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1.  INTRODUCTION

Transition zones between mountain forests and
treeless tundra, i.e. treeline ecotones, are character-
ized by great regional variety regarding abiotic and
biotic components structuring the zone. Accordingly,
due to environmental change and treeline shift, bio-

diversity has been changing in the subalpine and
lower alpine zone in many European mountains. In
this paper, we discuss the biodiversity in various
trophic levels in treeline ecotones throughout
Europe, with particular focus on recent changes in
land use and climate in northern and central moun-
tains.
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ABSTRACT: Transition zones between mountain forests and treeless tundra, i.e. treeline ecotones,
are characterized by great regional variety. In this paper, we discuss the biodiversity in various
trophic levels in treeline ecotones throughout Europe, with particular focus on recent changes in
land use and climate in northern and central mountains. In northernmost Europe, mountain birch
prevails, while conifers (spruce, pine, larch) are the dominating species further south. While at
continent-wide to global scales, the ecotone position is largely controlled by heat deficiency, it
depends on a multitude of partly interacting abiotic and biotic factors other than climate at smaller
scales. Climate change is a driving factor in treeline ecotone change, including physiognomic
structure and biodiversity, although the effects of climate and other factors often overlap. Histori-
cal legacy plays an important role in this respect, and human impacts are particularly important.
The recent decline in pastoral use of many European treeline areas often strongly influences plant
diversity and re-growth of trees and other woody species. Climate change together with changing
tree cover may influence snow cover, moisture regime, and nutrient conditions. Subsequently
changed site conditions influence plant−plant interactions, favoring some species and disfavoring
others, and plant−animal interactions. Native animals may cause widespread or local disturbances
in treeline ecotone areas. Mass outbreaks of leaf-eating insects, for example, usually affect com-
paratively large forested areas whereas mammalian herbivores and birds have more local impact.
However, high numbers of wild or domestic mammalian herbivores may challenge the carrying
capacity of treeline ecotone areas at the same time as they preserve an open pasture character.
This calls for cross-disciplinary study approaches, addressing the complexity of the ecotone
regarding both causal background and biogeographic diversity.
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1.1.  Treeline ecotone

The treeline ecotone spans the transition in de -
creased tree cover and tree height from the upper
closed mountain forest to the treeless tundra. This
transition boundary includes a number of tree status
delineations (e.g. timberline, treeline, and tree spe-
cies line; Fig. 1) used in studies of treeline ecotone
dynamics. The definition of the ecotone and included
lines may vary in the published literature (Callaghan
et al. 2002a, Holtmeier 2009, Körner 2012, Irl et al.
2016, Holtmeier & Broll 2017, this Special), but are
commonly classified regarding causal background,
to climatically, topographically, or anthropogenically
defined ecotones and lines. The climatic treeline eco-
tone generally decreases in altitude from southern to
northern mountains in Europe and is found from
above 2000 m above sea level (a.s.l.) in southern
Europe to close to sea level in the northernmost sub-
arctic parts (Cudlín et al. 2017, this Special). The eco-
tone may be abrupt (e.g. in steep or heavily grazed
areas), but is normally a relatively wide boundary,
and may thus regionally cover a considerable area of
the lower and most productive part of the alpine
zone. The vastness of the treeline ecotone, and its
conspicuous transition from tree- covered to treeless
areas, makes it an important biogeographic compo-
nent of region-wide ecological, climatic, and socioe-
conomic relevance (Callaghan et al. 2002b).

In northern Europe, both the alpine and arctic tree-
line ecotones are normally formed by mountain birch

Betula pubescens subsp. tortuosa (Ledeb.) Nyman
(Wielgolaski 2001, 2005), but may regionally also
include Norway spruce Picea abies L. and Scots pine
Pinus sylvestris L. In mountains further south, the
ecotone is normally formed by conifers such as
spruce, pine (e.g. Pinus sylvestris, P. cembra L., P.

uncinata Ramond ex DC.) and larch Larix decidua L.,
but regionally also beech Fagus sylvatica L.
(Wilmanns 1989, Nagy et al. 2003, Holtmeier 2009 for
ample references). In the upper part of the ecotone,
trees become progressively more stunted and may
form extensive areas with scattered individual
krummholz or krummholz groups. In some mountain
areas of Europe, the ‘true krummholz’ mountain pine
Pinus mugo Turra, the usually prostrate and gnarled
growth of which is genetically predetermined, domi-
nates above the high-stemmed mountain forests
(Holtmeier 1981, 2009).

