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Abstract—The networked application environment has motivated the development of multitasking operating systems for sensor

networks and other low-power electronic devices, but their multitasking capability is severely limited because traditional stack

management techniques perform poorly on small-memory systems without virtual memory support. In this paper, we show that

combining binary translation and a new kernel runtime can lead to efficient OS designs on resource constrained platforms. We

introduce SenSmart, a multitasking OS for sensor networks, and present new OS design techniques for supporting preemptive

multitask scheduling, memory isolation, and adaptive stack management. Our solution provides memory isolation and automatic stack

relocation on usual sensornet platforms. The adaptive stack management frees programmers from the burden of estimating tasks’

stack usage, yet it enables SenSmart to schedule and run more tasks than other multitasking OSes for sensor networks. We have

implemented SenSmart on MICA2/MICAz motes. Evaluation shows that SenSmart has a significantly better capability in managing

concurrent tasks than other sensornet operating systems.

Index Terms—Multitasking, memory management, stack adaptivity, binary translation, kernel
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1 INTRODUCTION

THE growing popularity of low-power and pervasive
wireless computing devices naturally leads to an

emphasis on networked operations and a seamless interac-
tion with the ambient context. This trend is seen on PDAs,
active RFIDs, various intelligent consumer electronic de-
vices, and wireless sensor networks. Such networked
operations and contextual interaction make the application
software much more complex than that running on tradi-
tional embedded devices. Particularly, the sensor network is
a representative technology where the relevant design
factors—resource constraints and application complex-
ity—are manifested to a great extent. A typical sensor node
may only have a simple CPU and a few kilobytes of data
memory [1], [2], [3], but the software running on it can take
tens of thousands lines of code to implement, performing a
wide range of tasks related to sensing, topology control,
wireless routing, powermanagement, signal processing, and
system administration [4], [5], [6].

The complexity of application software and the fact that

the software runs on numerous unreliable devices call for

strong system software support [7], [8]. One critical need is

a preemptive multitasking operating system. Without that,
handling important interrupts could be delayed by long
computational tasks, communication operations could
disrupt the timing of the sensor channel sampling, and
unpredictable latencies would make network level activity
unreliable and energy costly.

Consequently, a number of recent operating systems for

sensor networks have included multitasking and preemp-

tive scheduling features. However, a careful examination of

current systems shows severe limitations in both function-

ality and usability. One of the key problems, asmentioned by

a classic research work on the topic of multitasking, is stack

management [9]—how can an operating system automati-

cally and efficiently manage multiple stacks. Especially, the

problem is even harder on a small-memory platform.
In a multitasking system, the stacks of concurrent tasks

routinely grow and shrink during their execution. The

dynamics of the stacks is of great variation for event-driven

systems, which is the de facto standard programming model

for sensornet systems [10], [11]. The ability to hold multiple

stacks in memory and efficiently handle the stack dynamics

is a fundamental determinant of a multitasking OS.
On resource-rich platforms, stack management has

known solutions. Three facts have helped the traditional

stack management become successful on such systems:

. Virtual memory support in modern microprocessors
eliminates external fragmentation, and limits stack
collisions to only occur within individual address
spaces.

. It provides abundant virtual memory space for
typical stack usage in modern computer architec-
tures. Hence, interthread stack collisions inside a
process can be avoided by allocating sufficient virtual
memory areas to the threads.
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. The size of the physical memory in resource-rich
systems keeps growing, making internal fragmenta-
tion negligible.

However, none of these facts are true in low-power
computing systems, and, not surprisingly, traditional
solutions do not perform well on sensor nodes that are
strictly resource constrained and absent of virtual memory
hardware. Some recent multitasking systems have ported
existing stack management solutions to sensor networks,
but suffered severe limitations. They typically require that
programmers provide worst case estimation of stack usage
for various tasks, or use a statically analyzed value for stack
size, resulting in not only extra burden on application
programmers, but also significant waste in memory alloca-
tion and degradation in the number, types, and combina-
tions of tasks the OS can schedule. Hence, current
multitasking sensornet operating systems typically have a
weak stack adaptivity—a term we use in this work to
describe the ability to efficiently handle multiple stacks
without a priori knowledge on their dynamics. The weak
stack adaptivity directly affects these OSes’ ability to
accommodate concurrent tasks.

Designing adaptive stack management on resource
constrained platforms is a new challenge, one important
question is whether we could avoid this problem by
upgrading hardware to qualify traditional solutions.
Though the low-power computing technology develops
steadily, virtual memory is still very unlikely to be available
to the sensor nodes using very low power processors. Some
recent embedded processors claim to enable a 32-bit
architecture with the cost and power consumption of 8-bit
systems. The claim is, however, only partially true because
downscaling power is often accompanied by removing
architectural features. Most low-power microcontrollers
(MCUs) do not support hardware memory translation or
memory protection, and many low-power systems do not
support instruction privilege, which is prerequisite for
traditional multitasking designs. It is also unlikely that very
low power systems can afford to scale up physical memory
size as quickly as the cost of RAM drops. In the past two
decades, the typical memory capacity of computer systems
has grown dramatically, but many MCUs today still use
kilobytes of SRAM for energy efficiency.

Furthermore, simple augmentations to stack handling or
memory system are unlikely to work in our design context.
A simple copy-on-switch scheme appears to solve the
problem by swapping one task’s stack out to the FLASH-
based external storage, while the writing overhead, as well
as the limited erase cycle of FLASH chips, make the scheme
impractical for sensor nodes. Static stack analysis, on the
other hand, has intrinsic limitation due to the incomput-
ability of the general problem—how many blocks on the
tape a Turing Machine reads or writes [12]. The use of fibers
simplifies the scheduler design but does not eliminate the
need for stack management [9]. Some other solutions, such
as the protothreads [13], have their own limitations, as we
will cover in Section 2.

In contrast to earlier solutions, we take an approach of
combining binary translation and a lightweight kernel
runtime to provide strong stack adaptivity and multitasking
capability. We have designed and implemented a new

operating system prototype, SenSmart, which includes
several new designs on base-station-side binary rewriting,
logical address translation, and stack relocation. These new
designs reduce memory overhead, minimize the external
fragmentation, and provide new level of stack adaptivity on
strictly resource constrained sensor nodes. As an example of
the effectiveness, SenSmart can handle a multitask workload
even when the total needed stack space of all tasks exceeds
the available stack space in the physical memory.

