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ABSTRACT 
Wi-Fi based indoor location systems have been shown to be both 
cost-effective and accurate, since they can attain meter-level 
positioning accuracy by using existing Wi-Fi infrastructure in the 
environment. However, two major technical challenges persist for 
current Wi-Fi based location systems, instability in positioning 
accuracy due to changing environmental dynamics, and the need 
for manual offline calibration during site survey. To address these 
two challenges, three environmental factors (people, doors, and 
humidity) that can interfere with radio signals and cause 
positioning inaccuracy are identified. Then, we have proposed a 
sensor-assisted adaptation method that employs RFID sensors and 
environment sensors to adapt the location systems automatically 
to the changing environmental dynamics. The proposed adaptation 
method performs online calibration to build multiple context-
aware radio maps under various environmental conditions. 
Experiments were performed on the sensor-assisted adaptation 
method. The experimental results show that the proposed adaptive 
method can avoid adverse reduction in positioning accuracy under 
changing environmental dynamics. 

Categories and Subject Descriptors 
J.m [Computer Applications]: Miscellaneous; C.4 [Computer 
Systems Organization]: Performance of Systems – Performance 
attributes. 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Indoor location system, adaptive system, sensors, performance 
evaluation. 

1. INTRODUCTION 
Location is one of the most widely utilized context data in 
context-aware and ubiquitous computing applications. To support 

such location-aware applications in the indoor environment, many 
indoor location systems [18] have been developed in the past 
decade with different deployment costs and positioning accuracy 
levels. A promising approach is the Wi-Fi based location 
estimation system, which is cost-effective by employing existing 
IEEE 802.11 network infrastructure available in many office and 
home environments. The proposed approach can provide meter-
level accuracy, which is sufficient for most location-aware 
applications.  

Wi-Fi based location systems generally work in two phases. Phase 
1 is called the offline training phase, in which a human operator 
performs a site survey by measuring the received signal strength 
indicator (RSSI) from different access points (APs) at some fixed 
sampled points in the environment. These RSSI measurements are 
recorded onto a radio map that depicts the RSSI values of APs at 
different sampled points. Phase 2 is known as the online 
estimation phase, in which the target’s location is calculated in 
real time by matching sampled points on the radio map with the 
closest RSSI values to the target. 

Current Wi-Fi based location systems have two general problems. 
The first problem is the amount of manual calibration effort 
needed to build the radio map during the offline training phase. 
Users must compile a fairly dense radio map comprising many 
RSSI measurements at many sampled points to attain reasonable 
positioning accuracy. For example, the Ekahau location system 
[13] requires 80 RSSI samples to be taken every 3 meters to attain 
an average positioning accuracy of 3 meters in a 1000m2 
environment, which translates into approximately two man-hours 
of calibration effort.  

The second problem is the instability in the positioning accuracy 
due to the changing environmental dynamics. The following three 
dynamic factors have been observed to change frequently over 
time in the environment, affecting the positioning accuracy: 
relative humidity level, people presence and movements, and 
open/closed doors. These environmental factors can interfere with 
the radio signal propagation from the APs to the target mobile 
devices, varying the received RSSI. These dynamic environmental 
factors can incur location estimation errors in the existing Wi-Fi 
based location systems that construct and maintain only one static 
radio map, because this single radio map is calibrated by the 
environmental condition at the time of site survey. When the 
environmental condition changes later this static radio map may 
no longer reflect the expected RSSI values in the environment. 
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1.1 Environmental Dynamics 
To determine the quantitative effects of these dynamic 
environmental factors, preliminary experiments were performed in 
a corridor on the 6th floor of our department building shown in 
Figure 1. The corridor is marked as a shaded green line. Five 
IEEE 802.11b access points (marked as triangles ▲) are placed 
inside five rooms along the corridor.  