Historically, extensive changes in the elevation of
the treeline ecotone have occurred throughout
Europe. For example, in both the Scandes and moun-
tains further south, pollen analyses and radiocarbon
dating of tree remains found in mires, alpine sedi-
ments, and at retreating glacier fronts have revealed
that trees grew at much higher elevation during the
early to mid-Holocene than today (Holtmeier 1974,
1993, 2009, Kullman 1995, 2004, Tinner et al. 1996,
Allen & Huntley 1999, Kullman & Källgren 2000, Aas
& Faarlund 2001, Tinner & Theurillat 2003, Heiri et
al. 2006). During the late Holocene and until termina-
tion of the Little Ice Age (Grove 1988), treeline eco-
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Fig. 1. Characteristics of the treeline ecotone
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tone retreat was the dominating trend in many Euro-
pean mountains (Karlén 1976, Shiyatov 1993, Kull-
man 1995). Later, the trend has reversed in response
to both the release from the long-term climatic sup-
pression during the Little Ice Age and the more
recent climate warming (Kullman 1986, 2003, Ger-
vais & MacDonald 2000, Shiyatov 2003, Cama rero &
Gutiér rez 2004, Motta et al. 2006). However, al -
though an advancing trend is dominating, non-
advancing trends occur across European mountains
(Harsch et al. 2009, Van Bogaert et al. 2011, Dinca et
al. 2017, this Special).

In general, thermal deficiency during the growing
season is a main factor limiting tree growth and de-
velopment at high elevation, which has been well
known since the beginning of treeline research.
However, although southern slopes usually provide
favorable thermal conditions, the treeline ecotone
may be at a relatively low elevation due to moisture
de ficiency, as is the case in many summer-dry Medi -
terranean mountains (e.g. Brandes & Ise 2007, Gon -
záles de Andrés et al. 2015). Insufficient moisture
supply as a result of summer drought also occurs at
the treeline in Central Europe, as for example, in the
Sudetes, where it affects tree seedling establishment
on southern exposures (Treml & Chuman 2015, Treml
et al. 2016). Extreme winds, snow cover, wildfires,
etc. may also influence tree growth in European tree-
line areas (Holtmeier & Broll 2017). In addition, low-
elevation ecotones may be due to historical and/or
ongoing human activities, e.g. logging and pastoral
use, creating anthropogenic elevation of the treeline
ecotone. When landscape controlling pressures (e.g.
human activities) cease or lessen, the response might
be seen as a swift reforestation (Hofgaard 1997a, Bolli
et al. 2007, Batllori & Gutiérrez 2008, Bryn 2008).
However, summer drought periods or other distur-
bances may affect tree growth and prevent or delay
natural reforestation considerably (Hofgaard 1997a,b,
Brandes & Ise 2007, Grunewald & Scheithauer 2008,
Gonzáles de Andrés et al. 2015), due to the multitude
of abiotic and biotic factors controlling changes in
both structure and location of the treeline ecotone
(Holtmeier & Broll 2005, Hofgaard et al. 2012, Weis-
berg et al. 2013, Kulakowski et al. 2016).

The altitude of the treeline ecotone location
decreases from central parts of mountain massifs to
coastal areas. Central areas have a more continental
climate due to protection from cool and moisture-
  carrying air masses, and thus, normally have higher
daytime temperatures during the growing season,
compared to heavily dissected and maritime moun-
tain ranges. The ‘mass elevation effect’ (De Quervain

1904) often overlaps with the influence of the conti-
nental climate (Brockmann-Jerosch 1919, Turner
1961, 1970, Holtmeier 2009, Kašpar & Treml 2016). In
addition to the north−south and coast−inland gradi-
ents, mountain topography strongly influences eco-
tone elevation and spatial patterns at smaller scales
(Holtmeier 2009, Holtmeier & Broll 2010, 2012). This
is most evident for steep slopes, where recurrent ava-
lanches often prevent tree establishment and cause
topographically defined ecotone location.

1.2.  Biodiversity

Transition zones between 2 major biomes generally
have high biodiversity. This also applies to the tree-
line ecotone compared to the forest at lower ele -
vation and the treeless tundra at higher elevation
(Hofgaard & Wilmann 2002). High biodiversity in
ecotones is mainly caused by an overlapping distri-
bution of species originally belonging to the 2 ad -
joining biomes. In addition, as mountains are often
characterized by a highly varying and rugged topo -
graphy, the biological richness is high with strong
differences occurring at short distances (Huston
1994). Further, a mix of vegetation-covered ground
and open patches with high light intensity at the
ground is characteristic of the treeline ecotone.
Taken together, this provides a wide range of tem-
perature- and moisture-defined microhabitats favor-
able to high species diversity (Körner 2003, Nagy &
Grabherr 2009).