The major contributions of this work are as follows:

. We present a solution to adaptive stack management
and provide important OS features, such as memory
isolation, on small-memory systems without virtual
memory hardware support.

. A base-station-side binary rewriting approach is
proposed. It minimizes the kernel resident in sensor
nodes and significantly reduces the per-node re-
source consumption as compared with earlier works.

. We have implemented SenSmart on MICA2/MICAz
motes. Detailed evaluation is performed on this
implementation.

The rest of this paper is organized as follows: Section 2
discusses the related work. Section 3 presents an overview
of our system approaches and architecture. Section 4
describes the detailed design of SenSmart. Section 5 focuses
on the system implementation and evaluation. We sum-
marize the work in Section 6.

2 RELATED WORK

Researchers have developed a number of operating systems
for sensor networks and low-power devices, such as
TinyOS [3], SOS [14], Contiki [15], MANTIS OS [16],
Nano-RK [17], SESAME/SESAME-P [18] [19], LiteOS [20],
and the t-kernel [21]. In order to support more reliable,
efficient, and sophisticated applications, multitasking has
become an important feature in such systems. However, for
reasons explained in Section 1, existing multitasking
systems for sensor networks have to place harsh restrictions
on the concurrent tasks. Table 1 lists the implemented
features of typical related systems as a comparison.
Although these systems have respective advantages, SenS-
mart performs better in multitasking-related functionalities
as listed.

In TinyOS [3], tasks are executed in serial. Hence, there is
no concurrency among them, and the stack management is
rather simple. Moreover, the memory isolation is absent so
that the program code can write to any physical memory
areas. To improve the quality of system services, many
works attempt to add diverse features for TinyOS [12], [22],
[23], [24]. As a representative focus, several preemptive
multitasking models are proposed, respectively. For exam-
ple, TOSThread [24] introduces user threads along with
existing TinyOS tasks. Each thread is allocated an indepen-
dent but fixed-size stack for local variables and execution
context. Substantially, such multitasking models are tai-
lored from the traditional design techniques, while they
often work inefficiently in resource constrained systems as
described in Section 1.
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Some other sensornet operating systems, such as
MANTIS OS [16], SOS [14], [25], RETOS [26], and LiteOS
[20], also attempt to adopt traditional OS mechanisms as
TOSThread does. Those traditional solutions usually lead to
harsh restrictions on application tasks. For example, it is
very difficult to efficiently allocate stack memory to tasks
without introducing extra burden (and dependence) on
application programmers. For correctness and simplicity,
such systems usually allocate stack memory based on the
worst case situation. Without virtual memory paging, this
pessimism, combined with the aforementioned inflexible
allocation, aggravates the waste and drains a fair portion of
previous memory resources. The fundamental reason is the
weak stack adaptivity, and consequently, limited applica-
tion flexibilities.

Researchers have noticed that the traditional monolithic
stack allocation can reduce the overall efficiency. To
improve the flexibility, SESAME/SESAME-P [18], [19]
propose novel solutions to convert the call stack into the
heap area, and perform bookkeeping to manage the discrete
stack blocks. The runtime overhead is mitigated by a
flexible dynamic stack allocation mechanism. Capriccio [27]
also explores noncontinuous stack configurations for gen-
eral purpose systems. In contrast, SenSmart still maintains
the continuity of the per-task stack space, and adjusts the
overall stack utilization by logical addressing and stack
relocation. For applications with complex stack usage, such
as the pointer arithmetic in the stack area or optimized
PASCAL-like programs, the continuous-stack structure
unifies the abstraction at the system level with that at the
programming language level, and would avoid special
handling in the memory management logic.

Lightweight thread models can avoid the stack manage-
ment problem by dramatically simplifying the semantics of
concurrent tasks. For instance, the stackless protothreads in
Contiki minimizes memory usage [13], [15], but they also
incur severe functional limitations, e.g., no retention of state
between context switches. Such limitations are likely to
make programming harder.

Maté [28] and MagnetOS [29] represent the virtual
machine approach, another software-based method to
provide enhanced system abstractions. The disadvantage
of this approach is that scarce resources do not allow virtual
machines to perform sophisticated optimization on the
bytecode. Hence, such virtual machines often resort to slow
interpretation-based execution.

As our previous work, the t-kernel [21] implements
preemptive scheduling, OS protection and virtual memory

with binary rewriting on sensor nodes. The tasks in the
t-kernel share a common stack space, and the memory
protection is asymmetric—only the kernel memory is
protected. SenSmart also uses binary rewriting as an
important technique to implement preemptive scheduling
and memory isolation. Different from the t-kernel, SenSmart
conducts complete binary translation on the base station. As
we will show later, this approach brings unique advantages
in reducing system complexity and code inflation ratio.

3 OVERVIEW

In this section, we give an overview of SenSmart. We first
define the design space, enumerating the assumptions and
technical challenges, then provide a high-level operational
view of SenSmart.

3.1 Examination of the Design Space

We use the MICA2/MICAz sensor nodes [30] as representa-
tives of strictly resource constrained networked platforms.
As the assumption onhardware,we expect that the hardware
platform has at least the same amount of resources as a
MICA2 mote, which has an 8-bit ATmega128L MCU, 4 KB
SRAM-based data memory, and 128 KB FLASH-based
program memory.

As assumptions on software, we expect the applications
to meet the following requirements:

. The application code does not modify any existing
instruction. Note that this restriction does not apply
to the OS code—reprogramming can be performed
as an OS service.

. The heap areas and stack areas used by the
applications are not overlapping, i.e., the application
does not intentionally use a memory area as both a
heap and a stack.

. The application code does not use dynamic memory
allocation.

Most of the sensornet platforms and TinyOS/nesC
applications meet these requirements. As an explanatory
note to the third assumption on software, most of the
applications running on MICA2/MICAz motes do not use
dynamic memory allocation. For those applications that do,
it is not difficult to add a specific allocation module, which
claims a chunk of memory and reallocates parts of it upon
requests, to emulate the dynamic memory function.

In this strictly resource constrained design space, we
design SenSmart to be an OS with solid multitasking
capability. Using software methods, it solves the critical
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problems of stack adaptivity and software-based preemp-
tive scheduling. It is worth explicitly listing the challenges
in order to clarify the design space and help understand our
design choices:

. Strictly constrained energy budget makes it very
difficult to dramatically increase the data memory
size.

