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Abstract—The theory of compressed sensing suggests that successful
inversion of an image of the physical world (e.g., a radar/sonar
return or a sensor array snapshot vector) for the source modes and
amplitudes can be achieved at measurement dimensions far lower
than what might be expected from the classical theories of spectrum
or modal analysis, provided that the image is sparse in an apriori
known basis. For imaging problems in passive and active radar and
sonar, this basis is usually taken to be a DFT basis. The compressed
sensing measurements are then inverted using an ℓ1-minimization
principle (basis pursuit) for the nonzero source amplitudes. This
seems to make compressed sensing an ideal image inversion principle
for high resolution modal analysis. However, in reality no physical
field is sparse in the DFT basis or in an apriori known basis. In fact
the main goal in image inversion is to identify the modal structure.
No matter how finely we grid the parameter space the sources may
not lie in the center of the grid cells and there is always mismatch
between the assumed and the actual bases for sparsity.

In this paper, we study the sensitivity of basis pursuit to mismatch
between the assumed and the actual sparsity bases and compare the
performance of basis pursuit with that of classical image inversion.
Our mathematical analysis and numerical examples show that the
performance of basis pursuit degrades considerably in the presence
of mismatch, and they suggest that the use of compressed sensing
as a modal analysis principle requires more consideration and
refinement, at least for the problem sizes common to radar/sonar.

I. INTRODUCTION

Broadly speaking there are two main (classical) principles for

inverting the kinds of images that are measured in radar, sonar,

and optics. The first principle is one of matched filtering, wherein

a sequence of test images is matched to the measured image. The

test images are generated by scanning a prototype image (e.g., a

waveform or a steering vector) through frequency, wavenumber,

doppler, and/or delay. In time series analysis, this amounts to

classical spectrum analysis to identify the frequency modes, and

the corresponding mode amplitudes, of the signal [1]. In phased-

array processing, it amounts to spectrum analysis in frequency and

wavenumber to identify the frequency-wavenumber coordinates

of sources impinging on the array [2]. In Space-Time Adaptive

Processing (STAP) radar and sonar, it amounts to spectrum

analysis in delay, frequency, and wavenumber to reconstruct the

radar/sonar field [3],[4]. The second principle is one of parameter

estimation in a separable linear model, wherein a sparse modal
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representation for the field is posited and estimates of linear

parameters (complex amplitudes of modes) and nonlinear mode

parameters (frequency, wavenumber, delay, and/or doppler) are

extracted, usually based on maximum likelihood, or some varia-

tion on linear prediction, using l2 minimization (cf. [5]). There

is a comprehensive literature in electrical engineering, physics,

and chemistry on the performance and limitations of these two

classical principles (cf. [1],[5]–[8]). One important limitation is

that any subsampling of the measured image has consequences

for resolution (or bias) and for variability (or variance).

The recent advent of compressed sensing theory (cf. [9]–[11]) has

created a great deal of enthusiasm among the signal processing

community, as it suggests that subsampling (actually subrecord-

ing) has manageable consequences for image inversion, provided

that the image is sparse in an apriori known basis. For imaging

problems in passive and active radar and sonar, this basis is usu-

ally taken to be a Fourier basis (actually a DFT basis) constructed

for resolution of 2π/N , with N a window length, array length, or

pulse-to-pulse processing length. Several articles (see for example

[12]–[14]) consider the use of compressed sensing theory for

radar and sonar imaging when the targets are taken to be on a

regular grid in delay, Doppler, and wavenumber, and advocate this

theory as a new high resolution imaging principle. But no matter

how large the size N of the grid is, the actual field will not place

its targets on the center of the grid points {2πn/N} in frequency

or wavenumber, or on the center of the grid points in delay-

Doppler-wavenumber. This means the image is actually not sparse

in the DFT basis or the basis defined by the grid. In fact any

target that lies between two cells of a discretely-resolved range-

doppler plane or frequency-wavenumber plane will spill non-zero

values into all cells, with the amplitude of the spillage following

a Lanczos kernel, decaying as 1/f , where f is frequency or

wavenumber. This observation raises the following questions.

1) What is the sensitivity of compressed sensing for modal anal-

ysis (image inversion as opposed to image reconstruction)

to mismatch between the assumed basis for sparsity and the

actual basis in which the image is sparse?

2) How does the performance of compressed sensing in the

presence of basis mismatch compare with the performance

of classical matched filtering for imaging in frequency,

wavenumber, delay, and/or doppler, or with that of linear

prediction?