Species richness across European treeline ecotones
decreases with latitude, but depends on a large num-
ber of abiotic and biotic factors, such as human activ-
ities and soil conditions (Callaghan et al. 2004, Vittoz
et al. 2010). However, the general trend with de -
creasing species diversity towards high latitudes or
altitudes makes the ecotone an indistinct species
boundary. A general decrease in species diversity is
accompanied by a strong nutrient and productivity
gradient (Callaghan et al. 2004), but there is a lack of
evidence for a causal connection between latitudinal
decrease in species diversity and productivity (Rohde
1992). This is evidenced by some species groups with
a high frequency in the treeline ecotone showing a
reversed latitudinal trend, such as willows, wasps,
sawflies, aphids, and peatland birds, which has been
related to habitat heterogeneity (Kouki 1999).

Scenarios for biodiversity change caused by human
activity indicate land use as the most important
driver for biodiversity changes in terrestrial ecosys-
tems (Sala et al. 2000), which has strong relevance to
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the treeline ecotone. Changes in biodiversity affect
the functioning of ecosystems, and thereby also soci-
ety through many ecosystem services (Garcia-Ruiz et
al. 1996, Cardinale et al. 2012; this Special: Sarkki et
al. 2017a,b, Kyriazopoulos et al. 2017, Fleischer et al.
2017, Nijnik et al. 2017).

2.  CHANGES IN PLANT DISTRIBUTION

Although changes in temperature and precipita-
tion (including snow cover) surely alter treeline eco-
tone locations and species diversity, as apparent from
the Holocene period and recent history (Kullman
1995, 2003, Aas & Faarlund 1996, 2001, Körner 2003,
Shiyatov 2003, Hofgaard et al. 2013, Mathisen et al.
2014, Schwörer et al. 2014), it has also been shown
that land use changes may have stronger impact than
climate change (Motta et al. 2006, Gehrig-Fasel et al.
2007, Aune et al. 2011, Callaghan et al. 2013, Grytnes
et al. 2014, Strebel & Bühler 2015). This is also indi-
cated in reports from the present SENSFOR study
(Sarkki et al. 2016, Cudlín et al. 2017, Kyriazopoulos
et al. 2017).

In many parts of Europe, there is a long tradition of
grazing cattle, sheep, and goats at and above the
treeline. This allows forage around the farms at low
elevation to be saved for the winter season (Holt-
meier 1974, 1987, 2009, Bryn & Daugstad 2001). In
northern Europe, semi-domestic reindeer are simi-
larly moved between alpine summer grazing areas
and lower elevation winter grazing areas. Through
time, this European-wide practice has created non-
climatic ecotone locations and diversity characteris-
tics. Many different human activities has contributed
to this throughout history (Emanuelsson 1987, Bryn &
Daugstad 2001, Gehrig-Fasel et al. 2007) and in more
recent times, tourism and recreation has impacted
the treeline ecotone vegetation to an increasing
degree (Wielgolaski 1998, Körner 2003, Forbes et al.
2005, Törn et al. 2009, Rixen & Rolando 2013, Sato et
al. 2013, Tolvanen & Kangas 2016, Ylisirniö & Allén
2016). Activities with an impact across or directly
below the treeline ecotones are, or have been, tree
clearing for space, fire wood, fencing, and building
purposes, and harvesting of young twigs and leaf
material, particularly from deciduous trees, as addi-
tional fodder. Litter has been used for bedding in the
cattle sheds. The magnitude of an impact is depend-
ent on both direct human activities (e.g. cutting) and
on grazer diversity and density (Fig. 2), and in addi-
tion, on the duration of summer grazing throughout
history (Austrheim et al. 2008, Speed et al. 2010,

2012). In some treeline areas, natural pastures have
been cultivated, fertilized and sown with grass of
non-alpine origin to increase the amount of the fod-
der (Fig. 3). These pasture management methods
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Fig. 2. Pasture husbandry may differ widely between Euro-
pean mountains. In southern and central Europe, sheep are
generally kept in dense herds controlled by herders (upper
panel), and gathered in fenced areas for the night to avoid
carnivore predation (middle panel). In the Scandinavian
mountains, a non-herding system is practiced which allows
sheep to disperse over the landscape in small groups (lower
panel) under occasional monitoring by owners. Upper panel:
Pyrenees, Spain. Photography by J. Inkeröinen. Middle and
lower panels: Rodnei Mountains, Carpathians, Romania and 

Dovre mountains, Norway. Photography by A. Hofgaard
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have strongly influenced the natural vegetation.
Lowland species, including anthropocores, brought
to the treeline ecotone areas by these cultivation
practices might cause an anomalous increase in spe-
cies diversity in an area, at least locally and for a
short period (Cudlín et al. 2017). However, these
non-alpine species could linger in the area and
become invasive in future favorable environmental
conditions (Crooks & Soulé 1999). As to novel com-
petitive interactions, it may be essential to accurately
predict plant species’ responses to e.g. climate
change (Hofgaard 1999, Alexander et al. 2015). The
presence of potentially invasive species make any
prediction difficult or impossible (Mooney & Hof-
gaard 1999, Petitpierre et al. 2016).