. Absence of virtual address translation hardware
makes it impossible to accommodate the growth and
shrinkage of multiple stacks without fragmentation
or stack collisions.

. Absence of instruction privilege support makes it
impossible to use traditional OS design techniques.

3.2 System Overview

A sensornet application is often written in a specific
programming language, such as nesC [10]. After being
compiled into a binary executable, the application code is
loaded into the programmemory and executes on the sensor
node. SenSmart rewrites the binary executable on the base
station after the application program has been compiled and
before it is loaded. The rewriting logic, called rewriter,
analyzes the binary image, and modifies the application
code to ensure that multiple application tasks run on one
node following appropriate multitasking semantics.

Fig. 1 shows the process of sensornet application
development with SenSmart. After the compiler generates
the binary code and the memory usage information con-
tained in the symbol list, the rewriter translates the program
code to be a naturalized program, which cooperates with the
kernel runtime to support multitasking. After compiling and
translatingmultiple programs, SenSmart links them together
with the precompiled system kernel, which includes the
kernel runtime, to form the executable image to be loaded to
sensor nodes. When the application programs are instan-
tiated, they execute concurrently as application tasks under
the control of the kernel. Each task has its respective time
slice and memory region. Without relying on clock inter-
rupts or virtual address translation, SenSmart schedules the
tasks with preemption, and isolates their memory regions by
translating memory addresses into appropriate physical
addresses at runtime. Transparent to application tasks,
SenSmart automatically adjusts the sizes and locations of
the tasks’ stack areas when it is necessary, and avoids stack
collisions when it is possible.

It is worth noting that the program rewriting and
dissemination do not significantly increase the energy
consumption in typical sensornet deployments. The pro-
gram analysis and rewriting are performed on the base
station, which is usually provisioned with sufficient energy
supply. The final executable is either directly uploaded or

disseminated as part of the wireless reprogramming, which
is already needed for programming a large number of
nodes [31], [32], [33].

4 SENSMART DESIGN

In this section, the design details of SenSmart will be
presented. We first introduce how SenSmart performs
binary rewriting on the base station, then briefly cover
multitask scheduling, and present the details of the memory
management.

4.1 Binary Rewriting on the Base Station

Following common nesC and C programming paradigms,
sensornet programs are usually developed and executed
with a view that they exclusively use the CPU and memory
on the sensor node. The code rewriting process, performed
on the base station by the rewriter, virtualizes the CPU and
memory so that multiple programs thus developed can be
instantiated as application tasks on one sensor node and
share the CPU and memory resources.

The rewriter modifies the following types of instructions:

. The instructions which affect the CPU control flow,
including the branch instructions and the CPU
control instructions (e.g., the SLEEP instruction), are
rewritten in a way to ensure that the OS frequently
takes over CPU to run system services.

. The direct or indirect memory access instructions
and stack pointer operations, are rewritten in a way
that cooperates with the memory management
mechanism.

. The instructions that access some OS-reserved
resources are also rewritten. For example, SenSmart
reserves the Timer3 of ATmega128LMCU as a global
clock; therefore, the accesses to the I/O registers of
Timer3 are intercepted.

Departing from the on-node binary rewriting in the
t-kernel, SenSmart rewrites the binary code on the base
station, and strikes a balance between reliability and cost.
This approach has a number of benefits as follows:

First, by performing rewriting after compiling and before
program distribution, the base station can collect the whole-
program characteristics. One example is the position and
length of the program memory data, which is embedded in
the program code as constants. Obviously, such program
data should not be identified as instructions and thus be
modified. SenSmart can easily skip such cases when
rewriting, while the t-kernel has to introduce complex and
exhausting schemes for that. Another example is the heap
usage information from the symbol list generated in
compiling. As mentioned later, such information is useful
for logical addressing in our approach.

Second, having plenty of resources, the base station is
able to thoroughly analyze the application program for
more efficient rewriting. In contrast, the t-kernel performs
code rewriting on resource constrained sensor nodes, and
can only work on no more than a page at a time. One page
contains up to 128 instructions. Such a modest size of
rewriting units limits opportunities of optimization, and
introduces additional complexity.
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Third, by moving the code rewriting logic to the base
station, SenSmart also significantly reduces the kernel size
on individual sensor nodes. By keeping the kernel small, we
allow more application code to reside in the program
memory.

Finally, SenSmart maintains an approximate linearity of
the instruction addresses between the original and the
naturalized program. After the rewriting, one instruction
can be translated into a variable number of instructions, and
this usually results in a code inflation nonlinear to the
instruction addresses. SenSmart regularizes the instruction
rewriting to mitigate the inflation. When modifying one
instruction, SenSmart replaces the instruction with one JMP
or CALL instruction, which takes the control flow into a
code snippet (called trampoline) corresponding to the
rewritten logic. All of the trampolines are appended after
the application program. Hence, the instruction count of the
modified program, excluding the trampoline code, is
exactly the same as that of the original, though the byte
sizes may still differ because the byte sizes of individual
instructions vary. Such an approximate linearity makes it
easier to map instruction addresses from the original
program to the modified one, particularly when the
addresses have to be resolved at run time (e.g., indirect
branches). Moreover, since many trampolines are similar,
they can be merged to save space (even if they belong to
different application programs), and further reduce the size
of the naturalized program.

Meanwhile, rewriting on the base station has its limit-
ations—it cannot utilize runtime information. For example,
the target address of an indirect branchor an indirectmemory
access cannot be known by the rewriter on the base station.
These issues need to be resolved at runtime by the kernel.

4.2 Task Scheduling

With no privilege support on many sensor nodes, it is
unreliable to design preemptive scheduling based on clock
interrupts as traditional operating systems do, since the
interrupts could be disabled by application tasks. Instead,
SenSmart modifies the backward branch instructions when
rewriting the application code, to construct software traps
so that the branches will jump to the OS kernel before their
target addresses. The kernel routine maintains the time slice
for each task using the reserved Timer3 clock counter,1 and
a task will be preempted after its time slice is used up. Note
that the scheduling does not guarantee that the preemption
occurs exactly when the time slice ends, because the
software traps depend on the dynamic instruction flow
and the backward branches, which may not occur exactly at
the absolute end of a slice. However, the delay of the
preemption, usually no more than a few milliseconds, is
small enough to be ignored for most applications. It is also
noteworthy that, to make the scheduling fair for all tasks,
SenSmart will dynamically adjust the time slice to compen-
sate the preemption delay and avoid error accumulating.
Moreover, the 16-bit Timer3 is large enough for the
scheduling frequency, thus the counter overflow can also
be handled easily without an interrupt routine. Therefore,
even with interrupts disabled, SenSmart can still preempt
the tasks by the software traps and schedule them properly.

