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Abstract—This technical note presents the design, analysis, and perfor-
mance evaluation of a novel globally asymptotically stable (GAS) filter for
attitude estimation. The design is sensor-driven and departs from tradi-
tional solutions as no explicit representations of the attitude are considered.
The proposed solution yields unique estimates and it does not suffer from
drawbacks such as singularities, topological limitations for achieving global
stabilization, or unwinding phenomena. The performance of the overall
attitude estimation solution is evaluated with the design and implemen-
tation of an Attitude and Heading Reference System (AHRS) based on a
single low-cost Inertial Measurement Unit. The performance of the pro-
posed AHRS is assessed experimentally using a high precision motion rate
table, which provides ground truth signals for comparison with the re-
sulting estimates.

Index Terms—Attitude and heading reference system (AHRS), extended
Kalman filters (EKFs), globally asymptotically stable (GAS).

I. INTRODUCTION

The design of Navigation Systems plays a key role in the develop-
ment of a large variety of mobile platforms. Indeed, the quality of the
navigation information is a fundamental requirement in many appli-
cations, whether it is for geo-referenced data acquisition purposes or
for guidance and control applications. This technical note presents the
analysis, design, and performance evaluation of a new class of glob-
ally asymptotically stable (GAS) filters for attitude estimation based
directly on the aiding sensor measurements.

Traditional attitude estimation methods consist, as discussed in the
recent survey paper [1], of a two step process: i) estimate the attitude
from body measurements and known reference observations, and ii)
filtering the noisy quantities. The first step, where an attitude estimate
is obtained from body measurements to feed a filter (or an observer),
ends up in one of many known representations [2], e.g., Euler angles,
quaternions, Euler angle-axis representation, rotation matrix, etc. For
the filtering process there is also a very large number of alternatives,
depending on the models and representations of the attitude. Kine-
matic models, which resort basically to the integration of three-axial
rate gyros, are exact. However, these sensors have nonidealities such as
biases, which are often time-varying. Dynamic models for the angular
velocity, obtained from the simplification of the platform dynamics, are
usually complex, highly nonlinear, often time-varying, and the mobile
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platform inertia matrix and angular damping coefficients may not be
well known. With all possible combinations, attitude estimation solu-
tions are many in the literature. Extended Kalman Filters (EKFs) and
some other filtering variants have been widely used, see [3] and [4],
for instance. In spite of the good performance achieved by EKF and
EKF-like solutions, divergence due to the linearization of the system
dynamics [1] has led the scientific community to pursue different so-
lutions, in particular nonlinear observers such as those presented in [5]
and [6]. For a more thorough survey, the reader is referred to [1]. In
all the aforementioned references, sensors data are essentially used to
obtain instantaneous measurements of the attitude that are used after-
wards to feed a filter or an observer, depending on whether or not a
stochastic approach is considered. Sensor specificness is therefore dis-
regarded and, even when it is addressed, the nonlinear transformations
that are required to compute the attitude from vector measurements
distort noise characteristics. Moreover, with the exception of EKF and
EKF-like solutions, systematic tuning procedures are often absent. Ex-
ceptions can be found in [7] and [8], where vector measurements are
explicitly considered in the design of observers built on the Special Or-
thogonal Group SO(3) and the Special Euclidean Group SE(3), re-
spectively. In the first, local exponential stability is achieved and the
error is shown to converge to zero for almost all initial conditions,
while in the second case, almost global exponential stability (AGES)
is achieved for the observer error dynamics.

The main contribution of this technical note is the development of
a novel class of sensor-based attitude estimation filters that: i) have
globally asymptotically stable error dynamics; ii) resort to the angular
motion kinematics, which are exact; iii) build on the well-established
Kalman filtering theory; iv) provide systematic filter tuning procedures
based directly on the sensor noise characteristics, including frequency
weights to model colored noise; v) estimate explicitly rate gyro bias and
cope well with slowly time-varying bias; and vi) have a complementary
structure, fusing low bandwidth vector observations with high band-
width rate gyro measurements. Most important, the design is sensor-
driven and departs from traditional solutions as no explicit represen-
tations of the attitude, e.g., Euler angles, quaternions, or rotation ma-
trices, are considered in the filter design. Instead, sensor readings are
included directly in the filter dynamics and an attitude representation is
obtained afterwards, as in traditional solutions, but using filtered esti-
mates of the sensor measurements. Therefore, the proposed filters yield
unique estimates and do not suffer from drawbacks such as singular-
ities, topological limitations for achieving global stabilization, or un-
winding phenomena, see [2] and [9].