During the last 50 to 100 yr, summer farming prac-
tice has become strongly reduced both in northern
and more southern European mountain areas (Bryn
& Daugstad 2001, Tasser & Tappeiner 2002, Cama -
rero & Gutiérrez 2007, Chauchard et al. 2007, Tasser
et al. 2007, Batllori & Gutiérrez 2008, Amez tegui et
al. 2010, Treml et al. 2016). One reason is the in -
creased importance of imported fodder due to its low
cost, while at the same time, the labor-demanding
traditional summer farming has become too costly. In
some European mountains, however, such as the
Alps, farmers are paid by the authorities (Fischer et
al. 2008) to continue the traditional pastoral use of
elevated mountain areas. This is intended to main-
tain the character and biodiversity of the cultural
landscape that the alpine zone represents. However,
in many European mountain areas, grazing by e.g.
sheep, is still a normal land use form (Fig. 2), and in
others, traditional land use is being replaced by use
linked to winter and/or summer tourism (Fig. 4).

Abandonment or reduction of traditional pastoral-
ism in treeline ecotone areas is normally followed by
strong and very fast recolonization and growth of
trees, shrubs, and other plant species palatable to
domestic and semi-domestic animals. Biodiversity
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Fig. 4. In downhill ski areas, the upper part of the mountain
forest and corridors through the forest are managed as open
woodlands to favor ski tourism (upper panel: Klosters,
Switzerland), and preservation of pastures in the treeline
ecotone creates attractive areas for hiking tourism (lower
panel: Jaman, Switzerland). Photography by A. Hofgaard

Fig. 3. Summer farm with grass production using non-alpine
grass species and artificial fertilizers. Flåmsætrin, Central 

Norway. Photography by A. Hofgaard
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may increase at the early stages of recolonization of
former alpine pasture (Strebel & Bühler 2015, Cudlín
et al. 2017), but then decrease at later stages due to
growing tree and shrub populations outcompeting
alpine pasture species (Holtmeier & Broll 2017)
(Fig. 5). This basically land use-driven process is evi-
dent both in the Scandes, where mountain birch
quickly colonizes abandoned alpine pasture fields
(Bryn 2008, Bryn & Hemsing 2012, Bryn et al. 2013)
(Fig. 6), and in more southern European mountains
(Dirnböck et al. 2003, Gehrig-Fasel et al. 2007, Sitko
& Troll 2008), where e.g. mountain pine is an efficient
colonizer (Fig. 7). However, in northern Fennoscan-
dia, where reindeer husbandry prevails, temperature
also appears to be an important factor directly (Karlsen
et al. 2017, this Special). In addition, recent in creased
precipitation in northern regions (Hanssen-Bauer et
al. 2015) might also have influenced mountain birch
growth (Mathisen et al. 2014), as this species is
favored by precipitation (Wielgolaski 2001, 2003,
Wielgolaski & Karlsen 2007). The increased growth
observed in mountain birch in the Scandes might
also indicate increased nutrient supply as a conse-
quence of increased precipitation and temperature,
and subsequent increased decomposition (Wielgo-
laski & Nilsen 2001, Wielgolaski & Karlsen 2007).
Similarly, expansion of green alder Alnus viridis

Chaix in the Alps as a result of reduced land man-
agement has an important influence on nitrogen con-
ditions in former nitrogen-poor montane grasslands
(Bühlmann et al. 2016). However, as observed in
Swiss mountain grasslands, nitrogen deposition
might be negatively related to species richness due

to increased competition among vascular plants and
bryophytes (Roth et al. 2013). Increased nutrient
availability in the soil, either through artificial fertil-
ization or increased decomposition, will change the
species composition. In particular, the cover and fre-
quency of lichen and bryophyte species are reduced,
while graminoids and some deciduous shrubs are
generally favored (Klanderud 2008, Olsen & Klan-
derud 2014). This change in species composition
most often results in reduced biodiversity.