 
 People: The presence of people has a similar effect to 

obstacles blocking radio signals. The following common 
people-blocking scenario in a museum was emulated in this 
experiment. A museum tracks the location of Joe, a visitor, 
through his mobile device. When Joe stops in front of a 
popular painting exhibition, other visitors who are interested 
in that painting exhibition are standing around him. These 
stand-around visitors are likely to block the radio signals 
from the APs to Joe’s mobile device. To determine how 
people-blocking impacts RSSI, the following experiment was 
performed: (1) a formation of six people was arranged 
surrounding a user carrying the target mobile device – this is 
called the block-around scenario; (2) a fixed location point 
(marked as  in Figure 1) was chosen on the corridor, and 
300 RSSI samples were continuously collected, and then (3) 
the probability distribution of these RSSI samples was 
analyzed. The measurement result demonstrates that in the 
block-around scenario, the RSSI values attenuate rapidly. The 
average RSSI value is reduced by approximately 8 dBm from 
the non-blocking scenario to the block-around scenario.  

 Doors: open and closed doors have a similar effect to changes 
in the environment’s floor layout. Considering the floor 
layout in our department building depicted in Figure 1. Since 
a Wi-Fi access point is placed in each room along the corridor, 
open or closed doors are expected to significantly affect the 
RSSI received by the target mobile device on the corridor. To 
determine how doors impact RSSI, the following experiment 
was performed: (1) 300 RSSI samples were continuously 
collected in both the open-all-doors and close-all-doors 
scenarios from the same location point on the corridor, and (2) 
the probability distribution of these RSSI samples were 
analyzed. The measurement result demonstrates a significant 
rise of 9 dBm on the average RSSI from the close-all-doors 
scenario to the open-all-doors scenario.   

 Humidity: the IEEE 802.11 specification adopts a radio 
frequency of 2.4 GHz, which is also the resonant frequency 
of water. Hence, an environment with a high relative 
humidity (RH) level tends to absorb more power from the 
radio signals than in lower RH level. To measure the effect of 
humidity on the RSSI values, the following experiment was 

performed: (1) 300 RSSI samples were continuously 
collected at both the higher RH level (70%) and the lower RH 
level (40%) at the same fixed location point on the corridor, 
and (2) the probability distribution of these RSSI samples 
were analyzed. The measurement result demonstrates that the 
average RSSI value falls by 0.8 dBm from 40% RH level to 
70% RH level.  

Table 1 summarizes how dynamic environmental factors influence 
the positioning accuracy. The radio map is calibrated under the 
environmental condition of no-blocking people, close-all-doors, 
and 40% relative humidity level, denoted as the baseline radio 
map. The average positioning accuracy using the ITRI positioning 
engine [4] is 2.13 meters. This number serves as the baseline for 
comparison with other scenarios under various environmental 
conditions. In the people block-around scenario, the average 
positioning accuracy deteriorates by 85.9% to 3.96 meters. In the 
open-all-doors scenario, the average positioning accuracy 
deteriorates by 236.6% to 7.17 meters. When the RH level rises to 
70% (e.g., on a raining day), the average positioning accuracy 
deteriorates by 43.7% to 3.06 meters. Although the effect of 
humidity is not as significant as that of people and doors, the 
change in humidity level still introduces an error of almost one 
meter to the existing static methods. 

 

1.2 Sensor-assisted Adaptation 
One naïve effective approach to instable positioning accuracy is to 
construct and calibrate multiple context-aware radio maps under 
different environment variations, enabling the system to monitor 
the current environmental condition, choose the optimally 
matched radio map to the current state of environmental condition, 
and use it to estimate the location. Unfortunately, calibrating 
multiple context-aware radio maps is problematic in two ways: (1) 
constructing n context-aware radio maps requires repeating the 
same RSSI sample collection n times, and (2) manipulating 
environmental conditions, e.g., changing humidity levels in a large 
facility or assembling various sizes of block-around people at 
different locations, is non-trivial. These two difficulties make this 
approach unworkable.  