Essential to the design of the filters is a modification of the nom-
inal sensor-based system dynamics that yields a structure that can be
regarded as linear time-varying (LTV), although the system still is,
in fact, nonlinear. However, it should be stressed that the resulting
system dynamics are exact and no approximations or linearizations
are performed whatsoever. For implementation purposes, a Kalman
filter is detailed and the final attitude estimation solution results from
combining the sensor-based filter with an optimal attitude determina-
tion algorithm. This last problem is commonly known in the literature
as the Wahba’s problem [10]. For two vector observations, there are
closed-form solutions available in the literature, see [1], [11], [12], and
references therein. Notice that this last step is actually the first step in
traditional solutions, which is usually not mentioned as it is often as-
sumed that the attitude, expressed in one of many representations, is
available for filtering purposes. Preliminary work by the authors can
be found in [13].

This note is organized as follows. The sensor-based framework that
is at the core of the proposed solutions is presented in Section II, and,
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Fig. 2. Sensor-based attitude estimation approach.

in Section III, the observability properties of the resulting system are
derived. The filter design and overall structure of the Attitude Determi-
nation System (ADS) are detailed in Section IV, whereas experimental
results are shown and discussed in Section V. Finally, the main contri-
butions and conclusions are summarized in Section VI.

A. Notation

Throughout this technical note the symbol O denotes a matrix (or
vector) of zeros and I an identity matrix, both of appropriate dimen-
sions. A block diagonal matrix is represented as diag(Aq,.... A, ).
Forx € R* andy € R®, x x y represents the cross product. Finally,
the Dirac delta function is denoted by 6(¢) and the magnetic field unit
of measurement Gauss is abbreviated as G.

II. SENSOR-BASED FRAMEWORK

A. Sensor-Based Concept

The traditional design of attitude filters or observers assumes that
instantaneous attitude measurements are readily available for filtering
design purposes, which resorts to one of the many attitude representa-
tions. Fig. 1 depicts such a solution. As it is possible to observe, vector
measurements such as the gravitational and magnetic fields are first
used to compute a representation of the attitude of the vehicle. After-
wards, the attitude filter evolves according to the representation of the
attitude and resorting to kinematic or dynamic attitude models. With
this classic approach the transformations that are necessary to obtain
an attitude representation distort the noise characteristics of the sen-
sors. Moreover, attitude representations such as Euler angles, quater-
nions, rotation matrices, etc., exhibit strong pitfalls such as singular-
ities, topological limitations for achieving global stabilization, or un-
winding phenomena, see [2] and [9] for further details. The core con-
cept of the technical note is to take into account the specificness of
each sensor by designing the filter directly in the space of the sensors,
as exemplified in Fig. 2. An attitude representation, for example a ro-
tation matrix, which does not have singularities and is unique, is then
obtained from the filtered estimates. In addition to the inclusion of the
specificness of the sensors in the filter design, topological restrictions
on SO(3) for achieving global asymptotic stability are no longer in
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place since the filtering process occurs prior to the determination of
the attitude. Furthermore, the proposed solutions do not exhibit any
unwinding behaviors.

