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ABSTRACT

This paper presents a novel long baseline (LBL) position and velocity navigation filter for underwater vehicles based

directly on the sensor measurements. The solution departs from previous approaches as the range measurements are explicitly

embedded in the filter design, therefore avoiding inversion algorithms and allowing also the consideration of the cases of reduced

numbers of readings, in particular when there are only two or three distance measurements. The nonlinear system dynamics are

considered to their full extent and no linearizations are carried out whatsoever. The filter error dynamics are globally exponentially

stable (GES) and it is shown, in a realistic simulation environment, that the filter achieves similar performance to the extended

Kalman filter (EKF) and outperforms linear position and velocity filters based on algebraic estimates of the position obtained

from the range measurements.
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I. INTRODUCTION

Accurate navigation systems are essential for the suc-

cessful operation of autonomous vehicles. Although there

exist alternatives such as terrain-based navigation, most navi-

gation systems contain an inertial navigation system (INS)

that provides the state of the vehicle by integrating, in open-

loop, the information provided by inertial sensors, e.g., accel-

erometers and rate gyros. Although INS provides very good

short term results, its performance necessarily degrades over

time as it corresponds to an open-loop integration system. In

order to improve the navigation performance, aiding devices

have been considered in the design of integrated navigation

solutions. This paper addresses the problem of vehicle navi-

gation using ranges to a set of landmarks arranged in a long

baseline (LBL) configuration.

Among the myriad of aiding devices, the Global Posi-

tioning System (GPS) is a very popular choice [1–5]. For

underwater vehicles, GPS is not a solution due to the strong

attenuation that the electromagnetic field suffers in water.

Therefore, other solutions have been sought in the past, includ-

ing acoustic positioning systems like LBL and short baseline

(SBL) [6–9], and references therein. In [10] the author pro-

poses a GPS-like system consisting of buoys equipped with

differential GPS. A related solution, denominated as the GPS

Intelligent Buoy (GIB) system, is now commercially available,

see [11]. Further work on the GIB underwater positioning

system can be found in [12]. Position and linear velocity global

asymptotic stability (GAS) filters based on an ultra-short

baseline (USBL) positioning system were presented by the

authors in [13], while the extended Kalman filter (EKF) is the

workhorse of the solution presented in [14]. Single range

navigation solutions can be found in [15–24]. For interesting

discussions and more detailed surveys on underwater vehicle

navigation and sensing devices see [25, 26].

This paper presents a position and linear velocity navi-

gation filter based on range measurements to fixed landmarks

arranged in an LBL configuration. Traditional solutions resort

either to the EKF or to solutions based on position algebraic

estimates obtained from the range measurements.The solution

presented in the paper departs from previous approaches as

the range measurements are explicitly embedded in the filter

design, therefore avoiding inversion algorithms. Moreover, the

nonlinear system dynamics are considered to their full extent

and no linearizations are carried out whatsoever, which

allows us to show that the filter error dynamics are globally

exponentially stable (GES). Central to the proposed filtering

framework is the derivation of a nonlinear system that can be

regarded as linear time-varying (LTV) and that captures

the dynamics of the original nonlinear system. As the

range measurements are directly embedded in the system

dynamics, the present solution also allows us to consider

two and three range measurements, which is not possible in
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solutions that resort to the computation of an algebraic esti-

mate of the position from the range measurements. Applica-

tions of the proposed solution are many and, in a realistic

simulation environment, it is shown that the filter achieves

similar performance to the extended Kalman filter (EKF) and

outperforms linear position and velocity filters based on posi-

tion algebraic estimates obtained directly from the range meas-

urements. Preliminary work on this subject by the authors can

be found in [27], where the LBL sensor-based solution was

first proposed. This paper presents complete and detailed

proofs regarding this subject and also extends the results to the

case of two and three measurements. In addition, the perfor-

mance of the proposed solution is carefully evaluated and

compared with traditional solutions. The specific case of aided

navigation based on single range measurements has been

addressed by the authors in [28–30]. A USBL sensor-based

solution to the problem of underwater navigation, which

resorts to similar tools as this paper, is proposed in [31].

The paper is organized as follows. The problem state-

ment and the nominal system dynamics are introduced in

Section II, while the filter design is detailed in Section III.