As a matter of fact, we have also noticed that such
interrupt-free preemption might be a mixed blessing. It
provides fairness for scheduling, while some sensory or
communication component, which intends to disable the
interrupts to ensure atomicity, may also be preempted by
the kernel unexpectedly. Although the drawback is mostly
not significant because its consequence, such as occasional
packet loss, can be handled properly by usual application
logic, SenSmart also provides APIs to denote a critical
section, which will not be preempted by the kernel. By such
means the issue is mitigated effectively in our practice.
Moreover, as a future work, we intend to migrate the
control logic of the peripheral resources, such as timer,
radio, and external FLASH storage, to the OS kernel
services, and letting application tasks access the virtualized
hardware using system calls. Such a mechanism could solve
the problem of broken atomicity since it prevents the
application code from manually controlling the physical
peripherals using atomic operations.

When SenSmart schedules a task to run, the kernel must
save the execution context of the current running task. The
execution context, about 50 bytes including CPU registers,
CPU flags, and some I/O registers relevant to program
status, is a sizable structure pressuring the scarce physical
memory on low-power sensor nodes as the number of tasks
grows. SenSmart employs run-length compression on task
contexts to save memory space. Since there are often
unused or copied registers, sequences of identical values
are not uncommon, giving opportunities for compression.

To avoid the possible risk of stack overflow in a small-
memory system, SenSmart uses a shared circular buffer,
instead of the task’s stack, to save contexts, as illustrated in
Fig. 2. Upon a context switch, the kernel compresses the
context of the switched-out task, saves it at the current end
position of the circular buffer, and then restores the context
of the task to be switched in.

The size of context of each application task varies after
compression, and imposes a challenge on the context
management algorithm. When there are fewer than two
application tasks or the scheduling is strictly round robin,
the context of the task to be switched in is always at the
beginning position of the circular buffer. This makes the
context management very efficient even when the sizes of
task contexts vary. However, we can also easily extend the
scheduling policy to a nonround-robin one. In such cases,
external fragment may appear and memory space may be
wasted, as illustrated in Fig. 2. A defrag routine is designed
in SenSmart, to detect and eliminate the fragment by
rearranging the context.

In our practice, the features of context compression and
fragment elimination are optional, as they introduce extra
overheads, and, more importantly, there is a risk of circular
buffer overflow, since the compression ratio cannot be
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1. Timer3 is not used for preemption, as SenSmart chooses not to rely on
clock interrupts for scheduling.



predicted and an optimistically estimated buffer size may
be exhausted. The programmer can switch off the compres-
sion when the memory budget is not so strict.

4.3 Memory Management

An effective multitasking mechanism shall accommodate
arbitrary combinations of tasks within the resource limita-
tion, and handle the dynamics of resource utilization when
the tasks execute concurrently. Earlier sensornet operating
systems are not able to meet this requirement, and a major
obstacle is the difficulty in handling the stack dynamics.

With preemptive multitasking, switching to a different
task before the current one terminates forces the system to
maintain multiple active stacks in the sense that the stacks
are still used by tasks, and that the stacks may expand and
shrink without predictable patterns. In a small-memory
system with multiple active stacks, the expansion of one
task’s stack can easily touch the border of another stack.
Without stack adaptivity, such stack collisions cannot be
resolved, and some application tasks may have to be
terminated even if the system still has free memory space.
Hence, the ability to manage multiple stack areas is a crucial
part in a multitasking OS.

In order to adapt to the dynamics of stack usage,
SenSmart introduces software-based logical addressing,
and automatically adjusts various tasks’ stacks while
guaranteeing the memory access semantics. In this section,
we first give an overview of the memory organization in
SenSmart, then present the logical address translation and
stack management mechanisms.

4.3.1 Memory Organization

SenSmart divides the physical data memory space into the
I/O area, the application area and the kernel area. The I/O
area is mapped to the I/O registers in ATmega MCU, and
the kernel area is reserved by SenSmart. The application area
is divided into independent memory regions, each region
assigned to one task. Without dynamically allocated
memory (refer to Section 3.1), a memory region comprises
a fixed-size heap area, and a variable-size stack area.
SenSmart laces the heap area in the lower part of a memory
region, and the stack area in the upper part. The lower half of
Fig. 3 shows the structure of physical memory organization.

A task running in SenSmart is analogous to a process
instead of a thread because each task has its independent
memory region with a heap and a stack. Except for explicitly
using the memory sharing APIs provided by SenSmart, a
task cannot touch others’ memory regions. For each task, we
use three pointers, pl, pu, and ph, to indicate the lower bound
of the task’s memory region, the upper bound of the task’s
memory region, and the upper bound of the task’s heap area,

respectively. Suppose the size of the physical memory is M.
Obviously, we have pl < ph < pu < M. The data memory
layout and the pointers for all tasks are initially determined
by the rewriter, and the SenSmart kernel maintains these
pointers at runtime. After excluding the I/O area, the kernel
area and all heap areas, the remaining space is partitioned
into stacks for all tasks.

4.3.2 Logical Addressing

SenSmart uses a logical addressing mechanism to provide
each application task a logical memory space, and the task
can exclusively use it. The logical addresses are translated
into physical addresses at runtime, and accesses beyond a
task’s memory region are intercepted and treated as invalid
instructions. Such logical addressing mechanism makes the
program-visible memory addresses independent of their
locations in the physical memory. It not only makes it very
easy to implement memory isolation for multiple tasks, but
also allows SenSmart to tune the locations and sizes of the
memory regions for various application tasks with different
stack dynamics.