B. Problem Statement

Let {I} denote a local inertial frame, {B} the body-fixed frame,
and R(t) € SO(3) the rotation matrix from {B} to {I}. The attitude
kinematics are given by R(t) = R(#)S[w(#)], where w(t) € R? is the
angular velocity of { B}, expressed in { B}, and S(&) is the skew-sym-
metric matrix such that S(2)y = @ X y. Suppose that there are available
vector measurements v (t) € R* and y2(#) € R®, both expressed in
body-fixed coordinates, of known constant vectors in inertial coordi-
nates, i.e., Ty; = R(t)y1(t) and Tys = R(t)y2(t), respectively. The
reader is referred to [7] for the concept of vector observations and cor-
responding examples. Then, the dynamics of y (¢) and y= (¢) are given
byyi(t) = —Slw(t)]y1(t) and y2(t) = —S[w(t)]y=(t), respectively.
Further consider rate gyro measurements w,, () € R® corrupted with
bias b, € R®,ie. wm(t) = w(t) + bu(t). Then, the sensor-based
system dynamics are given by

X1 (f) =-S5 [wm(t)] Xl(f) +S [bw(f)] xl(f)
52() = =8 (D] x2(1) + 8 [ba(] (1)
b () = 0

yi(t) =xi(t)

ya2(t) = xa2(t)

()]

The problem considered here is the design of a filter solution for the
nominal nonlinear system (1), considering also additive system distur-
bances and sensor noise. Notice that, once filtered estimates of x; ()
and x2 () are obtained, the attitude can be immediately computed using
classic methods.

III. OBSERVABILITY ANALYSIS

The observability of the nonlinear system (1) is examined in this
section. To that purpose, notice that using the cross product property

& Xy = —y X &z, itis possible to rewrite (1) as
&(t) = A(t)z(t)
{510 = st @
where
=S [wim (1)] 0 =S [y (1)
A(t) = 0 =S [wm(t)] —S[y2(t)]
0 0 0
and
I 0O
c= [0 I 0] ‘

Notice that the relations x; = y: and x2 = y» were used in order
to write the system matrix A (%) in such a way that it does not depend
on the system state. Indeed, all entries of A(¢) may just be consid-
ered as continuous bounded known functions of ¢. Now, although the
system dynamics (2) are nonlinear, they may, nevertheless, be regarded
as LTV for observability and observer design purposes, as in the fol-
lowing lemma [14, Lemma 1].
Lemma 1: Consider the nonlinear system

{ x(t) = A(t,u(t), y(t) x(t) + B(t)u(t)

y(t) = C(Hx(1) ' @

If the observability Gramian W(to,ts) associated with the pair
(A(t,u(t),y(t)),C(t)) on T = [to,ts] is invertible then the non-
linear system (3) is observable in the sense that, given the system
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input {u(t),t € I} and the system output {y(¢),¢ € I}, the initial
condition x(t¢) is uniquely defined.

Before presenting the main result of this section, the following
lemma is introduced, see [15, Proposition 4.2].

Lemma 2: Let £(t) : [to,ty] C R — R" be a continuous and
two times continuously differentiable function on 7 := [to, ts], T :=
ty —to > 0, and such that f(¢o) = 0. Further assume that £(¢) is
bounded on Z. If there exists a positive constant & and #; € Z such that
l£(#,)]] > ., then there also exists a positive constant 3 and 0 < § <
T such that [|f(to + 0)|| > 8.

The following theorem addresses the observability of (2).

Theorem 1: If the vector observations are non parallel or,
equivalently

fyix'y:#0 @)
then the pair (A(t), C) is uniformly completely observable.

Proof: Let R.,(t) € SO(3) be a rotation matrix such that
R...(t) = R, (t)S[w. (t)] and consider the Lyapunov transformation
z(t) = T(H)z(t), with T(t) = diag(R..(t), R, (t),I), which
preserves observability properties [16]. The new system dynamics are
given by z(t) = A(t)z(t), y(t) = C(t)z(t), where

0 0 —R,(t)S[yi(t)]
0 0 0
_[RL®) 0 o0
=10 mLn o

and the transition matrix associated with .A(¢) is given by
I 0 — [ Ru(o)S[yi(o)]do