 

Figure 1. Floor layout for measuring the impacts of 
environmental factors 

Table 1. Average position accuracy under changes in 
different environmental factors 

Baseline: Training environmental condition: non-blocking people, 
close-all-doors, 40% relative humidity level 

Environmental 
condition 

No 
change 

70% 
humidity 

Open-
all-doors

People 
block-
around

Effects 2.13 m 3.06 m 
(43.7%) 

7.17 m 
(236.6%)

3.96 m 
(85.9%)

Figure 2. Adaptive Location Positioning System
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To overcome these two difficulties, a solution is proposed to adapt 
sensors to help generate these context-aware radio maps. The 
proposed method adopts a subset of RSSI samples obtained over 
the course of its online usage to automatically train these context-
aware radio maps. Our sensor-assisted adaptation comprises three 
phases depicted in Figure 2 and described below. These phases are 
different from those (calibration & estimation) in current Wi-Fi 
based location systems. 

 Sensor-assisted sample collection phase collects RSSI 
samples and utilizes sensors to label these samples. 

 Online calibration phase applies the labeled RSSI samples to 
train different context-aware radio maps.  

 Adaptive localization phase selects the context-aware radio 
map which best matches the current environmental condition 
state to estimate the locations of the target mobile devices.  

To our knowledge, no known existing Wi-Fi based location 
systems utilize sensors to effectively overcome environmental 
dynamics and to enhance the positioning accuracy. This work is 
believed to be the first to apply sensors to detect variations in the 
physical environmental factors, apply them to automatically 
calibrate multiple context-aware radio maps from online samples, 
and incorporate context-awareness into estimating the Wi-Fi based 
location. 

The remainder of this paper is organized as follows. Section 2 
describes related works. Section 3 explains the sensor-assisted 
adaptation to environmental dynamics. Section 4 presents the 
experimental results and shows the improvement in positioning 
accuracy in our approach. Section 5 draws the conclusion and 
suggests future work. 

2. RELATED WORK 
Many location estimation systems have been developed using Wi-
Fi RSSI values to estimate locations. These systems can be 
categorized into two broad approaches. The first approach is based 
on the deterministic method [2][4][11][13]. Systems following this 
approach apply deterministic inference, such as triangulation and 
k-nearest-neighbors (KNN) search, to estimate the target device’s 
location. For example, the RADAR system [4][11] applies KNN 
to obtain the k nearest neighbors and estimates the location of the 
target device by averaging the locations of these k nearest 
neighbors. The second approach is based on the probabilistic 
method [10][12][15][16]. Seshadri et al. [10] applied Bayesian’s 
inference, which uses multiple probabilistic models and 
histograms to enhance the performance of the original system. It 
calculates the conditional probabilities over locations based RSSI. 
It also added a motion model to describe the continuity in 
human’s movements such that it can lower the oscillatory location 
estimations in Wi-Fi based localization systems. Notably, our 
proposed sensor-assisted adaptation is independent of these two 
approaches, and can be applied to both approaches and further 
enhance their positioning accuracy under environmental dynamics.  

To reduce the amount of manual calibration effort, several 
alternative methods that do not require users to collect RSSI 
samples manually have been proposed. For example, the RADAR 
system [2] has applied the radio propagation model [8][9][17] to 
estimate the RSSI at different locations in the environment. The 
radio propagation model can estimate the level of signal strength 

fading by analyzing the floor layout, locations and sizes of 
obstructions, and the attenuation factors associated with these 
obstacles. Rather than manually measuring RSSI samples in the 
environments, these systems adopt the radio propagation model to 
(1) estimate RSSI values for different location points, and (2) 
compile them into the radio map. However, in practice, the layout 
of an indoor environment is dynamic. Additionally, the 
attenuation factors of materials and obstructions are difficult to 
determine accurately. Moreover, some mobile obstacles can also 
influence Wi-Fi RSSI from AP to target devices, but their 
locations are not known in the offline phase. Based on their 
experimental results, the radio propagation model achieves a 
lower average positioning accuracy of 4.3 meters than the manual 
site survey, with 2.94 meters average accuracy. Chai et al. [3] 
presented another method to lower the amount of user calibration 
efforts by reducing the quantity of RSSI samples needed during 
offline site survey. The reduction targets (1) the number of 
sampled points on the radio map, and (2) the number of RSSI 
samples gathered at each sampled point. After reducing the 
number of sampled points, they apply interpolation method to 
estimate the RSSI values on the missing sampled points. They 
have reported that by reducing the number of sampled points and 
samples to 1/3 of the original site survey, the average positioning 
accuracy is only lowered by 16%~6%. Although their proposed 
system reduces the amount of user calibration effort while 
preserving system accuracy, it is still considered to be an offline 
calibration. By comparison, our proposed system is based on 
online calibration.  