Reforestation of husbandry-related grazing lands
and other tree colonization in alpine areas requires
viable seed production and dispersal from the forest
at lower elevation. However, although viable seeds
are generally available and easily dispersed by wind
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Fig. 7. Mountain pine Pinus mugo quickly colonize aban-
doned herding areas (right hand side of the ridge) and form a
dense shrub cover. In areas with continued herding (left
side), the alpine flora prevail. Rodnei Mountains in the north-

ern Carpathians, Romania. Photography by A. Hofgaard

Fig. 6. Re-growth of young birch Betula pubescens after
abandoned summer grazing practice. The previously open
meadows with scattered old birch is now dominated by a
dense layer of birch saplings (dark green). Røldal, southern 

Norway. Photography by N. Eide

Fig. 5. Recruitment and spread of coniferous shrub (Pinus

mugo, lower left) and tree (P. cembra, right) populations out-
competing alpine pasture species. Rodnei Mountains in 
the northern Carpathians, Romania. Photography by A. 

Hofgaard
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or birds across the treeline ecotone and beyond, this
might not necessarily result in recruitment of tree
seedlings surviving to sapling and tree size (Aune et
al. 2011). Temporal and transitory seedling cohorts
are often characteristic of the upper part of the tree-
line ecotone (Juntunen et al. 2002, Kullman 2002,
Aune et al. 2011) making the tree species line (cf.
Fig. 1) very dynamic. Survival and growth to sapling
and tree size in the open exposed alpine area
requires long-term favorable site conditions with
regard to a large number of abiotic and biotic factors,
such as topography, snow cover and duration, soil,
wind, temperature, moisture, plant density, and her-
bivory, and the interplay between these factors
(Cairns & Moen 2004, Holtmeier & Broll 2005, Batllori
et al. 2010, Hofgaard et al. 2010). In addition, the
importance of these factors is species-specific and
varies through time (Holtmeier & Broll 2005, Hof-
gaard et al. 2012, Wielgolaski & Inouye 2013), and
the response is also sensitive to the current ecotone
structure (Camarero et al. 2017). Consequently, dis-
entangling the causes and predicting treeline eco-
tone responses to environmental changes are chal-
lenging (Sveinbjörnsson et al. 2002), although the
most common determinants for treeline ecotone loca-
tion are temperature and land use (see Section 1.1.
above).

Tree advance is initially associated with a change
in height growth of previously established saplings
(Kullman 2002, Hofgaard et al. 2009) causing densifi-
cation of the current scattered tree layer (Batllori &
Gutiérrez 2008, Mathisen et al. 2014) and movement
of the treeline location (Kullman & Öberg 2009). Fur-
ther densification and relocation is dependent on
new establishment and survival in the ecotone and
beyond the current upper sapling cohort (Kullman
2002, Hofgaard et al. 2009). The increased abun-
dance of trees and tree saplings changes the struc-
ture of the ecotone, including enhanced snow trap-
ping during winter, and thus further promotes tree
growth and establishment through, for example,
reducing wind destruction of leading shoots. During
the winter season, soil temperatures under a deep
snowpack do not drop much below zero. Soil mois-
ture is increased in the early growing season by the
meltwater (Sveinbjörnsson et al. 2002, Dalen & Hof-
gaard 2005, Holtmeier 2009).

As trees and forest advance to higher altitudes and
latitudes, increasingly more of the former low-alpine
or low-arctic area disappears, leaving less space for
tundra species (Dirnböck et al. 2003, Gottfried et al.
2012). Knowledge of the rate of this process is impor-
tant for predictions of tundra disappearance and

associated threats to alpine biodiversity and climate
feedbacks (Callaghan et al. 2002b, Pearson et al.
2013). Expansion of forest or shrub cover to areas
beyond the current forest at high elevation and high
latitude has contrasting climate feedbacks through
carbon sequestration (cooling) and reduced surface
reflectance (warming) (Bala et al. 2007, Pearson et al.
2013, te Beest et al. 2016). According to estimates for
Scandinavian mountain forests, the warming effect is
considerably stronger than the cooling, because of
the typically low density in mountain forests and the
large changes in surface reflectance of snow-covered
tundra areas (de Wit et al. 2014). However, the
change in reflectance caused by vegetation is a slow
process, as the rate of forest migration is low due to
the multitude of interacting and counteracting abio -
tic and biotic environmental factors. The typical
advance rate for the warming periods since the late
19th century has been less than 1 m yr−1 altitudinally
(Kullman & Öberg 2009, Kharuk et al. 2010, Mathi -
sen et al. 2014, Cudlín et al. 2017) and some 10s m
yr−1 latitudinally (Hofgaard et al. 2013). These empir-
ically based rate estimates represents less than one-
tenth of model-based rate estimates (Hofgaard et al.
2013), and it is essential to consider this mismatch
when discussing magnitude and time frame of poten-
tial threats to alpine biodiversity.