In this paper, we aim to answer these questions for problems

typical of spectrum analysis and beamforming. In order to frame

them more precisely, let us begin with two models for a measured

image s ∈ C
N . In the mathematical model, to be assumed in

the compressed sensing procedure, the image is composed as

s = Ψ0x, where Ψ0 ∈ C
N×N is known, and typically a gridded

imaging matrix (e.g., the N point DFT matrix), and x ∈ C
N is a

sparse or compressible vector1 of field parameters that compose

the image as a linear combination of columns of Ψ0. But, as

a matter of fact, the image s is composed by the physics as

s = Ψ1θ, where Ψ1 ∈ C
N×N is determined by a point spread

function, a Green’s function, or an impulse response, and the

field parameter vector θ is sparse. Typically Ψ1 is determined

by frequency, wavenumber, delay, and/or doppler parameters that

are unknown apriori. More importantly, these parameters do not

lie exactly on the gridding points of Ψ0, e.g. a DFT matrix or

an identity matrix. So Ψ0 6= Ψ1. We call this basis mismatch,

and note that it is present in all imaging problems, no matter

how large N is, or equivalently no matter how fine-grained the

gridding procedure is.

Each of the hypothesized models for the image s may be inverted

for its field parameters:

x = Ψ−1
0 s and θ = Ψ−1

1 s (1)

These inversions2 determine the coordinate transformation

x = Ψθ and θ = Ψ−1x (2)

where Ψ = Ψ−1
0 Ψ1 ∈ C

N×N .

If s is sparse in Ψ1, as is typical in spectrum analysis, beamform-

ing, and range-doppler imaging, then the field parameters θ will

be sparse in the I basis. The field parameters x = Ψθ will be

sparse in the Ψ basis, but not in the identity basis. So the question

is, “what is the consequence of assuming that x is sparse in I,

when in fact it is only sparse in an unknown basis Ψ, which is

determined by the mismatch between Ψ0 and Ψ1?”

We answer this question by deriving bounds on the ℓ1-norm (and

also the ℓ2-norm) of the error in reconstructing the actual sparse

parameter vector θ from its compressed sensing measurements

using basis pursuit. In particular, we show that the upper bound

for the ℓ1-norm of the reconstruction error grows linearly with

Nǫ‖θ‖1, where ǫ upper bounds the element-wise mismatch

between Ψ and I. We substantiate our mathematical analysis by

presenting numerical examples that demonstrate a considerable

performance degradation for image inversion using compressed

sensing, when the assumed basis is a DFT basis but the actual

basis has elements between DFT points. The inaccuracy in field

1If x is sparse, then the cardinality of its support Tx = {k : xk 6= 0} is
assumed to be small. If x is compressible, then its entries obey a power law i.e.
the kth largest entry of absolute values satisfies |x|(k) ≤ Cr · k−r , r > 1 and

Cr is a constant depending only on r, then ‖x−xk‖1 ≤
√

kC′
r ·k−r+1, where

xk is the k-term approximation of x.
2If Ψ0 ∈ CL×N and Ψ1 ∈ CL×N , with L < N , are overcomplete dictionar-

ies then s ∈ CL and the inverses in (1) and (2) are replaced with pseudo Moore-

Penrose pseudo inverses Ψ
†
0 = Ψ

H
0 (Ψ0Ψ

H
0 )−1 and Ψ

†
1 = Ψ

H
1 (Ψ1Ψ

H
1 )−1.

However, throughout the paper we assume, without loss of generality, that L = N ,
having in mind that the developments also apply to the case where L < N .

reconstruction persists even when the number of compressed

sensing measurements is increased to the full image dimension.

Comparisons show that classical approaches, in particular linear

prediction, can provide more reliable reconstructions of the field

than basis pursuit in the presence of basis mismatch.

Our results suggest that the hope that a small number of record-

ings can be processed according to the principles of compressed

sensing to produce the performance of classical methods that

use a large number of samples seems to be unattainable due

to the inevitable mismatch between the sparsity basis assumed

by compressed sensing and the actual sparsity basis selected by

the physical world. It is this mismatch problem that moderates

our enthusiasm for compressed sensing as a high resolution

image inversion principle, at least for problem sizes typical in

radar/sonar and spectrum analysis.

This paper is a summary of results. We have omitted the proofs,

and derivations have been shortened or left out entirely. A

comprehensive treatment along with detailed proofs is presented

in [15].