To implement logical addressing on strictly resource
constrained hardware, the binary rewriter modifies mem-
ory access instructions to include logic for runtime address
translation. Under the assumptions listed in Section 3.1,
there are only three types of valid data memory accesses:
1) random access in the current heap area; 2) random
access in the stack frame of the current function; 3) LIFO
access to the current stack using stack-mutating instruc-
tions, such as PUSH/POP/CALL/RET. The memory
translation handles all three types of accesses, as illu-
strated in Fig. 3 and described as follows:

Generally, the address translation adds a displacement
(pl for heap and pu �M for stack) to the original memory
address to form the effective memory address, as well as
performs boundary checking. Meanwhile, various forms of
translation and adjustments are added for both correctness
and performance.

When a task attempts to retrieve its stack pointer, the
kernel translates the stack pointer to the logical address
which usesM as stack bottom. The kernel will also translate
the logical address back when an application tries to set the
stack pointer. This allows stack memory accesses implicitly
using the stack pointers to execute efficiently and correctly.

The logical memory spaces for different tasks are
isolated. For the tasks that intend to share data, SenSmart
also provides an API, which works like the POSIX mmap
system call, to explicitly mapmultiple logical address blocks
to the same physical address block. Those shared blocks
reside in the upper address region of the logical memory
space as shown in Fig. 3.

Such software-based data memory address translation
incurs overhead for extra instructions and memory ac-
cesses. We have noticed that, in most sensornet applica-
tions, two or four memory access instructions are often
performed together using the same indirect address
registers to fetch or store word or double-word data. Thus,
the binary rewriter can identify the instructions as a
grouped memory access and only translate the address
once. This optimization effectively improves the perfor-
mance, and is made possible because basic block informa-
tion can be used by the rewriter to ensure correctness.
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Fig. 3. Layout of data memory and logical addressing.



Despite the overhead, the benefits of the memory
indirection are multifold. The most important one is that
application tasks can program on logical address spaces
which are independent of the real locations in the physical
memory. The logical addressing is a key functionality of
SenSmart that enables the stack relocation to be discussed
in Section 4.3.3. For many sensornet applications, data
memory is always a keenly constrained resource, while
CPU cycles are not lacked. Hence, for such light load
applications, we believe the benefit of logical addressing in
system functionality, reliability, and usability by far out-
weighs the overhead in CPU cycles.

Similar to data memory, the program memory address
translation is also necessary for the correctness of the
naturalized program. At runtime, the translation of program
memory address occurs when there is an indirect program
memory data access or indirect branch. Other program
memory address translations, for example, branches with
relative addresses, are directly resolved by the binary
rewriter on the base station. Such a separation of program
memory address translation effectively reduces the work-
load on sensor nodes.

Because each instruction in the AVR instruction set is
16 or 32 bits long, and it is modified into a 32-bit JMP/
CALL instruction when necessary, we use a sorted array
called shift table to record the addresses of rewritten
instructions that are inflated from a 16-bit instruction to a
32-bit instruction. Based on the shift table, we can map a
program address in the original application task to the
corresponding program address in the naturalized pro-
gram. For an application program with I instructions, if
m% of the instructions are 16-bit instructions that need to
be modified, the space consumption of the shift table, LS ,
is given by LS ¼ 2� I �m%, and the time complexity of
program address translation is OðlogðLSÞÞ for binary
searching in the shift table.

4.3.3 Stack Relocation

Most sensornet application programs typically use the stack
in a highly dynamic manner. In sophisticated TinyOS
applications, 10 levels of nested function calls are common
even with compiler inline optimization. Such programs
often result in a sizable stack area.

Following a split-phase pattern for event-driven proces-
sing, tasks can quickly shrink their stack on a blocking I/O
request, and leave the unfinished work to another event-
driven task to be executed when the I/O completes. There
are also tasks which use only a very small stack. Such a
workload pattern makes the fixed-size stack management
cumbersome and inefficient.

One important technique SenSmart uses to enhance stack
adaptivity is allowing stacks to freely relocate in the
physical memory, and programs will run on SenSmart

without knowing the underlying stack motions. This
appears to be a heavyweight solution, but the cost is, in
fact, surprisingly low in a small-memory system, and it
keeps the stack memory semantics as the compilers know it.

In SenSmart, all of the tasks are given an evenly
partitioned initial stack size. During their execution, some
tasks may need more stack space, and others still have
surplus. In order to check the stack space at runtime,
the binary rewriter modifies the instructions that change the
stack pointer to invoke a stack checking routine. When
SenSmart detects that the stack space of a task is to
overflow, it increases the stack of the overflowing task by
relocating a number of tasks’ stacks. With stack relocations,
SenSmart adapts to the stack memory usage of the
combination of tasks concurrently running in the system.

The relocation logic enumerates the application tasks in
the system to look for available memory. The application
with most surplus available stack space is selected, and
the memory regions are moved as shown in Fig. 4. The
application task with the most surplus stack space provides
half of its available stack space to the one with insufficient
stack space. Since the application programs only use logical
memory addresses, all accesses to application tasks’
memory regions, including heap and stack areas, can be
translated to correct physical addresses after the stack
relocation. With logical addressing, the application tasks’
memory access semantics is maintained.

As we will evaluate in Section 5, the stack relocation is
rather time consuming since it will move a trunk of
memory. Actually, since the physical addresses and logical
addresses are uncoupled by the address translation, we can
rearrange the data memory areas to aggregate the heaps
and stacks for different tasks together, as shown in Fig. 5.
Such an arrangement may reduce the overhead of the stack
relocation since less bytes will be moved. However, it
increases the logical addressing overhead because we
should maintain four boundaries for a task’s memory
region, and extra memory access overhead will be thus
introduced. As the logical addressing occurs more fre-
quently than the stack relocation, such an arrangement is, in
practice, less efficient than our current design.

5 PERFORMANCE EVALUATION

We have conducted extensive evaluation on SenSmart
prototype implementation. First, the overhead of key opera-
tions is measured. Second, we use kernel benchmark
programs and TinyOS applications, to evaluate typical code
in sensor networks. Third, we assess the multitask schedul-
ing performance when multiple concurrent tasks execute.
Finally,we show that SenSmart has a feasible stack adaptivity
in accommodating concurrent tasks.
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Fig. 4. Stack relocating when an application has insufficient stack space.
Fig. 5. Data memory arrangement to aggregate heaps and stacks
together.



5.1 Overhead

We have implemented SenSmart on MICA2/MICAz motes,
and made the source code available [34]. With only very
basic hardware assumptions, SenSmart should be able to be
ported to target platforms with ATmega128L MCUs with-
out much difficulty. The SenSmart kernel is configurable. In
the default setting, it occupies less than 6 percent of the
program memory and about 10 percent of the data memory.
This memory footprint is much smaller than our previous
work, the t-kernel, which uses more data memory to
perform on-node rewriting.