3.  ANIMAL IMPACT IN TREELINE AREAS

In addition to domestic animals, wild fauna depend
on, interact with, and change the structure and loca-
tion of the treeline ecotone. This fauna represents a
large number of species of mammals, birds, insects,
and other vertebrates and invertebrates. Herbivore
activities will have a direct impact through both con-
sumption of biomass (browsing, grazing, seed feed-
ing) and other regular or life history related activities
such as trampling, digging, gnawing, and girdling.
Animal activities also have indirect impact in treeline
areas through e.g. carnivore−herbivore interactions
and subsequent animal population dynamics (Ham-
bäck et al. 2004), and through decomposition of dead
organic matter by soil-dwelling invertebrates. Quan-
tification of animal impact in treeline areas is not
straightforward due to the structural heterogeneity of
the ecotone and biogeographic differences through-
out Europe. The heterogeneity provides diverse
macro- and microhabitats supporting a variety of
organisms from soil microorganisms that specialize
in particular habitats to animals with large ranges
that require different habitats for forage and shelter.
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Further, animals typically associated with forested
areas, such as some corvids, deer, wolverine, and red
fox, frequently use treeline areas and the above tun-
dra to search for food and occasionally for breeding.
Animals associated with tundra, such as lemmings
and reindeer, periodically or annually forage in the
ecotone (Fig. 8) (Post et al. 2009, Killengreen et al.
2012). In addition, as discussed in Section 2, the
structure and quality of present treeline ecotone
habitats have often been, and still are, strongly influ-
enced by human activities. As the type and extent of
human influences vary regionally and locally, the
possibility of generalization is limited. In the follow-
ing paragraphs, we outline some examples of animal
impact in treeline areas.

In the central European mountains, increased
numbers of ungulates such as red deer Cervus ela-

phus have locally suppressed tree regeneration and
impaired self-maintenance of tree stands in treeline
areas (Loison et al. 2003, Kiffner et al. 2008, Holt-
meier 2012). Similarly, but to a lesser extent, chamois
Rupicapra rupicapra and ibex Capra ibex herbivory
affect saplings and trees across the ecotone (ten
Houte de Lange 1978, Senn 2000). In addition, high
ungulate densities may cause severe soil erosion
both in the treeline ecotone and in the adjacent
alpine tundra (Holtmeier 1967, 2012, 2015). In most
cases, habitat fragmentation and inadequate game
management are major causes of ‘over-sized’ ungu-
late populations.

In the north, reindeer (semi-domesticated and
wild) occur regionally in large populations, and
throughout history, have profoundly affected the
vegetation in their foraging range, including the
treeline ecotone vegetation (Oksanen et al. 1995,
Kashulina et al. 1997, Mårell et al. 2002, Colpaert et
al. 2003, Helle & Kojola 2006, Olofsson et al. 2009).
Reindeer grazing may inhibit tree seedling survival
and prevent vegetative regeneration from basal
shoots of mountain birch (Kaitaniemi et al. 1999,
Holtmeier 2002, Cairns & Moen 2004, Neuvonen &
Wielgolaski 2005, Solberg et al. 2005), and under
high reindeer densities, the grazing areas might
become increasingly degraded with regard to spe-
cies diversity and productivity (Kullman 2005, Holt-
meier & Broll 2006, Broll et al. 2007, Käyhkö 2007,
Anschlag et al. 2008, Tømmervik et al. 2009). This is
particularly evident in winter grazing areas where
the main food for reindeer is slow-growing reindeer
lichens (Gaare & Skogland 1975). Lichen ground
cover has been strongly reduced both by high graz-
ing pressure and by climate change. In addition to
reindeer, increasing north Scandinavian populations

of moose Alces alces are affecting height growth and
survival of young Scots pine in treeline areas (Stöck-
lin & Körner 1999, Holtmeier & Broll 2011) and in
afforestation areas at lower elevation. These impacts
by reindeer and moose on tree recruitment may
locally or regionally overrule the influence of chang-
ing climate (Stöcklin & Körner 1999, Aune et al. 2011,
Holtmeier 2012), and in the case of reindeer, the car-
rying capacity of the landscape has sometimes been
questioned (Neuvonen & Wielgolaski 2005, Solberg
et al. 2005).

In addition to large mammals, rodents, chiefly
microtine rodents, may have a large impact on tree-
line ecotone vegetation, particularly in north Euro-
pean mountains. In this region, massive population
peaks of lemmings Lemmus lemmus and voles, e.g.
Microtus agrestis, are well-known biotic characteris-
tics with a return cycle of approximately 4 yr (An -
ders son & Jonasson 1986, Henttonen & Wallgren
2001, Ims & Fuglei 2005). The grazing and gnawing
during population peak periods reduce moss and
dwarf shrub cover locally and over large regions
(Olofsson et al. 2012, Kaarlejärvi et al. 2015). This
fragmentation of the bottom and field layer might
facilitate establishment of new mountain birch
seedlings. However, lemmings and voles also dam-
age and feed on birch seedlings, and in general,
rodents adversely affect young trees and shrubs
(Fig. 9) rather than promoting successful seedling
establishment. Thus, field vole feeding may hasten
birch decline, in combination with outbreaks of de -
foliating geometrid moths and subsequent reindeer
grazing (see below). Further, but not of large scale
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Fig. 8. Winter grazing by semi-domestic reindeer in the
 treeline ecotone of northern Fennoscandia. Photography by 

K. Laine
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importance, mountain hares Lepus timidus reduce
growth of mountain birch saplings by heavy brows-
ing and damage trees by gnawing off the bark (Rao
et al. 2003, Holtmeier 2012).