II. BASIS MISMATCH

There are two steps in the procedure of compressed sensing,

namely compressed recording and inversion for parameters (cf.

[9]–[11]). In recording, we make linear measurements of s, with

possible additive noise b, so the observation y is

y = Φs + b = (ΦΨ0)x + b , Ax + b (3)

where Φ ∈ C
M×N is the compressed sensing measurement

matrix (typically a matrix with i.i.d. Gaussian or i.i.d Bernoulli

entries), and M is the number of measurements. We now define

A = ΦΨ0 ∈ C
M×N as the new measurement matrix with respect

to x. Without loss of generality, we will only deal with A and

Ψ in the following discussions.

In reconstruction, we seek the sparsest solution to x given the

observation y. For noise-free case (b = 0), we wish to solve

x∗ = arg min
x

‖x‖0 s.t. y = Ax. (4)

This is in general an NP-hard problem. However, if the mea-

surement matrix A satisfies the so-called restricted isometry

property (RIP) [16],[17] the solution to (4) can be obtained using

linear programming, equivalent to the following ℓ1 minimization

problem:

x∗ = arg min
x

‖x‖1 s.t. y = Ax. (5)

This is referred to as basis pursuit. In the noisy case, the problem

is modified as:

x∗ = arg min
x

‖x‖1 s.t. ‖y − Ax‖2 ≤ ǫ (6)

when ‖b‖2 ≤ ǫ is the bounded noise.

From [16],[17], when the restricted isometry constant (RIC) of

the measurement matrix A satisfies δA

2k <
√

2 − 1 for 2k-sparse

signals, the solution x∗ to (5) obeys

‖x∗ − x‖1 ≤ C0‖x − xk‖1 (7)



and

‖x∗ − x‖2 ≤ C0k
−1/2‖x − xk‖1 (8)

where xk is the k-term approximation of x. For the noisy case

(6), we have

‖x∗ − x‖2 ≤ C0k
−1/2‖x − xk‖1 + C1ǫ. (9)

In addition, let

α =
2
√

1 + δA

2k

1 − δA

2k

and β =

√
2δA

2k

1 − δA

2k

, (10)

then the constants C0 and C1 satisfy

C0 =
2(1 + β)

1 − β
and C1 =

2α

1 − β
. (11)

In the matched case where the hypothesized basis Ψ0 coincides

with the actual basis Ψ1, the mismatched basis Ψ = Ψ−1
0 Ψ1

reduces to I and x = θ is sparse in the I basis. If θ is k-sparse,

the bound ‖x − xk‖1 is zero in (7) and the solution x∗ to x is

exact in the noise-free case.

However, in the mismatched case where Ψ0 6= Ψ1, x = Ψθ

is actually sparse in the Ψ basis, rather than sparse in the I

basis. So the question is, “what is the consequence of minimizing

‖x‖1 under the constraint y = Ax, when in fact the correct

minimization is to minimize ‖θ‖1 under the constraint y = AΨθ

where A = ΦΨ0?”

We answer this question by analyzing the ℓ1 error bound ‖x∗ −
θ‖1 and ℓ2 error bound ‖x∗ − θ‖2 under certain conditions on

the mismatch basis Ψ. The k-term approximation error bound

‖x−xk‖1 in the presence of mismatch is central to the analysis.

Remark: Our analysis also applies to greedy recovery algorithms

for which there exist universal performance bounds involving

‖x− xk‖1. This class of algorithms includes regularized orthog-

onal matching pursuit (ROMP) [18] and CoSaMP [19].

III. BOUNDS ON CONFIDENCE INTERVAL FOR MODE

IDENTIFICATION

A. The degeneration of k-term approximation

Theorem 1: Let Ψ ∈ C
N×N be Ψ = I + E and x = Ψθ. If the

entries of E are bounded as |emn| ≤ ǫ for n ∈ Tθ, where Tθ is
the support of θ, then we have

‖θ−θk‖1−(N−k)ǫ‖θ‖1 ≤ ‖x−xk‖1 ≤ ‖θ−θk‖1+(N−k)ǫ‖θ‖1. (12)

The upper bound is obtained when emn = ǫ ·ej arg(θm)e−j arg(θn)

for n ∈ Tθ; and the lower bound is obtained when emn = −ǫ ·
ej arg(θm)e−j arg(θn) for n ∈ Tθ.