Dynamic environmental factors can incur location estimation 
errors in traditional Wi-Fi location systems. Some proposed 
methods have attempted to address this issue. The temporal 
prediction approach in [1] can observe and learn how a radio map 
changes over time by employing emitters and sniffers to observe 
the Wi-Fi RSSI variations. By applying regression analysis, the 
temporal prediction approach can learn the temporal predictive 
relationship between the RSSI values received by sniffers and 
those received by the target mobile devices. However, the 
temporal prediction approach assumes that changes in the 
environmental factors follow some predictable temporal patterns. 
Although possibly valid in some environments, this assumption 
may not apply to many others. For example, the open & closed 
doors may be random, depending on the last person entering or 
leaving the room, and whether she/he tends to open/closed the 
door behind her/him. The occurrence time and size of block-
around people are difficult to predict in our department, since 
different numbers of visitors come and go anytime during the day. 

Given the readily availability and cost effectiveness of RFID 
technology, several recent studies [5][6][7][20] have proposed 
using RFID to track locations. Willis et al. [5] attached passive 
RFID tags with known locations to the carpet pads, and RFID 
readers in the shoes to read locations of these passive RFID tags. 
To reduce the manual efforts of deploying tags, Haehnel et al. [6] 
used a robot to explore and localize the RFID tags in the space. 
The LANDMARC system [7] placed active RFID tags on the 
objects and RFID readers in the environment to track the tags. The 
GETA Sandals [20] are a footprint-based location system that 
tracks user locations by embedding ultrasonic sensors and RFID 
readers inside the sandals. Our proposed method also adopts the 
RFID technology to help enhance the accuracy of the Wi-Fi 
location systems. 



3. SENSOR-ASSISTED INDOOR 
LOCATION SYSTEM 
The proposed system is based on the following two concepts: (1) 
it applies sensors to construct context-aware radio maps, and 
adapts location estimation to environmental dynamics by choosing 
a radio map that best matches the current environmental condition; 
(2) it conducts online calibration to automatically gather RSSI 
samples and to train these context-aware radio maps, saving user 
efforts. Figure 4 shows the architecture of the proposed system, 
which consists of the following three phases, sensor-assisted 
sample collection phase, online calibration phase, and adaptive 
localization phase, which are described in detail below.  

3.1 Sensor-assisted Sample Collection Phase 
The idea behind the sensor-assisted online sample collection 
comes from the observation that when a person walks from a 
starting point to an ending point, his/her movement speed usually 
remains fairly consistent over the distance traveled known as 
constant-speed walking. Other cases exist, including stopping in 
the middle of the path to talk to other people, or hurrying to attend 
a meeting. In these cases of non-constant-speed walking, the 
person would complete the distance traveled in a different amount 
of time from the constant-speed walking. The constant-speed 
walking cases can be found from the walking distance (e.g., l 
meters) and the average walking speed of an individual (e.g., v 
m/s) by checking whether the time traveled (t = l/v) falls within 
the range of normal constant-speed walking time. If the individual 
walks at a constant speed over a distance segment, then the system 
can accurately approximate the locations of RSSI values obtained 
on that walking segment from the following observable 
parameters: time of RSSI collection (ti), walking velocity (v), 
starting and ending locations over this walking segment (l0, ln), 
and starting and ending times of the walking segment (t0, tn).  