In northern mountain birch-dominated ecotones
and adjacent forest areas, the natural dynamics are
driven by cyclic and abrupt population increases of
defoliating insects such as the autumnal moth Epir-

rita autumnata and winter moth Operoptera brumata

(Tenow 1972, Tenow et al. 2007). The frequency and
intensity of these insect outbreaks are linked to the
climate at local to regional scales. They can cause
large scale stand mortality and former forest might
be turned into tundra (Tenow & Nilssen 1990, Neu -
vonen et al. 2005, Tenow et al. 2007). This  tundra

produced by defoliators, together with the lowered
treeline ecotone, might become a long-term state
due to intensified reindeer grazing in the newly
deforested areas (Kallio & Lehtonen 1975, Oksanen
et al. 1995, Holtmeier et al. 2003, Lempa et al. 2005,
Neuvonen & Wielgolaski 2005, Neuvonen et al. 2005,
Holtmeier & Broll 2006). In a warming climate, ex -
pansion of the outbreak range of defoliating insects is
likely (Jepsen et al. 2011), and will include higher
altitudes and latitudes (Skre et al. 2017, this Special).
This might hinder or counteract climate-driven ad -
vance of treeline ecotones (Olofsson et al. 2009, Aune
et al. 2011, Hofgaard et al. 2013). A parallel to the
autumnal moth outbreaks in northern Europe are the
cyclic outbreaks of the larch-bud moth Zeiraphera

diniana in the European Alps. However, larch stands
at treeline ecotone elevations are generally not
affected due to the low density of trees. At lower ele-
vations, increased cyclic outbreaks are probably due
to human-induced expansion of pure larch forests. In
cases of severe defoliation, growth and seed produc-
tion are reduced (Holtmeier 1974, 2015).

Soil-dwelling invertebrates (e.g. earthworms, en -
chytraeids, collembola, spiders, tardigrades, wood -
lice, snails, millipedes, nematodes, dipteral larvae,
and ants) play an important role through breaking
down dead organic matter, mineral-rich (nitrogen,
phosphorous) excretory products, and bioturbation,
thus influencing nutrient turnover and plant commu-
nities (Broll 1998, Holtmeier 2015). In general, taxa,
abundance, biomass, and species richness of soil-
dwelling invertebrates decrease with altitude. In the
treeline ecotone, however, they are controlled by
often sharply contrasting site conditions (geological
substrate, soils, microclimates, moisture, vegetation)
overlapping with historical human impact (Holtmeier
2009). However, in contrast to mass outbreaks of leaf-
eating insects, soil invertebrates do not significantly
influence treeline spatial and temporal structures,
whereas reforestation of abandoned alpine pastures
will probably bring about major changes influencing
soil invertebrate fauna and also aboveground insects
and ground beetles (Carabidae) in the long-term.
Predicting possible feedbacks on the treeline, how-
ever, is difficult because of the often inscrutable
interactions of the numerous environmental factors
and their relative implications (Holtmeier 2009,
2015).

Among birds, the Eurasian nutcracker Nucifraga

caryocatactes is a highly effective agent influencing
the tree distribution pattern of stone pine Pinus cem-

bra and the dynamics of treeline ecotones in central
and eastern European mountain areas due to its
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Fig. 9. Lemming and microtine vole forage damage of moun-
tain birch and surrounding woody plants (upper panel) and
willow shrubs (Salix sp.) (lower panel). The gnawing activity
occurred in winter below the snow surface. Upper panel:
Tärnafjällen in the Central Scandes Mountains, Sweden.
Lower panel: Abisko in the Northern Scandes Mountains, 

Sweden. Photography by A. Hofgaard
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seed-caching activities (Zong et al. 2010, Holtmeier
2012, 2015). Surplus stored seeds (i.e. seeds not con-
sumed during the winter) may germinate and result
in the establishment of trees in new areas and at
higher elevation. This bird-mediated sowing has
contributed to the re-establishment of stone pine
over large areas formerly cleared by man. Further,
without the nutcracker, natural upward advance-
ment of trees in response to climatic warming would
be impossible. Birds other than nutcrackers, e.g.
grouse and ptarmigan species, and seed- eating
birds, usually have a low impact on the treeline eco-
tone. However, grouse and ptarmigan species might
locally limit growth, particularly of young trees, by
consuming or destroying buds and terminal shoots
(Holtmeier 2012, 2015), and in addition, pastoral
abandonment may lead to an overall increase in
avian diversity (Laiolo et al. 2004) due to increased
shrub and tree cover.