Remark: Theorem 1 can be generalized to ‖x − xk‖2 to obtain

‖θ − θk‖2 −
√

N − kǫ‖θ‖1 ≤ ‖x − xk‖2 ≤ ‖θ − θk‖2 +
√

N − kǫ‖θ‖1.

When E = 0, the mismatch basis Ψ = Ψ−1
0 Ψ1 = I, ‖x−xk‖1 =

‖θ−θk‖1, and the compressed sensing procedure is still effective.

Suppose θ is exactly k-sparse in I, i.e., θ = θk. Then ‖x−xk‖1 ≤
(N −k)ǫ‖θ‖1 from Theorem 1. The bound is linear in the signal

dimension N , the mismatch level ǫ and the ℓ1 norm of θ. This

means sparsity of s in the Ψ1 basis may not imply sparsity of s

in the Ψ0 basis.

If the entries of E are lower bounded, then the following theorem

gives a lower bound for the upper bound of the ℓ1 norm of the

error in the k-term approximation.

Theorem 2: Let Ψ = I+E and x = Ψθ. If the entries of E are

bounded as |emn| ≥ η for n ∈ Tθ, where Tθ is the support of θ,

then we have

max
E:|emn|≥η

‖x − xk‖1 ≥ ‖θ − θk‖1 + (N − k)η‖θ‖1 (13)

Remark: Theorem 2 “lower bounds the upper bound” and implies

that there is a possibility for the basis pursuit to fail, as the

performance bound is now loose.

B. Image inversion

When combined with Theorem 1, the performance of basis pursuit

(5) for noiseless recovery follows

‖x∗ − x‖1 ≤ C0‖θ − θk‖1 + C0(N − k)ǫ1‖θ‖1, (14)

if the entries of E satisfy |emn| ≤ ǫ1. For noisy recovery (6)

where ‖b‖2 ≤ ǫ2, the bound becomes

‖x∗−x‖2 ≤ C0k
−1/2‖θ−θk‖1+C0(N−k)k−1/2ǫ1‖θ‖1+C1ǫ2.

(15)

We are interested in recovering θ, and the following theorem

concerns the ℓ1 error ‖x∗ − θ‖1 and the ℓ2 error ‖x∗ − θ‖2.

Theorem 3: For noiseless basis pursuit (5), with δA

2k <
√

2 − 1,

we have

‖x∗ − θ‖1 ≤ C ′
0‖θ − θk‖1 + C ′

1‖θ‖1 (16)

where C ′
0 = C0 and C ′

1 = [C0(N − k) + N ] ǫ1. For noisy

recovery (6) where ‖b‖2 ≤ ǫ2, we have

‖x∗ − θ‖2 ≤ C ′
0k

−1/2‖θ − θk‖1 + C ′′
1 ‖θ‖1 + C1ǫ2 (17)

where C ′′
1 =

[

C0(N − k)k−1/2 +
√

N
]

ǫ1, and C0, C1 are given

by (11).

Remark: When θ is exactly k-sparse, the normalized error bound

for the noiseless case is

‖x∗ − θ‖1

‖θ‖1
≤ C ′

0

‖θ − θk‖1

‖θ‖1
+ C ′

1 = C ′
1. (18)

Figure 1 illustrates the interplay between the theorems, when η ≤
|emn| ≤ ǫ for n ∈ Tθ, in the case where θ is k-sparse and no

noise is present. We aim to invert for θ with the estimator x∗,

using the basis pursuit algorithm. From Theorem 3, we have the

confidence diamond (outer diamond). However, this confidence

diamond is not smaller than the inner diamond. This follows from

combining Theorems 2 and 3 to find a lower bound for the upper

bound on ‖x∗ − θ‖1. In the figure, θ is the true parameter, x∗ is

its estimate, and B(ǫ) = [C0(N − k) + N ] ǫ.



B(ǫ)||θ||1

x
∗

θ

B(η)||θ||1

Fig. 1. Demonstration of the confidence diamond, and its lower bound, for image
inversion when η ≤ |emn| ≤ ǫ for n ∈ Tθ .

IV. MODAL ANALYSIS

In spectrum analysis from compressed measurements, the signal

of interests is usually assumed to be sparse on a pre-defined DFT

grid. A mismatch case of particular interest is when the signal has

frequency components not exactly on the DFT grid. The unitary

DFT basis DN = Ψ0 can be written as

DN =
1√
N













1 1 · · · 1

1 ej 2π

N · · · ej
2π(N−1)

N

...
...

. . .
...