A small number of passive RFID readers [14] with known location 
coordinates were placed at the specified corners of the corridor to 
obtain these parameters. Additionally, the target mobile device 
was attached to a passive RFID tag, enabling it to be read when 
coming within approximately 2 meters of the passive RFID 
readers. A person’s walking path is divided into multiple walking 
segments, where each segment is defined as walking from one 
RFID reader placed at one corner to another RFID reader placed 
at another corner. The system then observes (t0, ti, tn, l0, ln) and 
forwards these parameters to the online RSSI sample filter. 

The online RSSI sample filter checks whether the RSSI samples 
collected over a walking segment are from constant-speed walking. 
This detection is conducted by checking whether the traveled time 
over a walking segment falls within the range of constant-speed 
walking time. Based on a pedestrian walking study [19], we set 
the constant walking speed range to 1.25 m/s–1.78 m/s which 
captures approximately 70% of people’s constant-speed walking. 
The fairly conservative range was selected to prevent RSSI 
samples from non-constant-speed walking from passing through 
the filter and corrupting the training samples.  

After the constant-speed walking RSSI samples are selected, the 
next step is the RFID-assisted location estimation that 
approximates the location of these RSSI values. Figure 3 depicts 
an example of using this method. Two RFID readers are placed in 
(x0, y0) and (x4, y4). At t0, the user walks past (x0, y0) which 
denotes the beginning of this walking segment. The user then 

reaches (x4, y4), which denotes the end of this walking segment, 
and at time t4. SS1, SS2 and SS3 denote RSSI values collected at 
times t1, t2, and t3 over this walking segment. The position 
coordinates (xi, yi), where i=1-3, can be estimated from these 
observable parameters according to the formulas defined below: 

 
Environment sensors were also deployed to monitor the 

environmental condition state in terms of doors, humidity, and 
people. Humidity sensors were installed in the environment to 
detect the current humidity level. The open/closed doors status 
was obtained by connecting to the RFID/smart card access control 
systems already installed in most rooms occupied by the 
department labs. Short-range (10 meters) Bluetooth radio and its 
RSSI information were used to detect block-around people. People 
were assumed to carry Bluetooth-enabled mobile devices, since 
most high-end PDAs and smart phones have Bluetooth radio. The 
number of people surrounding the user can be estimated from the 
number of Bluetooth devices around the target user, enabling the 
block-around condition to be determined. 

These RSSI measurements are labeled with (1) locations and (2) 
environmental condition to calibrate context-aware radio maps as 
described in the next phase. 

3.2 Online Calibration Phase 
The online calibration phase trains multiple context-aware radio 
maps from the labeled RSSI samples. One difficulty with online 
calibration is that collecting enough samples to train an accurate 
radio map may take several days or weeks. Based on our 
experiences with our training engine, training an accurate radio 
map in a 1000 m2 space may need over 200 traces of RSSI 
samples. The number of traces required is proportional to the size 
of the environment. When environmental factors are considered, 
even more RSSI samples are needed to train all possible context-
aware radio maps, creating a cold-start problem: the system 
suffers from poor positioning accuracy during initial deployment 
before context-aware radio maps have been trained with sufficient 
samples. This cold-start problem was solved by building a cold-
start radio map trained with all RSSI samples from all 
environmental conditions. If the system cannot find an accurate, 
context-aware radio map with sufficient training samples, then it 
refers back to the cold-start radio map to estimate locations. 

Consider the following example. The system adapts to the 
following three environmental factors, people, doors and humidity. 
Each environmental factor has two possible states. For people, 
these states are non-blocking or block-around; for doors, they are 
open or closed, and for humidity, they are high or low. These 
states combine to give a total of eight possible state combinations 
corresponding to eight context-aware radio maps. The system 
initializes eight empty context-aware radio maps and one cold-
start radio map. Given a trace of labeled samples, the online 

t0 t1 t3 t2 

(x0, y0) 

