs. (67)
and (68) we estimate the minimum detectable signal by
setting the SNR ¼ 1:

IminðklÞ≃
�ðQTT

l Þ2
NTT;TT

l

þ ðQBB
l Þ2

NBB;BB
l

�−1=2
; ðC1Þ

VminðklÞ≃
�ðQTB

l Þ2NEB;EB
l − 2CEB

l CTB
l NTB;EB

l

NEB;EB
l NTB;TB

l − ðNTB;EB
l Þ2

�−1=2
;

ðC2Þ

where QXX0
l ≡ ð4πÞ2k2l=τ0ΔX

l ðklÞΔX0
l ðklÞ.

In order to translate from the primordial power
spectra to ΩðI;VÞ today we must consider the evolution

of the gravitational waves once they enter the horizon.
As discussed in Ref. [64] the spectral density of an
inflationary gravitational wave background is given as

ΩðI;VÞðkÞ ¼
fIðkÞ; VðkÞga

12H2
0

k2
�
3j2ðkτÞ

kτ

�
2

: ðC3Þ

This expression is valid for conformal times τ > τeq
and wave numbers k < keq, which is precisely the range
applicable to the CMB. Evaluating it at the present-day, and
after rewriting the Hubble constant H−1

0 ≃ 3000=h Mpc in
terms of the standard pivot k� ¼ 0.05 inv-Mpc, we obtain

Ωmin
I h2 ≃ 1875IminðkÞ

�
3j2ðkτ0Þ

kτ0

k
k�

�
2

; ðC4Þ

Ωmin
V h2 ≃ 1875VminðkÞ

�
3j2ðkτ0Þ

kτ0

k
k�

�
2

: ðC5Þ
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