0 I —ft R..(0)S[y2(0)] do
0 0 I

¢(t3 tO) =

Letd = [dfdr_fdé]T € R® be a unit vector, withd; € R, i = 1,
2, 3. If W(to,ty) denotes the observability Gramian associated with
the pair (A(t),C(t)) on [to, t£], it is a simple matter of computation to
show that d” W(t,t + 6)d = :H [f(7,1)||2dT for all + > o, where

di — [T R..(0)S[yi(0)]dsdo
d; — fL R..(0)S[y2(0)]dsdo

T € [t,t+6],t > to.Ford; # 0ord; # Oitis clear that ||£(¢, t)|| >
[[d1]| = a1 or ||[£(#,#)|| > ||d2|| = a=, respectively, for all ¢ > #;. On
the other hand, if d; = d2 = 0, it follows that ||ds|| = 1, £(¢,¢) = 0,
and

f(r,t) :=

ﬁ(,l_ f) _ R.. (f)S [Y1 (f)] ds

ar T R (O)S[y2(0)]ds |’

T=t%

Now, suppose that (4) is true. Then, it is also true that y; (¢) X y=(¢) # O
for all ¢+ > o and hence there exists a3 > 0 such that
[(Of/O7)(T,t)|-=¢]| > a3 forall t > to and ||ds|| = 1. In
addition, notice that the second derivative of f with respect to 7 is
bounded on [t,? 4 ¢], uniformly in ¢. But this means, using Lemma 2,
that there exist ay > 0 and 6; > 0 such that ||£(¢ + &1, ¢)|| > a4 for
allt > ty. Therefore, there exist positive constants «™ and 6* such that
If(t 4 6*,#)|| > a* forallt > to andd € R?, ||d|| = 1. But then,
using Lemma 2 again, there also exist positive constants v and ¢ such
that AT W(t,t + 6)d > a forall t > to and d € R’, ||d|| = 1. This
suffices to conclude that the pair (A(t), C) is uniformly completely
observable as both matrices are norm-bounded, which concludes the
proof. u
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This result is fundamental to assess the stability of the Kalman filter
that will be presented in Section IV.

Remark 1: Although Theorem 1 provides only a sufficient condi-
tion, it is this condition that interests in general for attitude estima-
tion. Indeed, if (4) is not verified, i.e., if the vectors are parallel, the
LTV system (2) may still be uniformly completely observable. How-
ever, since both vectors are parallel, it is impossible to determine the
attitude.

Remark 2: Notice that Theorem 1 provides also a constructive result
on the design of state observers for (2). Indeed, if the pair (A(t), C) is
uniformly completely observable, then it is possible to design a linear
state observer with globally asymptotically stable error dynamics for
the dynamic system (2), following the results of Lemma 1. A similar
example of application of this result can be found in [14], where the
problems of source localization and navigation based on single range
measurements were addressed.

IV. ATTITUDE DETERMINATION SYSTEM

A. Sensor-Based Filter Design

Considering that the underlying system dynamics can be regarded
as linear for observability purposes, a natural estimation solution is to
use a continuous-time Kalman filter. Considering additive system dis-
turbances and sensor noise, the system dynamics are given by

{fc(t) = A(Da(t) + wit)
y(t) = Ca(t) + n(t)

where w(t) = [wl(t)wi(t)wi(#)] € R is zero-mean
white Gaussian n01se with Ew(t)wl(t — 7)] = Eé(r),
n(t) = [nT (t) n; (t)] € R® is zero-mean white Gaussian noise,
with E[n(t)n” (t — 7)] = ©6(7) and E[w(t)n” (t — 7)] = 0. Notice
that, for filter design purposes, both w(t) and n(¢) could have been
modeled as the outputs of stable linear time invariant filters, which
could be easily employed to model, e.g., colored noise, see [17] for an
example of such application. In this technical note, and for the sake
of clarity of presentation, the simplest white Gaussian noise version
is presented.

The Kalman filter equations for the system dynamics (5) are standard
[18]-[20]. The state estimate evolves according to

x(t) = A()x(t) + K(t) [y(t) —

5

Cx(1)] (6)

where the Kalman gain matrix is given by K(t) = P(+)CTO™',
where P(t) is the covariance matrix, which satisfies P(¢) =
AP +PHAM)+E-P(H)CTOT'CP(1).

It is important to stress that the resulting structure is complementary:
high bandwidth rate gyro measurements are combined with low fre-
quency vector observations to determine a low frequency disturbance
in the gyro measurements and provide filtered estimates of the vector
observations, see [7] for details on complementary filtering.