1 ej 2π

N
(N−1) · · · ej

2π(N−1)
N

(N−1)













. (19)

Without loss of generality, we assume that the tth column of the
basis is mismatched by frequency ∆θ with 0 ≤ ∆θ ≤ 2π

N and/or

a damping factor of λ ≤ 0. Then Ψ1 = D̃N is given by

D̃N = DN +
1√
N

























1

eλ+j( 2πt

N
+∆θ)

.

.

.

e(λ+j( 2πt

N
+∆θ))(N−1)













−













1

ej 2πt

N

.

.

.

ej 2πt

N
(N−1)

























⊗I(t)T

(20)

where I(t) is the tth column of I and ⊗ is Kronecker product.

Therefore, the corresponding mismatched basis Ψ is

Ψ = DH
ND̃N = I +











Ut











δ0 − 1
δ1

...

δN−1





















⊗ I(t)T , I + E (21)

where U is an upper shift matrix and δm’s, m = 0, . . . , N − 1
are samples of the Lanczos kernal at fm =

(

∆θ − 2πm
N

)

− jλ
points, that is,

δm =
1

N

N−1
∑

n=0

ejnfm =
1

N
e−jfm( N−1

2 ) sin(Nfm/2)

sin(fm/2)
. (22)

V. NUMERICAL SIMULATIONS

Our simulated experiments fall into two categories: those for

which DFT, compressed sensing (CS), and linear prediction (LP)

inversion are implemented on noise-free data, and those for which

they are implemented on noisy data. For each experiment, DFT,

CS, and LP are used to invert a signal or image for the underlying

field parameters that gave rise to the image. Moreover, for each

of these experiments DFT, CS, and LP solutions are given for

the case where there is no mismatch between the assumed basis

and the basis that generated the image from the field, and for

the case where there is mismatch. Of course this mismatch has

no influence on LP, which inverts for the modes, but it impacts

DFT and CS. The effect on DFT is predictable, based on our

understanding of leakage through the Lanczos kernel. The effect

on CS is not well understood, and in fact our motivation is to

understand it. All CS experiments are performed using the the ℓ1
magic toolbox available online [20].

In each of Figs. 2 through 4, and 6, there are panels (a), (b),

and (c). Within each of these panels are 4 subpanels: in the top-

left subpanel the true underlying modes are illustrated with stems

whose locations on the closed unit disc indicate the frequency

and phase of the mode, and whose height illustrate the mode

amplitude. The phases of the modes are randomly chosen, and

not indicated on the figures. In the matched cases of panel (a), the

modes are located on the rim of the unit disc at DFT frequencies.

In the mismatched cases of panels (b) and (c) the modes are

displaced from the DFT frequencies or they are moved off the

unit circle into the interior of the disc, to damp them. In Fig.

5, the subpanels show CS inversions for field parameters, for

various quadratic constraints (various values for ǫ in (6)) on the

reconstruction of the recorded image. These experimental results

are not an artifact of the quadratic constraint allowed or the

choice of rows in the compressed recording matrix, as we have

experimented with many values and reported typical results.

In all the experiments, the dimension of the image N = 64.

The number of recordings or measurements varies from M = 64
to M = 32 to M = 16. For DFT and LP these recordings

are actually taken at a small number of points on the image.

For compressed sensing, these recordings are taken as linear

combinations of all N points of the image. The order selected

for all LP inversions in the noise free cases is 8. In the noisy

case, the order is changed to 16 and rank reduction is applied to

reduce the order to 8. The matched frequencies at which modes

are placed, and their amplitudes, are (2π ·9/N, 1), (2π ·10/N, 1),
(2π · 20/N, .5), and (2π · 45/N, .2) in the noise free case, and