4.  CASCADING EFFECTS OF LAND USE 

AND CLIMATE CHANGES: A SCENARIO

 EXAMPLE FROM THE NORTH

The outcome of combined pressure on the natural
environment by intense land use and climate
changes might be difficult to quantitatively and qual-
itatively forecast. However, it is necessary to consider
the matter for sustainable management reasons. A
commonly discussed example is the semi-domestic
reindeer herding system in northern Scandinavia.
The long history of the herding system has shaped
the distribution and abundance of species and thus
formed the current cultural landscape. However, the
herding system is not static and has to adapt to mod-
ern socioeconomic changes and requirements, at the
same time as the climate is both highly variable and
changing. Here we outline some of the biological
complexities involved (see also Sections 2 & 3 above).
While reindeer owners may wish to increase their
income by allowing more animals within a given
area, this of course will result in increased grazing
pressure. The new grazing regime might or might
not initially affect both summer (herb-dominated)
and winter (lichen-dominated) grazing grounds, but
winter areas are common bottlenecks in the annual
migration practice. Lichens are a major reindeer food
source in the winter, and accessibility varies widely
between individual winters due to snow quality.
Warm winters with rain and icing events force rein-
deer to use a lot of energy digging for lichens. Due to
the very slow growth rate of lichens, considerable

time is needed for vegetation recovery following
excess removal of lichens by e.g. too high grazing
pressure. At the same time, digging for lichens by the
reindeer population cause patches of open soil,
which facilitate establishment of higher plants, e.g.
mountain birch. Birch is further facilitated by the
ongoing increased temperature and precipitation in
the region, although on well drained substrates
exposed by reindeer scraping and trampling, mois-
ture deficiency affects or prevents birch seedling
establishment (Fig. 10). Increased temperature and
moisture availability may also increase decomposi-
tion rate and mineralization of organic material. In
these ways, nutrient-demanding plant species may
outcompete the slow-growing lichens. Because of
diminishing lichen cover, the reindeer population has
to adjust its diet to include vascular plant parts such
as the young shoots of birch saplings. However, at
increased temperatures in winter, the survival rate of
the eggs of defoliating insects using birch as host
species will increase along with arrival of new defoli-
ating species in the area. Increased frequency of
defoliators and increased spatiotemporal outbreak
occurrence may transform birch-dominated areas to
treeless tundra. The quality of these areas as winter
grazing areas is thus further diminished, and the
reindeer owners will have to reduce the number of
animals using the area or keep the herds in summer
grazing areas for prolonged periods. This will, how-
ever, cause other cascading effects.
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Fig. 10. Wind-eroded convex topography on Koahppeloaivi
(northernmost Finnish Lapland). The substrate is rapidly
draining sandy-skeletal glacial till. Erosion was initiated by
reindeer winter-grazing activities that destroyed the dwarf
shrub−lichen vegetation and made the substrate susceptible
to deflation. Moisture deficiency is characteristic of such
sites and adversely affects tree seedling establishment. The
photograph was taken from approximately 250 to 300 m 

above ground. Photography by F. K. Holtmeier
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5.  CONCLUDING REMARKS AND

 PERSPECTIVES

While from a continent-wide view, thermal defi-
ciency increasing with elevation and latitude controls
treeline ecotone structure and position, many other
climatic and biotic factors are involved at regional
and smaller scales. Not least, the after effects of his-
torical human impact are often of major importance
and may overrule the influence of natural factors.
Therefore, assessment of treeline ecotone variety
and causation needs a cross-disciplinary complex ap -
proach combining natural and socio-economic scien -
ces. Climate change, reduced pastoral use, and in -
creased tourism and other human uses are the main
driving factors of current changes across the treeline
ecotone. The role of animals (wild and domestic or
semi-domestic ungulates, rodents, birds, and insects)
in the treeline ecotone needs to be studied in more
detail, in particular regarding possible cascading
effects such as the presented mountain birch−rein-
deer scenario. Treeline ecotone change will have far-
reaching implications for biodiversity, plant and ani-
mal communities, and also for the relative effects of
microtopography on site conditions (microclimates,
soil ecological conditions) and ecosystem services
(e.g. protection from destructive avalanches, preven-
tion/reduction of soil erosion).
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