Simulation results are presented in Section IV and the specific

cases of two and three range measurements are considered in

Section V. Finally, Section VI summarizes the main conclu-

sions and results of the paper.

Notation. Throughout the paper the symbol 0n×m denotes an

n × m matrix of zeros, In an identity matrix with dimension

n × n, and diag(A1, . . . , An) a block diagonal matrix. When

the dimensions are omitted the matrices are assumed to be of

appropriate dimensions. For x ∈ R
3 and y ∈ R

3, x × y and

x · y represent the cross and inner products, respectively.

Finally, the Dirac delta function is denoted by δ(t).

II. PROBLEM STATEMENT

Consider an underwater vehicle moving in a scenario

where there is a set of fixed landmarks arranged in an LBL

configuration, where acoustic beacons or transponders are

installed, and suppose that the vehicle measures the range to

each of the landmarks, as depicted in Fig. 1. Further assume

that the vehicle is equipped with an inertial measurement unit

(IMU), consisting of two triads of orthogonally mounted

accelerometers and rate gyros, and an attitude and heading

reference system (AHRS). The problem considered in the

paper is the design of a sensor-based filter with globally

exponentially stable error dynamics to estimate the position

and linear velocity of the vehicle.

2.1 System dynamics

In order to detail the problem framework, let {I} denote

a local inertial reference coordinate frame and {B} a coordi-

nate frame attached to the vehicle, usually denominated as the

body-fixed reference frame. The linear motion of the vehicle

is given by

ɺp R v( ) ( ) ( ),t t t= (1)

where p(t) ∈ R
3 denotes the inertial position of the vehicle,

v(t) ∈ R
3 is the velocity of the vehicle relative to {I}, expressed

in body-fixed coordinates, and R(t) ∈ SO(3) is the rotation

matrix from {B} to {I}, which satisfies ɺR R S( ) ( ) ( ) ,t t t= ( )w

where ω (t) ∈ R
3 is the angular velocity of {B}, expressed in

body-fixed coordinates, and S(ω) x is the skew-symmetric

matrix such that S(ω) is the cross product ω × x.

The AHRS provides the rotation matrix R(t), while the

IMU measures both the angular velocity ω (t) and the linear

acceleration a(t), which satisfies

landmarks

Fig. 1. Mission scenario.
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a v S v g( ) ( ) ( ) ( ) ( ),t t t t t= + −ɺ ( )w (2)

where g(t) ∈ R
3 denotes the acceleration of gravity, expressed

in body-fixed coordinates. Ideal accelerometers would not

measure the gravitational term but in practice this term

must be considered due to the inherent physics of the

accelerometers, see [32] for further details. Since the

magnitude of g(t) is usually well known, it would be possible

to cancel this term in (2) as the attitude of the vehicle is

measured. However, even small errors on R(t) would lead to

large errors in the acceleration compensation. Therefore, the

acceleration of gravity is considered here as unknown state, in

addition to p(t) and v(t).

Finally, let si ∈ R
3, i = 1, . . . , nL, denote the inertial

positions of the landmarks. Then, the range measurements are

given by

r t ti i( ) ( ) .= −s p (3)

The derivative of the velocity can be written, from (2), as

ɺv a S v g( ) ( ) ( ) ( ) ( ).t t t t t= − +( )w (4)

The derivative of g(t), assuming that the acceleration of

gravity is locally constant in inertial coordinates, is given by

ɺg S g( ) ( ) ( ).t t t= − ( )w (5)

Combining (1) and (3)–(5) yields the nonlinear system

ɺ

ɺ

ɺ

p R v

v a S v g

g S g

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) (

t t t

t t t t t

t t t

=

= − +

= −

( )

( )

w

w ))

( ) ( )

( ) ( )

.
1 1r t t

r t tn nL L

= −

= −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

s p

s p

⋮

(6)

The problem considered in the paper is the design of an

estimator for (6).

2.2 Long baseline configuration

Long baseline acoustic configurations have been widely

used in the past in the design of navigation systems. LBL

systems owe their name to the property that the distance

between the baseline transponders is long or similar to the

distance between the vehicle and the transponders. This is in

contrast with USBL systems, where the distance between the

transponder and the vehicle is much larger than the distance

between receivers of the USBL system.