they are (2π · 9/N, 1), (2π · 11/N, 1), (2π · 20/N, .5), and

(2π · 45/N, .2). For frequency mismatch, the first two modes are

moved to (2π · 9.25/N, 1) and (2π · 9.75/N, 1) in the noise-free

case, and to (2π · 9.25/N, 1) and (2π · 10.75/N, 1) in the noisy

case. For damping mismatch the mode at (2π · 9/N, 1) is drawn

off the unit circle to radius 0.95, so that the mode is damped as

(0.95)n. We review our findings by annotating Figs. 2-6 in the

captions of the figures.
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Fig. 2. Full Measurements (M = N = 64). No Noise. Panel (a) shows that all methods invert for the correct field, with no mismatch. Panels (b) and (c) show that
with mismatch DFT and CS show comparable leakage, whereas LP is exact.
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Fig. 3. Compression or Recording at Half Rate (M = N/2 = 32). No noise. Panel (a) shows loss of resolution in DFT, which uses a subset of samples, but exact
inversion by CS, using compressed recording of all samples, and exact inversion for LP, which uses a subset of samples, with no mismatch. Panels (b) and (c) show
that with mismatch, DFT and CS show comparable leakage, but LP is exact.
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Fig. 4. Compression or Recording at Quarter Rate (M = N/4 = 16). No noise. Panel (a) shows loss of resolution in DFT, but exact inversion by CS and LP, with
no mismatch. Panels (b) and (c) show that with mismatch DFT shows leakage, CS shows erratic inversion, and LP is exact.
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Fig. 5. Compression or Recording at Quarter Rate (M = N/4 = 16). No Noise. Variable Quadratic Constraint for CS. Panels (a) through (c) show performance
of CS as the quadratic performance function is relaxed from ǫ = 0.1 to ǫ = 0.8, demonstrating that for large reconstruction errors the inversion vanishes.
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Fig. 6. Compression or Recording at Half Rate (M = N/2 = 32). With Noise. The DFT and LP inversions are reasonably accurate, while the CS solution is not,
under conditions of no mismatch or mismatch.

VI. APPENDIX

A. Linear prediction for modal analysis

The problem of modal decomposition can be put in the form

of an ARMA model, where the measurement record y =
[y1, · · · , yM ]T may be interpreted as a snapshot of the impulse

response for an ARMA(p, p − 1) discrete-time system. Assume

y can be represented by a sum of p modes, i.e.

yt =

p
∑

i=1

biz
t−1
i , t = 1, · · · ,M (23)

From the complex poles, form the polynomial A(z):

A(z) =

p
∏

i=1

(1 − ziz
−1) =

p
∑

i=0

aiz
−i, a0 = 1 (24)

Given y, first solve the following homogeneous equation to get

{ai}p
i=1:











y1 y2 · · · yp+1

y2 y3 · · · yp+2

...
...

. . .
...

yM−p yM−p+1 · · · yM





















ap

...

a1

1











= 0 (25)

From A(z), solve {zi}p
i=1 for the zeros of A(z). Then {bi}p

i=1

is the solution to the linear regression problem below:

y =











y1

y2

...

yM











=











1 1 · · · 1
z1 z2 · · · zp

...
...

. . .
...

zM−1
1 zM−1

2 · · · zM−1
p





















b1

b2

...

bp











= Vb.

(26)

VII. CONCLUSIONS

Classical approaches to image inversion for field parameters in

radar, sonar, and spectrum analysis suggest the inversion of an

image using matched filtering or linear prediction. Any subsam-

pling or compressed recording of the image has consequences for

resolution (or bias) and for variability (or variance). The theory

of compressed sensing suggests that compressed recording has

manageable consequences, provided the image is sparse in an

apriori known basis, e.g., a DFT basis or a basis associated with

a range-Doppler-wavenumber grid. But no physical field is sparse

in the DFT basis or in a basis defined by a regular grid in delay,

doppler, frequency, and/or wavenumber.

In this paper we have investigated the sensitivity of compressed

sensing (specifically basis pursuit) to mismatch between the

assumed basis for sparsity and the actual sparsity basis. Our

mathematical analysis and numerical examples indicate that the

performance of compressed sensing for reconstructing a sparse

physical field degrades considerably in the presence of mismatch,

even when the assumed basis corresponds to an extremely fine-

grained discretization of the parameter space. The conclusion at

this point is that for high resolution spectrum analysis, DOA

estimation, or delay-doppler imaging, where the problem is to

identify a small number of modal parameters, rather than to

reconstruct the sparsely-generated image, compressed sensing

requires more study and refinement, at least for problem sizes

typical in radar and sonar.

To assume that the basis for sparsity is known apriori is to assume

away the very crux of image inversion, which is to identify the

actual source modes rather than to select them from a presumed

set. In fact it appears that the aims of compressed sensing are

nearer to the aims of subset selection in regression analysis and

order determination in linear models (see e.g. [21]) than they are

to image inversion for sparse field components.

In summary, image inversion is fundamentally more challenging

than image reconstruction from compressed measurements pre-

cisely because there are so many inversions that reconstruct the

image. Moreover even when compressed sensing is applicable it

requires a “full field of view” (a full set of image samples) which

is then compressed into a small number of measurements.
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