SS1 SS2 SS3 

(x1, y1) (x2, y2) (x3, y3) (x4, y4) 
t4 

xi=x0 + (ti–t0) * vx 
yi=y0 + (ti–t0) * vy 

 

vx=(x4–x0) / (t4–t0)
vy=(y4–y0) / (t4–t0)

where i = 1~3

Figure 3. Estimate the location of RSSI samples 



Radio map Radio map Radio map Context-aware 
Radio maps

Location 

Calibration 

Online RSSI Sample 
Filter 

Online Training Engine

Adaptive Location 
Estimation Engine 

Environment sensors 
(e.g., humidity sensor) 

RFID-assisted location 
estimation 

Labeled Online RSSI 
Samples 

Client RSSI values 

Location 
Estimation Sensors 

Query current state of 
environmental condition 

Select a 
radio map 

Sensor-assisted Sample Collection Phase Online Calibration Phase Adaptive Localization Phase

Environment  
condition 

Figure 4. Three phases of our sensor-assisted indoor location system. 

training engine looks up the environment label, and trains the 
corresponding context-aware radio map with the samples. The 
labeled samples are also applied to train the cold-start radio map.  

3.3 Adaptive Localization Phase 
When the adaptive location estimation engine receives RSSI 
values from a mobile device, it queries the environment sensors to 
obtain the current environmental condition, and then choose a 
radio map that best matches the current environmental condition. 
If the best-matched radio map has too few training samples (i.e., 
less than 200 traces of samples), the cold-start radio map is chosen. 
The chosen radio map can be applied to a location estimation 
engine to calculate the location of the target. 

During the online usage, the adaptive localization phase runs in 
parallel with the other two phases. When the location system 
receives RSSI values from a mobile device, both the localization 
phase and the sample collection phase are executed to run online 
calibration and online location estimation simultaneously.  

4. EXPERIMENTS 
The following two experiments were performed to evaluate the 
proposed adaptive indoor location system. In the first experiment, 
the RFID-assisted online calibration was evaluated based on 
constant-speed walking and in a static environment state (not 
considering environmental dynamics). The positioning accuracy 
of the online and offline calibration was compared. In the second 
experiment, the adaptive localization that utilizes online 
calibration to construct context-aware radio maps under changing 
environmental dynamics was evaluated. The positioning accuracy 
of adaptive and non-adaptive localization was compared under 
changing environmental dynamics. 

4.1 Performance Evaluation on RFID-assisted 
Online Calibration 
To evaluate the performance of our online calibration without 
being affected by changing environmental factors, the 
environment state was left unchanged to ensure that only one 
person walks on the corridor in each time period. Figure 5 shows 

the layout of this experimental test-bed on the 3rd floor of our 
department building: the triangles (▲) mark the locations of APs; 
the circles (●) mark the locations of RFID readers, and the shaded 
green lines mark the walking segments. 

Three human subjects (graduate students) acted as testers in our 
experiments. Each subject carried a RFID-tagged PDA and 
walked along the shaded-lined segments, hitting four RFID 
readers in both clockwise and counter-clockwise directions. A 
data trace was denoted by RSSI values received by a subject 
through a walking segment from one RFID reader to the adjacent 
reader. A data unit was denoted as RSSI values when a subject 
walked two circles in the counter-clockwise and clockwise 
directions. This means that each data unit contains eight data 
traces. A total of 27 data units (216 data traces) were collected 
from three human subjects, and all are constant-speed walking. As 
each data trace is collected online, the system feeds it into the 
online training engine to refine our radio map, and simultaneously 
runs the location estimation engine to track the user’s position. 
The results in Figure 6 illustrate that the average positioning 
accuracy improves as the number of data traces increases, 
converging to approximately 2.9 meters. 