The task scheduling and memory management in
SenSmart ensure the system integrity under multitasking,
but they also inevitably introduce overhead into the
system. Using the ATmega simulator in AVR Studio, we
measure the overhead in CPU cycles, and the correspond-
ing execution time on the 7.32 MHz ATmega128L MCU is
also calculated. The results are listed in Table 2.

If not fully optimized, the overhead of memory address
translation and checking would dramatically affect system
performance since the memory accesses occur frequently in
programs. Fortunately, this overhead can often be amortized
within basic blocks as discussed in Section 4.3.2. Indirect
branches have high overhead due to branch destination
lookup at runtime, but such instructions are rare in current
sensornet applications. The overheads of stack relocation
and context switching vary in different cases. The numbers
shown in Table 2 give representative examples. It is worth
noting that relocating a stack on an ATmega128L MCU may
introduce 100� 400 �s delay. SenSmart is conservative on
memory relocations; hence, such delays should be infre-
quent in stable systems. Moreover, since many common

operations, such as sensor I/O and packet transmissions,
take multiple milliseconds on a sensor node, we feel
confident that occasional submillisecond delay paid for an
unprecedentedly adaptive multitasking support is a small
and welcomed cost.

5.2 Kernel Benchmark Programs

To assess SenSmart with typical sensornet applications, we
test the seven kernel benchmark programs used in the
t-kernel for our evaluation [21]. As listed in Table 3, these
programs cover typical operations in sensornet applica-
tions. Fig. 6 analyzes the code inflation of the kernel
benchmark programs under SenSmart and the t-kernel, as
compared with the native code size. The code inflation
under SenSmart is within 200 percent. As a comparison, the
t-kernel, which also uses the binary translation, makes the
code size much larger. The reason is that SenSmart conducts
translation on base station, and can make translated code
much more optimized in terms of space efficiency.

After measuring the code size of the programs, we
compare the execution performance of SenSmart with other
software-based solutions. It is not a design goal of us to
optimize for execution speed. Instead, SenSmart aims at
providing stack adaptivity, memory protection, and flexible
multitasking capability. But SenSmart still has a reasonable
execution speed, and only shows a moderate slowdown as
compared to the t-kernel, which is optimized for execution
speed. Although the t-kernel has better performance in
most of the seven programs as Fig. 7 shows, we believe that
the extra cost is fair and reasonable because SenSmart
supports concurrent tasks with independent time slice and
memory regions, while the task and memory protection in
the t-kernel are both simpler as shown in Table 1.
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TABLE 2
Overhead of Key Operations

Fig. 6. Code inflation of kernel benchmark programs.

TABLE 3
Kernel Benchmark Programs

Fig. 7. Execution time of kernel benchmark programs.



Although the performance disadvantage of SenSmart
emerges in the seven kernel benchmark programs, which
perform intensive computation during the whole working
process, in realistic energy constrained sensor nodes, most
applications have a periodic events triggering pattern [35],
[36]. For those applications, the extra CPU cycles spent in
SenSmart only modestly reduce the CPU idle time, and do
not affect the overall application performance.

We use a PeriodicTask program to emulate such common
operating pattern of sensornet applications. Using the
program, we examine SenSmart’s performance in more
realistic settings, and stress-test it to see when it fails to
handle the workload. The computational tasks in Period-
icTask can be configured to a desirable computation size
(number of instructions) to emulate applications of different
complexity. When we configure less computational instruc-
tions for each task, it works more like an ordinary event-
driven program. When more instructions are added into the
tasks, it becomes more and more computation intensive
until the workload is completely CPU bound.

We test the PeriodicTask program in SenSmart with
different computation sizes. For each test, we record the
execution time on real sensor nodes. Moreover, we use the
avrora [37] simulator to measure the proportion of the active
CPU cycles, which can be taken as the average CPU
utilization during the execution. As a comparison, the cases
for the native-code execution without any system kernel
overhead, and results in the work of t-kernel, are also listed.
As shown in Fig. 8a, when the computation size is less than
60,000 instructions, the execution time in SenSmart is very
close to the native case. After the threshold of 60,000
instructions, the execution time increases dramatically.
Fig. 8b shows the CPU utilization data. Larger computation
size inevitably increases the CPU utilization, and it
increases more rapidly in SenSmart due to the overhead
of task switching and logical addressing operations. When
it reaches 60,000 instructions, the CPU utilization in
SenSmart is nearly saturated. Beyond that saturation point,
the task execution takes longer time, because when the CPU
is busy, some timer tasks cannot be handled in time. Hence,

SenSmart is suitable for the applications with a CPU
utilization lower than 30 percent, which is the common
case in current sensornet applications. For the computation-
intensive applications, there is a tradeoff between stack
adaptivity, multitasking capability, and power consump-
tion. SenSmart may not be a suitable solution for those
applications.

It is noteworthy from Fig. 8a that, for the tasks with less
than 60,000 instructions, SenSmart performs better than
t-kernel even though the latter has lighter memory protec-
tion operations. The reason is that the t-kernel has a warm-
up rewriting overhead, which introduces a considerable
initialization delay. Even without that, the t-kernel performs
almost the same than SenSmart for applications that are not
computation intensive. Fortunately, many current sensornet
applications have light CPU utilizations. The detailed
results will be shown in Section 5.3.

We have also compared the t-kernel and SenSmart with
the software-based virtual machine, Maté, using an equiva-
lent PeriodicTask program. The result is shown in Fig. 8c, in
which the Y-axis is exponential. The execution time of
PeriodicTask program inMaté is much higher than in t-kernel
and SenSmart. As a fully virtualized environment, the
virtual machine can also enhance reliability and ensure
memory protection [38]. But the interpretation-based execu-
tion has a significant performance penalty, as indicated by
the difference in execution speed. Overall, SenSmart is an
efficient design among software-based solutions for general
application programming.