In the remainder of the paper, and for the long baseline

configuration, the following assumption is considered:

Assumption 1. There exist at least four noncoplanar

landmarks.

When there exist at least four noncoplanar landmarks, it

is always possible to determine the position of the vehicle

from the range measurements and therefore it is expected that

the system is observable. When there are fewer measurements

that is not always true. The cases of two and three range

measurements are considered in Section V, while preliminary

work on the case of single range readings can be found in

[28, 29].

III. FILTER DESIGN

This section presents the main results of the paper.

Firstly, a state transformation is applied, in Section 3.1, to

reduce the complexity of the system dynamics. Afterwards,

state augmentation is proposed, in Section 3.2, in order to

derive sensor-based deterministic system dynamics, and in

Section 3.3 the observability of the resulting system is

analyzed. The design of a Kalman filter is detailed in Section

3.4.

3.1 State transformation

Let T(t) := diag(I, R(t), R(t)) ∈ R
9×9 and consider the

Lyapunov state transformation

x

x

x

T

p

v

g

1

2

3

( )

( )

( )

: ( )

( )

( )

( )

.

t

t

t

t

t

t

t

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(7)

The new system dynamics are given by

ɺ

ɺ

ɺ

⋮

x x

x x u

x 0

s x

1 2

2 3

3

1 1 1

( ) ( )

( ) ( ) ( )

( )

( ) ( )

( )

t t

t t t

t

r t t

r tnL

=

= +

=

= −

== −

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

s xnL
t1( )

, (8)

where u(t) := R(t)a(t). The advantage of considering the state

transformation (7) is that the new system is time invariant,

even though it is still nonlinear.

Remark 1. The state transformation (7) corresponds to

expressing the vehicle navigation state in inertial coordinates.

While the problem could have been originally formulated in

inertial coordinates, it was formulated instead in the most
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appropriate space, i.e., the space that corresponds to the

sensor measurements, therefore avoiding acceleration

cancellation problems, as discussed in [13]. The state

transformation is here applied only for theoretical purposes,

as it simplifies the computations. However, the final filter

design will be obtained in the original coordinate space, as

detailed in Section 3.4.

3.2 State augmentation

To derive a system that can be regarded as linear and

that mimics the dynamics of the nonlinear system (8), define

nL + 4 additional scalar state variables as

x t r t

x t r t

x t t t

x t

n n

n

n

L L

L

L

4 1

3

4 1 2

5

( ) : ( )

( ) : ( )

( ) : ( ) ( )

( )

=

=

= ⋅
+

+

+

⋮

x x

:: ( ) ( ) ( )

: ( ) ( )

( ) : ( )

1 3 2
2

6 2 3

7 3
2

= ⋅ +

= ⋅

=

⎧

⎨

⎪

+

+

x x x

x x

x

t t t

x t t

x t t

n

n

L

L

⎪⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

and let (t) ∈ R
n,

x( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 7t t t t x t x tT T T
n

T

L
= +[ ]x x x …

n = 13 + nL, be the augmented state. It is easy to verify that

the augmented state dynamics can be written as

ẋ(t) = A(t)x(t) + Bu(t), where

A

0 I 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0
s

0

( )

0 0
1

0 0 0
1

1 1

t

r t r t

T

=

−

…

…

…

…
( ) ( )

⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

…

…

0
s

0

u 0 0

0 u 0

− n
T

n n

T

T

L

L L
r t r t

t

t

( ) ( )
0 0

1
0 0 0

( ) 0 0 0 1 0 0

2 ( ) 00 0 0 0 3 0

( ) 0 0 0 0 0 1

0 0 0 0 0 0

…

…

…

0 0 u

0 0 0

T t

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(9)

and B = [0I00 . . . 0]T.

Remark 2. The first nL additional states correspond to the

range measurements. As these are measured, it is now

possible to also consider a linear output. The remaining

additional four states correspond to nonlinear terms of the

derivatives of the range readings. In this way, it is possible to

express the derivatives of the range measurements as a linear

combination of the states, as will be shown.

In order to complete the augmented system dynamics,

notice first that the states x t x tnL4 3( ), , ( )… + are measured. In

addition to that, it can be shown that

2 ( )

( ) ( )
( ) ( )

( ) (

1
3 3

2 2
( )s s x s si j

i j

i j
i j

i j

t

r t r t
x t x t

r t r

− ⋅
+

+ − =
−
+

+ +
tt)

, (10)

i, j ∈ {1, . . . , nL}, i ≠ j, where the right side of (10) is

available and the left side depends on the system state.