Remark 3: One should notice that additive Gaussian noise may not
be the best modeling option. Indeed, multiplicative noise would be
more accurate, as the presence of noise in the gyro measurements is
reflected as terms like S{w; (¢)]x;(¢), ¢ = 1, 2, instead of simple addi-
tive system disturbances. Also, different noise distributions could better
model the sensors noise. As an alternative, it is possible to consider
w(t) € L2 andn(t) € Lo, where L2 denotes the space of square inte-
grable signals, and design an H  filter instead of a Kalman filter. The
steps are similar and therefore will be omitted.

B. ADS Structure

The final Attitude Determination System results from combining the
sensor-based filter with an algorithm that determines the proper rotation
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matrix R € § O(3) which best explains the vector estimates provided

by the filter. This corresponds to the sensor-based structure depicted in

Fig. 2, where the sensor-based filter that yields filtered vector estimates

corresponds to the Kalman filter A(6) and the attitude is obtained by

finding the proper rotation matrix R.(#) that minimizes the loss function
1 2

J(RM) =3 Zlai

N 2
vi(t) = RT(D)y. } a;>0,i=1,2.

This problem is known in the literature as the Wahba’s problem [10]
and in this technical note the attitude matrix is reconstructed using the
closed-loop (and computationally efficient) optimal solution presented
in [12]. The coefficients a; can be chosen to reflect the confidence on
each sensor.

Remark 4: There is nothing in the filter structure imposing any par-
ticular relation between y(¢) and ¥2(¢). Moreover, there are no re-
strictions on the norms of the vector estimates. In fact, if any of these
restrictions was imposed, it would not be possible to achieve globally
asymptotically stable error dynamics due to topological limitations, see
[9]. Due to the absence of these restrictions, it may happen that, for
some time instant ¢, 1 (¢) and y-(t) are parallel or null. In this case,
the optimal solution presented in [12] is not well defined and as such an
alternative must be considered. A simple solution is to employ directly
the vector measurements when the vector estimates are parallel or null,
which yields a unique solution for the rotation matrix.

Remark 5: It is important to stress that the stability properties of the
filter are not affected by the issue discussed in the previous remark, as
the filter process occurs prior to the determination of the estimate of
the rotation matrix. Moreover, in the absence of noise, the error of the
estimate of the rotation matrix will always converge to zero, as after
the initial transients of the filter fade out, the estimate of the rotation
matrix is obtained from the vector estimates, whose error converges to
zero. In the presence of sensor noise, the error will naturally remain
confined to a neighborhood of the origin.

C. Integration of Additional Attitude Aiding Devices

Although the design presented in the note relies only on two vector
observations, the proposed solution is trivially extended for multiple
vector observations. Indeed, all that is required is to add more states to
the system dynamics (5) and to modify the attitude determination al-
gorithm to cope with more than two vector observations. This is quite
useful as there exists a myriad of commercially available sensors that
provide vector measurements useful for attitude determination. Notice
that in this case the specificness of each sensor can still be directly in-
corporated in the filter design and colored noise is easily modeled, as
opposed to classical solutions that use the vector measurements solely
to compute an instantaneous attitude representation used to feed an ob-
server or filter built on one of the many attitude representations.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

In order to evaluate the performance of the proposed sensor-based
filter and the resulting Attitude Determination System, an Attitude and
Heading Reference System (AHRS), based on a single Inertial Mea-
surement Unit, was designed, implemented, and tested. The IMU con-
tains three sets of orthogonally mounted rate gyros, accelerometers,
and magnetometers, therefore providing sufficient vector observations
for attitude estimation, along with angular velocity measurements. The
IMU that was employed was the NANO IMU NA02-0150F50, from
MEMSENSE, which is a low cost sensor that outputs data at a rate
of 150 Hz. The worst case standard deviation values provided by the
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manufacturer are 0.0015 G and 0.008 m/ s” for the magnetometers and
accelerometers, respectively, and 0.95° /s for the rate gyros.