5.3 TinyOS Applications

Different from the kernel benchmark programs, which
simply emulate the common operations, and execute with
a run-to-complete style, most sensornet applications devel-
oped for TinyOS are event-driven—they contain routines to
be invoked periodically, and execute without an explicit exit.
We use six sample applications provided in TinyOS 2.1 to
assess their overheads running in SenSmart. The results are
shown in Figs. 9 and 10. Note that instead of the execution
time, the CPU utilization simulated in avrora over an
execution periods of 3 minutes depicts the active execution
cycles for such applications in Fig. 10. Obviously, the code
size of real applications, which indicates the program
complexity to a certain extent, is much larger than the kernel
benchmark programs. However, the code inflation ratio
remains roughly unchanged, and the inflated size still can be
accommodated by MICAz nodes with 128 KB program
memory. The CPU utilizations of those applications are also
low enough, which indicates that SenSmart fits for such
applications with acceptable overhead.
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Fig. 8. Execution time and CPU utilization of PeriodicTask program.

Fig. 9. Code inflation of TinyOS applications.



It is noteworthy that the TestFtsp application has the
largest code size but lowest CPU utilization in Fig. 10,
because its primary workload is driven by beacon messages
from another node, which cannot be simulated accurately by
avrora. To reflect the real case, we deploy sensor nodes to
study the execution of the TestFtsp and Oscilloscope applica-
tions on SenSmart.We use totally eightMICAz nodes for this
experiment, one of them acts as the beacon node for TestFtsp.
Two of them connected to PC act as base stations for
receiving the messages from TestFtsp and Oscilloscope,
respectively. The rest five nodes are tested under different
configurations where TestFtsp and Oscilloscope execute with
or without SenSmart. We also examine the case that these
two applications concurrently executing under the schedul-
ing of SenSmart. Each experiment is repeated for four
rounds and the results are shown in Fig. 11. The time
synchronization processes of TestFtsp under different con-
figurations, as depicted by Figs. 11a, 11b, and 11c, are rather
random even within the same configuration (plotted in one
subfigure), since it depends on several factors such as the
initial clock offset and skew. But in general, the results in
Figs. 11a, 11b, and 11c show similar application-level
performance in terms of converging time and the synchro-
nization error. Fig. 11d plots the number of messages from
TestFtsp and Oscilloscope to base stations under different
configurations, and shows that the message counts are
consistent with a fluctuation within 8 percent for TestFtsp
and roughly unchanged forOscilloscope. Therefore, although
execution on SenSmart inevitably introduces overheads,
such cost is acceptable and does not noticeably affect the
application-level behaviors.

5.4 Multitasking Performance

To examine the concurrent execution of multiple tasks in
SenSmart, we run the PeriodicTask together with each kernel
benchmark programs, and plot the completion time of the
tasks under increasing computation sizes in PeriodicTask.
Fig. 12 shows the results.

The dotted line and dashed line in each plotting denotes
the individual execution times of all the tasks if they are
executed in a single-task environment. The sum of indivi-
dual execution times, denoted with the dash-dotted line,
depicts the execution time for the tasks to execute serially on
the sensor node without any context switching overhead.
Intuitively, the actual execution time of concurrent tasks,
with the context switching overhead, should be longer than
the sum of individual execution times. However, in some
cases, both concurrent tasks are completed earlier than the
sum value. The reason is that PeriodicTask looks for the task
queue after each computational task completes. If the queue
is empty, it yields the CPU before its time slice is used up.

When PeriodicTask is running with lower workload, the
kernel benchmark program has more opportunities to be
executed, as illustrated in Fig. 13a, where P denotes the
execution of PeriodicTask program, and K denotes the other
concurrent kernel benchmark program. In that case, the time
slice is utilized more effectively, and this reduces the
completion time.

Another interesting observation from Fig. 12 is that the
complete time ofPeriodicTaskdrops dramatically and reaches
the minimal value when the computation size is 50,000
instructions. The reason can also be explained by Fig. 13.
When the execution time of each task is long enough, the
timer-driven PeriodicTask generates the next task soon
enough for that task to be executed right after the current
one, resulting in a higher utilization of time slices. As
illustrated in Fig. 13b, PeriodicTask does not yield CPU
voluntarily, and it continuously executes until being pre-
empted. Therefore, more computational tasks can be
executed in a fixed time span. When the computation size
is larger than 60,000 instructions, however, fewer tasks can
be completedwithin one time slice, so that the total execution
time also increases.

Clearly, the length of the time slice is an important
factor for the preemptive scheduling. In the above
experiment, the time slice is configured to 1 second. We
now study the effect of shorter time slices by varying it to
1=2; 1=4; . . . ; 1=256 second, respectively, and execute the
PeriodicTask in four typical computation sizes with two
kernel benchmark programs. To make it roughly random,
we choose the first and last programs in alphabetical order,
am and timer. Fig. 14 shows the execution completion times
of the three programs.
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Fig. 10. CPU utilization of TinyOS applications.

Fig. 11. Execution of TestFtsp and Oscilloscope.



Considering the overhead of context switching, we
would imagine that the performance should suffer with
smaller time slices. Surprisingly, all of them execute a little
faster with the time slice of 1/4 or 1/8 second than that of
1 second or 1/2 second. As listed in Table 2, a full context
switching will introduce a considerable overhead. Such
overhead impacts the system performance slightly when the
time slice is longer than 1/8 second. Generally, shorter time
slices provide more precise scheduling control. After the key
point of 1/64 second, the completion sequence of am and
timer exchanges their position in all of the four subplots. It
can be explained in Fig. 7, where we can find that am has
much higher proportion of task scheduling overhead than
timer. Hence, the former will be more seriously impacted
when the context switching overhead increases.

As described in Section 4.2, the executing tasks are
preempted by SenSmart kernel using the modified branches.
By such means, a small delay is introduced on each time
slice, and causes the scheduling error. We collect the statistic
delay time for the seven kernel benchmark programs, and
compare them with a moderate time slice, 1/16 second. The
results are listed in Table 4. Although such delay depends on
the program control flow and can hardly be predicted, it has
the same order of magnitude with the context switching
overhead, which consumes more than 300 �s. Obviously,
relative to the time slice, the scheduling error is small
enough and ignorable in most cases.

5.5 Stack Adaptivity

As studied in Section 5.1, each stack relocation costs about
100� 400 �s. In this section, we will evaluate the effects and
impacts of adaptive stack management.