Discarding the original nonlinear system output, it is possible

to write an augmented system output as

y t x t

y t x t

y t
t

r t r

n n

n

L L

L

1 4

3

1
1 2 1

1 2

( ) ( )

( ) ( )

( )
2 ( )

( )

=

=

=
− ⋅

+

+

+

⋮

( )s s x

(( )
( ) ( )

( )
2 ( )

( ) ( )

3 1 3 2

2
1 3 1

1 3

3

t
x t x t

y t
t

r t r t
xnL

+ −

=
− ⋅

+
+

+ +

+ +
( )s s x

11 3 3

1

2 1

2

( ) ( )

( )
2 ( )

( )2

t x t

y t
t

r t rn C

n n

n n
L

nL
L L

L L

−

=
− ⋅

+

+

+ −

−

−

⋮

( )s s x

(( )
( )

( )
2 ( )

(

3 2 3

1 1

1
2

t
x x t

y t
t

r t

n n

n C

n n

n

L L

L
nL

L L

L

+ −

=
− ⋅

+ − +

+

−

−

( )s s x

)) ( )
( )

,

3 1 3
+

+ −

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

+ − +
r t

x x t
n

n n

L

L L

where C
nL
2 is the number of 2-combinations of nL elements,

i.e. C n n
nL

L L2 1 2= −( ) .

Remark 3. The first nL outputs correspond simply to the

range measurements. The remaining terms are feeding the

system with information about the long baseline structure of

the transponders.

In compact form, the augmented system dynamics are

given by

ɺx x

x

( ) ( ) ( ) ( )

( ) ( ) ( )
,

t t t t

t t t

= +

=
⎧
⎨
⎩

A Bu

y C
(11)

where

C
0 0 0 I 0

C 0 0 C 0
( )

( )

3 3 3 4

1 3 3 2 42 2 2

t
t

n n n n n

C C C

L L L L L

nL nL nL

=
⎡

⎣

× × × ×

× × ×
⎢⎢
⎢

⎤

⎦
⎥
⎥
, (12)
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C
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s s
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1 2

1 2
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2

t

r t r t
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T

T

n nL L
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−
+

−
+
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( )

(

⋮
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T
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T
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−

−

−

+

−

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢ 2

1

1

( ) ( )

2

( ) ( )

s s⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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∈ ×
R

CnL
2 3,

and

C2

1 1 0 0

1 0 1 0 0

0 0 1 0 1

0 0 1 1

2=

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

∈

… … …

… …

⋮

… …

… … …

R
CnL ××nL

is the matrix that encodes all the combinations of differences

of pairs of ranges.

The dynamic system (11) can be regarded as a linear

time-varying system, even though the system matrices A(t)

and C(t) depend explicitly on the system input and output, as

evidenced by (9) and (12). Nevertheless, this is not a problem

for observability purposes as both the input and output of the

system are available as continuous bounded signals. This just

suggests, in this case, that the observability of (11) may be

connected with the evolution of the system input, output, or

both, which is not common and does not happen when this

matrix does not depend on the system input or output. The

underlying reason for this is that the system is, in fact, non-

linear, even though it admits a linear interpretation. In the

specific case addressed in this section it will be shown that the

system is observable, regardless of the input and output.

When only two or three range measurements are available,

that is not the case and additional conditions are required.

This will be detailed in Section V.

Before proceeding with the observability analysis of

(11), notice that there is nothing in (11) imposing

r t t

r t t

x t t t

x t

n n

n

n

L L

L

L

1 1 1

1

4 1 2

5

( ) ( )

( ) ( )

( ) ( ) ( )

(

= −

= −

= ⋅+

+

s x

s x

x x

⋮

)) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 3 2
2

6 2 3

7 3
2

= ⋅ +

= ⋅

=

⎧

⎨

+

+

x x x

x x

x

t t t

x t t t

x t t

n

n

L

L

⎪⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

.

Although these restrictions could be easily imposed including

artificial outputs, this form is preferred since it allows us to

regard the system as linear. However, care must be taken

when extrapolating conclusions from the observability of

(11) to the observability of (8) or (6).