In simulation environment the true values are always available,
which allows for an easy evaluation of the performance of the pro-
posed designs. In order to experimentally evaluate the performance
of the proposed AHRS, the experiments were carried out with a 3
degree-of-freedom high accuracy Motion Rate Table, Model 2103HT
from Ideal Aerosmith. This table has three rotational joints which
allow for movement about 3 orthogonally mounted axis, so called
inner, middle, and outer axis, and that were defined as the x, y, and
z axis of the body-fixed reference frame. Therefore, the rotation
from body-fixed coordinates to inertial coordinates can be written
as R(t) = R.(Oout(t))Ry(0mia(t))Ra(binn(t)), where Ry (.),
R,(.),and R.(.) are the rotation matrices about the x, y, and = axis,
respectively, and 85, #1mia, and 6.+ are the inner, middle, and outer
axis angles, respectively. The table outputs the angular positions with
a resolution of 0.00025°, considered as ground truth signals.

Unfortunately, the motion rate table heavily distorts the magnetic
field in the neighborhood of the IMU, even though it was attempted to
place the IMU as far as possible from the remaining experimental setup.
Therefore, magnetic field measurements were simulated in the loop in
real time using the table angular position measurements and realistic
sensor noise was added so that the results are as realistic as possible. In
practical applications, many sources of magnetic field disturbances can
be accounted for calibrating the magnetometer, see [21] and references
therein, which makes the magnetometer a common sensor employed in
attitude estimation.

B. Performance Evaluation

The real-time performance of the AHRS is assessed in this section.
The evolution of the inner, middle, and outer angles is depicted in Fig.
3. Notice that the angular motion full range is used, and if Euler angles
were employed problems would have arised due to singularities. Also,
although not depicted in the technical note, the angular velocity w(?),
reaches interesting values. The Kalman filter parameters were set ac-
cording to the sensor noise levels, 2 = 0.5diag(0.0015I, 0.008L, 2 X
107'°T) and © = diag(0.0015I,0.008T). No particular emphasis was
given on the tuning process as the resulting performance with these
simple parameters is very good. In practice, the spectral contents of
the sensors noise may be experimentally approximated and frequency
weights adjusted to improve the performance of the filter, see the ex-
amples provided in [17]. Moreover, correlation between the system dis-
turbances w and the sensor noise n may also be considered. Since x;
and x» are measured, these variables were initialized with the first set
of measurements. The initial bias estimate was set to zero.

The initial convergence of the filter errors for the magnetic and grav-
itational fields is shown in Fig. 4. The filter convergence is extremely
fast. Since it is not possible to plot the evolution of the bias error, as the
true bias is unknown, Fig. 5 displays the initial convergence of the bias
estimate and the detailed evolution after the initial transients fade out.
As it can be seen, the rate gyros biases estimates changes over time,
which is quite typical of low-cost units.

In order to evaluate the overall attitude performance, yaw, pitch, and
roll Euler angles could have been computed from the estimated ro-
tation matrix. However, as these would have singularities due to the
full-range trajectory described by the attitude, and for the purpose of
performance evaluation only, an additional error variable is defined as
R(t) = R"(+)R(t), which corresponds to the rotation matrix error.
Using the Euler angle-axis representation for this new error variable

R(t) = Lcos (é(t)) 4 [1 — cos (é(t))] aa’ @)
-s (&(t)) sin (é(t)) @
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where 0 < # < mandd € R®, ||d|| = 1, are the angle and axis
that represent the rotation error, the performance of the filter is easily
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identified from the evolution of §. The mean angle error, in steady state
(which is achieved in less than 1 s), using the angle-axis representation
(7), is 0.125°, which is a very good value considering the low perfor-
mance specifications of the IMU at hand. It is also comparable with
the results obtained in simulation, where the mean error was 0.064°
considering that real sensors do not have white Gaussian noise dis-
tributions. Further improvements could be achieved by analyzing the
spectral contents of the sensor measurements at rest and including the
sensor frequency response specifications in the filter design.