The performance of the manual offline calibration in the 
traditional Wi-Fi based methods is compared to our automated 
online calibration. For a fair comparison, the same location 
estimation engine and site survey software are used to construct 
the radio map. The site survey selects 40 RSSI samples from each 
of 24 fixed sampled points separated by 5 meters. Figure 7 shows 
the experimental setup, where the points mark the sampled 
locations. The manual offline calibration can achieve an average 
positioning accuracy of 2.73 meters. By comparison, the offline 
calibration method achieves similar positioning accuracy to (a 
slight 0.17 meter better than) our online calibration method. The 
proposed online calibration method can obtain a similar 
positioning accuracy without requiring a manual site survey. This 
advantage becomes significant when considering location systems 
that can adapt to changing environmental dynamics. When 
constructing multiple context-aware radio maps, the level of user 



effort needed in the offline manual calibration method also 
multiply, making it impractical. 

4.2 Performance Evaluation on Adaptive 
Localization 
A small area (approximately 400 m2) shown in Figure 1 was 
selected to perform the 2nd experiment. Since this small area is a 
closed space, it allows better control and manipulation of the 
environment state, and then observes how well the adaptive 
localization adjusts to changing environmental dynamics. This 
small area had 5 APs depicted as triangles, deployed in 5 different 
rooms on a corridor. Two RFID readers depicted as circles were 
deployed at two endpoints of the corridor. The location system 
tracked a human subject carrying an RFID-tagged PDA and 

walking along the corridor. Multiple context-aware radio maps 
were constructed using the proposed online calibration method. To 
determine how well the proposed location system adapted to 
different changing environmental factors, one environmental 
factor state was altered at a time, and change in the positioning 
accuracy was measured, also showing the effect of each individual 
environmental factor on the positioning accuracy.  

4.2.1.1 Impact of Open/Closed Doors 
The experimental setup was described to evaluate how well the 
proposed adaptive localization adjusted to doors while keeping the 
other environmental factors (no-blocking people and 40% RH 
level) unchanged. The experiment consisted of the following three 
steps. In the Step 1, all doors were closed, and online calibration 
was then applied to train the close-all-doors radio map. In Step 2, 
all doors were opened, and online calibration was applied to train 
the open-all-doors radio map. In Step 3, the average positioning 
accuracy was measured by applying each of two radio maps 
(close-all-doors & open-all-doors) to each of the two 
environmental conditions.  

The average positioning accuracy of each of these four map-
environment combinations is plotted on the left graph of Figure 8. 
The cumulative distribution functions (CDF) with increasing 
training samples are plotted on the right graph of Figure 8. The 
average positioning accuracy is shown in Table 2. When the 
close-all-doors radio map is applied to estimate locations in the 
same close-all-doors environment, the average positioning 
accuracy is 2.13 meters after 20 data traces. When the close-all-
doors radio map is applied to estimate locations open-all-doors 
environment, the average positioning accuracy (after 20 data 
traces) deteriorates by 5.04 meters to 7.17 meters. When the open-
all-doors radio map is applied to estimate locations in the open-
all-doors environment, the average positioning accuracy is 2.81 
meters after 20 data traces. When the open-all-doors radio map is 
applied to the close-all-doors environment, the average 
positioning accuracy (after 20 data traces) deteriorates by 1.78 
meters to 4.59 meters. Notably, under changing environmental 
dynamics, the proposed adaptive localization can avoid applying 
the wrong radio map to the current environment. That is, the 
adaptive localization can achieve a good positioning accuracy of 
2.13–2.81 meters, while the non-adaptive method has a poor 
positioning accuracy of 4.59–7.17 meters. 

 

4.2.1.2 Impact of People Blocking 
We evaluate how well the proposed adaptive localization adjusts 
to people blocking while leaving the other environmental factors 
(close-all-doors and 40% RH level) unchanged. The experiment 
consisted of the following three steps. In Step 1, the target user 
walked on the corridor alone so that the online calibration system 
can collect RSSI samples to train the non-blocking radio map. In 
Step 2, six people surrounded the target user and walked together, 

Table 2: Impact of open/closed doors on average accuracy 

Average 
accuracy 

Close-all-doors 
radio map 

Open-all-doors 
radio map 

Close-all-doors 
environment 2.13 m 4.59 m 

Open-all-doors 
environment 7.17 m 2.81 m 

Figure 5. Floor layout for experiment #1 

Figure 6. Average positioning accuracy with 
increasing training traces 

Figure 7. Site survey in the offline training phase. The 
squares (■) mark the sampled locations 



Figure 9. The left graph shows the impact of people on the average positioning accuracy under different map-environment 
combinations. The right graph shows CDFs of their average positioning errors with increasing training samples. 

so that the online calibration can collect RSSI samples to train the 
block-around radio map. In Step 3, the average accuracy was 
measured by applying each of two radio maps (non-blocking & 
block-around) to each of the two environmental conditions.  