Finally, the following assumption is required so that (9)

is well defined.

Assumption 2. The motion of the vehicle is such that

∃ ∀ ≥
> ≥R t t

i m
m

r t R
0 0

( )

for all i = 1, . . . , nL.

This is not restrictive from the practical point of view since it

makes no sense to have the vehicle at the same position of a

landmark, where an acoustic transponder is installed.

Remark 4. It is actually possible to derive all the results

presented in the paper without Assumption 2, considering the

square of the range instead of the range. This form is pre-

ferred since it offers, in practice, better performance for large

distances when considering sensor noise, as the noise could

be amplified and loose the good zero mean and Gaussian

characteristics with the square operation.

Remark 5. Even though all combinations of pairs were con-

sidered in the definition of the augmented output, in general it

is not necessary to consider them all. Indeed, all results pre-

sented hereafter hold as long as C1(t) has maximum rank. For

the sake of completeness, all combinations are considered in

the paper, without any loss of generality.

3.3 Observability analysis

In the previous section an augmented nonlinear system

that can be regarded as LTV was derived so as to capture the

behavior of the original nonlinear system. The analysis of this

augmented system is carried out in this section and its behavior

compared with that of the original nonlinear system. First, the

following lemma is presented, which addresses the problem of

observability of systems like (11) where the system matrices

may depend on the system input, output, or both.

Lemma 1. Consider the nonlinear system

ɺx u y x u

y u y x

( ) , ( ), ( ) ( ) ( ) ( )

( ) , ( ), ( ) ( )

t t t t t t t

t t t t t

= +

=
⎧
⎨

A B
C

( )

( )⎩⎩
. (13)

If the observability Gramian W( , )t t f0 associated with the

pair ( ( ) ( ))A Ct t t t t t, ( ), ( ) , , ( ), ( )u y u y on I = [ , ]t t f0 is

invertible, then the nonlinear system (13) is observable on I

in the sense that any initial condition is uniquely determined

by the corresponding response {y(t), t ∈I } and system input

{u(t), t ∈I }.
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Proof. This lemma is very similar to [30, Lemma 1], the

only difference being in the dependence here of the system

matrix C on u(t) and y(t), in addition to t. However, the

proof stands as these quantities are all available for observ-

ability purposes.

The following theorem establishes the observability of

the nonlinear system (11).

Theorem 1. Suppose that Assumptions 1 and 2 are verified.

Then, the nonlinear system (11) is observable on [t0, tf], t0 < tf,

in the sense that any initial condition is uniquely determined

by the corresponding response {y(t), t ∈ [t0, tf]} and the

system input {u(t), t ∈ [t0, tf]}.

Proof. The proof follows by contradiction. Suppose that the

nonlinear system (11) is not observable on I : [ , ]= t t f0 in the

sense established in Lemma 1. Then, it follows from Lemma

1 that there exists a non-null vector d ∈ +
R

13 nL ,

d d d d d= [ ]1 2 3 4 5 6 7 8 ,T T T T Td d d d

d1, d2, d3 ∈ R
3, d4 ∈RnL , d5, . . . , d8 ∈ R, such that

d dT t tW( )0, 0=
(14)

for all t ∈I , where W(t0, tf) denotes the observability

Gramian associated with the pair (A(t), C(t)). The

dependence of A(t) and C(t) on the input and output is

omitted here for sake of readability. By definition, the

observability Gramian is given by

W( ) ( ) ( )t t t t t t t t dtf
T T

t

t f

0 0 0, , ( ) ( ) , ,
0

= ∫ φ φC C

(15)

where ϕ (t, t0) stands for the transition matrix associated with

A(t), presented in Appendix A. Substituting (15) in (14)

immediately yields

C d( ) ( )τ φ τ τ, 00
2

0

t d
t

t

∫ =
(16)

for all t ∈I . Taking the time derivative of (16) yields

||C(t)ϕ(t, t0)d||2 = 0, which implies, in particular, that

C d( ) ( )t t tφ , 00 =
(17)

for all t ∈I . Substituting t = t0 in (17) gives

d

C d C d
0

4

1 0 1 2 4( )t +
⎡

⎣⎢
⎤

⎦⎥
= (18)

which implies immediately that

d 04 .= (19)