A common workflow in a sensornet application follows a
sense-and-send paradigm in an event-driven style [39]. After
sensor and radio channels feed data to the sensor node,
various event-driven handlers are triggered to read the
data, verify them, and usually, store them in the heap in a
specific data structure. When a certain amount of data is
accumulated, a few larger processing tasks may be
activated to read data from the heap, analyze them, and,
sometimes, send out wireless packets. There are usually
multiple processing tasks in a system, such as compression,
routing, signal processing, and these tasks are activated
upon different conditions.

We use a set of tasks with different stack dynamics,
including one data feeding task and several processing
tasks, to approximate such a sense-and-send workflow. The
data feeding task periodically stores randomly generated
data onto the heap to form six binary trees, and then, using
the synchronization and memory sharing APIs provided by
SenSmart, the processing tasks are activated to map the
binary trees from the data feeding task into the logical
spaces of themselves, and recursively search randomly
selected trees. Both the shapes and heights of the binary
trees depend on the sequence of the random data, and,
hence, the search tasks have a slight variance in their
recursion depths—12 levels on average and some reaching
15 levels. Each level of recursion adds 15 bytes to the stack;
hence, the historically largest stack size of the search tasks is
around 180 bytes. Based on our observations on VigilNet
and other sensornet applications, such a moderate stack size
is typical for processing tasks.

Fig. 15 shows the number of stack relocation activities,
the average stack allocations, and the maximal number of
search tasks the system may accommodate, with different
binary tree sizes. Obviously, the larger binary trees will
increase the heap usage; thus, the available stack space has
to be reduced. Meanwhile, the larger binary trees may also
increase the recursion depth of the search task; thus, the
stack usage of each task also increases. Both factors reduce
the maximal number of search tasks that can concurrently
run in SenSmart.

As mentioned before, a search task needs about 180 bytes
of stack on average, while we can also observe from Fig. 15
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Fig. 13. PeriodicTask program with different workloads.

Fig. 12. Execution completion time of PeriodicTask with different kernel benchmark programs.



that the average stack allocation in all cases does not exceed
130 bytes. It implies that a task does not have sufficient stack
space for its need, while SenSmart can still accommodate
all the tasks by exploiting the dynamics of the stacks.
Particularly, when the size of the binary tree is 58 bytes with
nine concurrent search tasks, the size of a task’s stack, on
average, is only about 97 bytes, 46 percent lower than the
180 bytes required, on average by each task. SenSmart can
still accommodate all of the nine search tasks and one data
feed task, with 45 times of stack relocations. Such a behavior
shows the stack adaptivity and proves the stack manage-
ment’s effectiveness.

When the average stack allocation is significantly smaller
than the required stack size, SenSmart terminates one task
since the stack relocation no longer works and not all
concurrent tasks can be accommodated in the system. After
a task is terminated, the average stack space for each
remaining task increases because their stack space alloca-
tions can grow to use the released memory of the terminated

task. Currently, SenSmart simply terminates the recent task
that caused the stack relocation failure. It is technically
feasible to extend this work to prioritize tasks and terminate
the lowest priority task first under insufficient stack
allocation space.

SenSmart performs more stack relocations to tune the
sizes of the stacks of concurrent tasks, when the initial stack
allocation is severely inadequate. Nevertheless, the max-
imal number of stack relocations is under 50 times in our
experiments; thus, the performance penalty of stack reloca-
tion is acceptable. Fig. 16 depicts the average execution time
of the binary tree searching tasks in the experiment above.
Although the tasks complete slightly later with heavy stack
relocations, we believe such a cost is worthwhile in order to
improve the system resilience. Moreover, it is noteworthy
that the search tasks are still computation intensive. For the
event-driven sensornet applications with light workload,
such performance impact will be hidden by the idle time as
shown in Section 5.2. In the case that the programmer or
compiler can approximately estimate the stack usage for
each task, and predefine a more or less appropriate initial
stack size, the number of stack relocations, as well as the
performance overhead, will be further reduced.

The overhead of stack relocation inevitably increases the
execution time of a segment of code and the jitter. If
significant, may disrupt time-sensitive routines, such as the
radio communication. In order to examine whether this
would introduce degradation in system performance, we
conduct an experiment using a transmitter program, which
periodically sends packets, and a corresponding receiver
program, which runs concurrently with stack-consuming
binary tree searching tasks. In this experiment, the search
tasks are adjusted to execute continuously, so that the
receiver is always affected by the impact of stack relocation.

148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 1, JANUARY 2013

Fig. 14. Execution completion time of three tasks with different time slice length.

TABLE 4
Scheduling Error of Kernel Benchmark Programs

Fig. 15. Binary tree search in SenSmart with increasing tree sizes. Fig. 16. Execution time of binary tree searching tasks.



As shown in Fig. 16, the experimental results indicates that
the packet loss rate remains lower than 5 percent until the
memory is extremely stressed (e.g., six search tasks with a
tree size of 55 bytes). The results in Figs. 16 and 17 also
show that, the performance impact would become non-
linear when the memory is severely overcommitted, and the
risk of task termination as a result of memory overflow
would also increase. To avoid such extreme overcommit-
ment, users should certainly exercise caution when decid-
ing the number of concurrent tasks running on a single
sensor node. Meanwhile, with SenSmart, the cumbersome
(and intrinsically uncomputable) work of estimating in-
dividual tasks’ stack usages is no longer necessary.

6 CONCLUSIONS

Multitasking is a useful system function for complex
sensornet applications. It is not easy to implement flexible
multitasking using traditional approaches on sensor nodes.
SenSmart is a multitasking operating system which solves
the critical stack management problem, and improves the
preemptive scheduling capability with a set of techniques.
We have implemented and evaluated SenSmart. The OS
exhibits the ability of CPU and memory multiplexing. Such
features will efficiently support concurrent high-quality
services in very low power systems.
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[7] K. Römer and J. Ma, “PDA: Passive Distributed Assertions for
Sensor Networks,” Proc. Eight Int’l Conf. Information Processing in
Sensor Networks, pp. 337-348, 2009.

[8] M. Khan et al., “Diagnostic Powertracing for Sensor Node Failure
Analysis,” Proc. Ninth Int’l Conf. Information Processing in Sensor
Networks, pp. 117-128, 2010.

[9] A. Adya, J. Howell, M. Theimer, B. Bolosky, and J. Douceur,
“Cooperative Task Management without Manual Stack Manage-
ment,” Proc. USENIX Ann. Technical Conf., 2002.

[10] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked
Embedded Systems,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, 2003.
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