The average positioning accuracy of each map-environment 
combination is plotted on the left graph of Figure 9. Their 
cumulative distribution functions (CDF) with increasing training 
samples are shown on the right graph of Figure 9. Table 3 
summarizes the average positioning accuracy. It leads to the 
conclusion that adaptive method outperforms non-adaptive 
method, which is similar to the results in Section 4.2.1.1.  

4.2.1.3 Impact of Relative Humidity 
We evaluate how well the adaptive localization adjusts to varying 
relative humidity (RH) levels while leaving other environmental 
factors (close-all-doors and no-blocking people) unchanged. The 

experiment consisted of the following three steps. In Step 1, a 
dehumidifier was run to bring the RH in the environment down to 
40%, and online calibration is then applied to train the 40%-RH 
radio map. In Step 2, the windows were opened to allow RH to 
reached 70%, and online calibration was applied to train the 70%-
RH radio map. In Step 3, the average positioning accuracy was 
measured by applying each of two radio maps (trained under 40% 
& 70% RH environments) to each of the two environmental 
conditions.  

The average positioning accuracy of each of the four map-
environment combinations is plotted on the left graph of Figure 10, 
and their cumulative distribution functions (CDF) with increasing 
training samples are plotted on the right graph of Figure 10. Table 
4 summarizes the average positioning average. It leads to the 
conclusion that adaptive method outperforms non-adaptive 
method, which is similar to the results in Section 4.2.1.1. 

Figure 8. The left graph shows the impact of open/closed doors on the average positioning errors under different map-
environment combinations. The right graph shows CDFs of their average positioning errors with increasing training samples. 

Table 3: Impact of block-around and no-blocking people 
on average positioning accuracy. 

Average 
accuracy 

Non-blocking 
radio map 

Block-around 
radio map 

Non-blocking 
environment 2.13 m 4.30 m 

Block-around 
environment 3.96 m 2.54 m 

Table 4: Impact of humidity levels on average accuracy 

Average accuracy 40% RH radio 
map 

70% RH radio 
map 

40% RH 
environment 2.13 m 3.68 m 

70% RH 
environment 3.06 m 2.59 m 



5. CONCLUSIONS AND FUTURE WORK 
This work quantitatively measured how changing environmental 
dynamics adversely affects the positioning accuracy in the Wi-Fi 
based location systems. To reduce this adverse effect, a new 
sensor-assisted adaptation method was proposed to adapt the 
localization engine to the current environmental condition. 
Additionally, automated online calibration was also proposed to 
eliminate the need for offline manual calibration. Our 
experimental results have shown that the error is reduced by an 
average of 2.6 meters in comparison to traditional non-adaptive 
localization methods. 

The proposed systems have several limitations. Our experiments 
were performed mainly in the corridor, rather than within rooms. 
Additional RFID readers may need to be installed inside rooms to 
enable automatic online calibration. This requirement may add 
cost to the sensor part of this localization system. However, we 
believe that future environments will have a rich sensor 
infrastructure that can be shared and reused by many context-
aware applications, including our localization system. For the 
people factor, the current study only targets the people block-
around scenario. Although block-around people can show a strong 
impact on the positioning accuracy, this is admittedly a rather 
limited case.  
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Figure 10. The left graph shows the impact of humidity (40% and 70% RH levels) on the average positioning accuracy under 
different map-environment combinations. The right graph shows the CDFs of their average positioning errors with increasing 

numbers of training samples. 