Substituting (19) in (18) gives

2

2

2

1 0 2 0

1 2

1 0 3 0

1 3

2 0

r t r t

r t r t

r t r

T

T

n nL

( ) ( )
( )

( ) ( )
( )

( )

+
−

+
−

+−

s s

s s

⋮

LL

L L

L L

L L

t

r t r t

n n
T

n n

n n
T

( )
( )

( ) ( )
( )

0

2

1 0 0

1

2

s s

s s

−

−
−

−

+
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=d 01 . (20)

It is straightforward to show that, under Assumption 1, the

only solution of (20) is

d 01 .= (21)

Now, from (17), it is possible to write

d

dt
t t t[ ( ) ( ) ]C d 0φ , 0 = (22)

for all t ∈I . Let

u u[1]
0, :

0

( ) ( )t t d
t

t

= ∫ σ σ

and

u u[2]
0 2 2 1, : .

0

1

0

( ) ( )t t d d
tt

t

= ∫∫ σ σ σ
σ

Expanding (22), and considering (19) and (21), allows us to

write

[ ( ) ( ) ( )]

( )

( )

− + − +

− −
−

−

s u u d

s u

i
T

i

i

t t t t t t

r t

t t

t t

0
[1]

0
[2]

0 2

0

0 [

, ,

2
11]

0
[2]

0 3

5

0
6

, ,
1

3

2

( ) ( )

( ) ( )

( )

t t t t

r t r t
d

t t

r t
d

T

i i

i

−⎡
⎣⎢

⎤
⎦⎥ +

+
−

+

u d

(( )

( )

( )

( )

t t

r t
d

t t

r t
d

i i

−
+

−
=0

2

7
0

3

8

1

2
0
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for all i = 1, . . . , nL, t ∈ I or, equivalently,

[ ( ) ( ) ( )]

( ) (

− + − +

− − −
−

s u u d

s u

i
T

i

t t t t t t

t t
t t

t

0
[1]

0
[2]

0 2

0
0 [1]

, ,

2
, tt t t

d t t d t t d

t t

T

0
[2]

0 3

5 0 6 0
2

7

0
3

,

3

2

1

2

) ( )

( ) ( )

( )

−⎡
⎣⎢

⎤
⎦⎥

+ + − + −

+ −

u d

dd8 0.=

(23)

Substituting t = t0 in (23) gives

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣⎢
⎤

⎦⎥
=

−

s

s

s

s

d
0

1

2

1

2

5

1

1

1

1

.

T

T

n
T

n
T

L

L

d
⋮ (24)

Again, it can be shown that, under Assumption 1, the only

solution of (24) is

d 02

5 0
.

=

=
⎧
⎨
⎩d

(25)

Now, considering (25) in (23) and taking its time derivative

gives

− −
−

− −
⎡

⎣⎢
⎤

⎦⎥

+ −

s u u d

u

i

T
t t

t t t t t

t t t t

( )
( ) ( ) ( )

[( ) (

0
2

0
[1]

0 3

0
[1]

2
,

, 00
[2]

0 3

6 0 7 0
2

8

,

3
3

2
0

) ( )]

( ) ( )

+

+ + − + − =

u dt t

d t t d t t d

T (26)

for all i = 1, . . . , nL and t ∈ I. Setting t = t0 in (26) gives

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣⎢
⎤

⎦⎥
=

−

s

s

s

s

d
0

1

2

1

3

6

1

1

1

1

.

T

T

n
T

n
T

L

L

d
⋮ (27)

Again, under Assumption 1, the only solution of (27) is

d 03

6 0
.

=

=
⎧
⎨
⎩d

(28)

Finally, substituting (28) in (26) gives

3
3

2
00 7 0

2
8( ) ( )t t d t t d− + − = (29)

for all t ∈ I. Since t − t0 and (t − t0)
2 are linearly independent

functions, the only solution of (29) is d7 = d8 = 0. But that

contradicts the hypothesis of existence of a non-null vector d

such that (14) is true. Therefore, (11) is observable.

Next, the observability of (8) is analyzed, building on

the observability results of Theorem 1. Notice that, in the

usual definition of observability for nonlinear systems, it is

not necessarily true that every admissible input distinguishes

between initial conditions [33]. However, that is implied in

the following theorem.