VI. CONCLUSION

Attitude Determination Systems are a critical component for the suc-
cessful operation of mobile robotic platforms. Although there exists a
myriad of solutions in the literature for attitude estimation, these usu-
ally have significant pitfalls such as singularities, lack of global asymp-
totic stability results, or unwinding phenomena. This technical note
presented the analysis, design, and performance evaluation of a GAS
sensor-based attitude filter. Since the design of the filters does not re-
sort to any specific representation of the attitude, the aforementioned
drawbacks do not affect the proposed solutions. The performance of the
overall attitude estimation solution was evaluated with the design and
implementation of a low-cost Attitude and Heading Reference System
based on a single Inertial Measurement Unit. A high precision calibra-
tion table, which provided ground truth data for comparison purposes,
was employed, and the results were compatible with the simulations
that were carried out prior to the experiments. Finally, the results are
also particularly good considering the low-grade characteristics of the
IMU that was employed.
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Variable Gain Super-Twisting Sliding Mode Control
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Abstract—In this note, a novel, Lyapunov-based, variable-gain
super-twisting algorithm (STA) is proposed. It ensures for linear time
invariant systems the global, finite-time convergence to the desired sliding
surface, when the matched perturbations/uncertainties are Lipschitz-con-
tinuous functions of time, that are bounded, together with their derivatives,
by known functions. The proposed algorithm has similar properties to the
variable-gain first-order sliding mode control, but it provides alleviation
to the chattering phenomenon. The results are verified experimentally.

Index Terms—Chattering effect, discontinuous systems, Lyapunov func-
tions, robust control, second-order sliding modes.

I. INTRODUCTION

1) Motivation: Sliding mode (SM) control is a well-known tool
for rejecting matched uncertainties/disturbances (see [7], [20], [21], for
example). Usually the sliding mode control design (see [20], [21, Ch.
5]) consists of two steps:
* Construction of the desired sliding surface;
¢ SM enforcement.
In the first generations of SM controllers either relay controllers or
unit controllers were used ([9], [20], [21]). The main disadvantage of
these control strategies is the so-called “chattering effect” (see [20] and
[21], for example).
The three main approaches to chattering alleviation and attenuation
in SM systems were proposed in the mid-1980’s:
¢ The use of saturation control instead of the discontinuous one [5],
[19]. This approach allows for control continuity but cannot re-
strict the system dynamics onto the switching surface. It only en-
sures the convergence to a boundary layer of the sliding manifold,
whose size is defined by the slope of the saturation characteristics.

¢ The observer-based approach [4]. This method allows to bypass
the plant dynamics by the chattering loop. This approach re-
duces the problem of robust control to that of exact and robust
estimation.

Manuscript received December 09, 2010; revised August 23, 2011; accepted
November 17, 2011. Date of publication December 14, 2011; date of current
version July 19, 2012. This work was supported by CONACyT (Consejo Na-
cional de Ciencia y Tecnologia) under Grants 51244, 132125, andCVU 208168,
FONCICyT 93302; by Programa de Apoyo a Proyectos de Investigacion e Inno-
vacion Tecnoldgica (PAPIIT) under UNAM, Grants 117610 and 117211; and by
Fondo de Colaboracion del II-FI, UNAM, IISGBAS-165-2011. Recommended
by Associate Editor A. Ferrara.

T. Gonzalez is with the Programa de Maestria y Doctorado en Ingenieria Eléc-
trica (control), Universidad Nacional Auténoma de México, UNAM, Coyoacan,
14240, México, Tlalpan D.F., México (e-mail: tenoch@ieee.org).

J. A. Moreno is with the Coordinacién de Eléctrica y Computacion,
Instituto de Ingenierfa, Universidad Nacional Auténoma de México,
Coyoacdn, 04510 México D.F., Mexico (e-mail: JMorenoP @ii.unam.mx;
moreno @pumas.iingen.unam.mx).

L. Fridman was with the Departamento de Control Automdtico, CIN-
VESTAV-IPN, A.P. 14-740, D.F., Mexico. He is now with the Departamento
de Ingenieria de Control y Robdtica, Engineering, Engineering Faculty,
Universidad Nacional Auténoma de México, UNAM, Coyoacan, México D.F.,
México. (e-mail: Ifridman @unam.mx).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2179878

0018-9286/$26.00 © 2011 IEEE