Theorem 2. Suppose that Assumptions 1 and 2 are verified.

Then, the nonlinear system (8) is observable on [t0, tf] in the

sense that any initial condition is uniquely determined by the

corresponding response {y(t), t ∈ [t0, tf]} and the system

input {u(t), t ∈ [t0, tf]}. Moreover, a state observer for (11)

with globally exponentially stable error dynamics is also a

state observer for the nonlinear system (8), with globally

exponentially stable error dynamics.

Proof. From Theorem 1 it is possible to say that, given the

system response {y(t), t ∈ [t0, tf]} and the system input

{u(t), t ∈ [t0, tf]}, the initial state of (11) is uniquely

defined. Let

z

z

z

z
( )

( )

( )

( )

( )

( )

t

t

t

t

z t

z tnL

0

1 0

2 0

3 0

4 0

7 0

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

⋮
⎥⎥
⎥

∈ +
R

13 ,nL

z1(t0), z2(t0), z3(t0) ∈ R
3, z z tnL4 7 0, ,… + ∈( ) R, be the initial

state of (11) and

x

x

x

x

x x x( )

( )

( )

( )

( ) ( ) ( )t

t

t

t

t t t0

1 0

2 0

3 0

1 0 2 0 3 0
3, , ,=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∈R ,,

be the initial state of the nonlinear system (8). Notice first

that, as z3+i(t0), i = 1, . . . , nL, correspond to actual outputs of

the system, the ranges, it immediately follows that

z t r t i ni i L3 0 0 , 1, , .+ = =( ) ( ) … (30)

Evaluating the outputs of (11) y tnL +1( ) to y t
n CL

nL+ 2
( ) at t = t0

allows us to write

2 1 0

0 0

3 0 3 0

2 2
( ) ( )

( ) ( )
( ) ( )

(

s s z s si j

i j

i j
i j

i

t

r t r t
z t z t

r t

− ⋅
+

+ − =
−

+ +
00 0) ( )+ r tj

or, equivalently, using (30),

2 ,1 0
2 2 2

0
2

0( ) ( ) [ ( ) ( )]s s z s si j i j i jt r t r t− ⋅ = − − − (31)
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for all i, j ∈ {1, . . . , nL}, i ≠ j. Substituting (3) in (31) and as

x1(t) = p(t), it follows that (si − sj) · [x1(t0) − z1(t0)] = 0 for all

i, j ∈ {1, . . . , nL}, i ≠ j, or, in compact form,

( )

( )

( )

( )

[

s s

s s

s s

s s

1 2

1 3

2

1

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−

T

T

n n
T

n n
T

L L

L L

⋮ xx z 01 0 1 0 .( ) ( )]t t− = (32)

Under Assumption 1 the only solution of (32) is

x z1 0 1 0 .( ) ( )t t= (33)

The evolution, for the nonlinear system, of x1(t), is

given by

x x x x u1 1 0 0 2 0
0

2

3 0
[2]

0( )
2

,t t t t t
t t

t t t= + −( ) +
−

+( ) ( )
( )

( ) ( ) (34)

and therefore the output of the nonlinear system satisfies

r t t t t t
t t

t

t t

i i
2

1 0
2

0
2

2 0
2 0

4

3 0
2

[2]
0

( )
4

,

= − + − +
−

+

x s x x

u

( ) ( ) ( )
( )

( )

( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) (

2

0 1 0 2 0

0
2

1 0 3 0 0
3

2 0

2+ − ⋅

+ − ⋅ + −

t t t t

t t t t t t t

x x

x x x )) ( )

( ) ( ) ( ) ( )

( )

⋅

− − ⋅ − − ⋅

− ⋅

x

s x s x

s u

3 0

0 2 0 0
2

3 0

[2]
0

2

2 ,

t

t t t t t t

t t

i i

i ++ ⋅

+ ⋅ −

+ ⋅ −

2 ,

2 ,

1 0
[2]

0

2 0 0
[2]

0

3 0 0

x u

x u

x

( ) ( )

( ) ( ) ( )

( ) (

t t t

t t t t t

t t t )) ( )2 [2]
0, .u t t

(35)

From (35) it is possible to write

r t r t t t

t t

i j i j

i j

2 2
1 0

2
1 0

2

[2]
0

( ) ( )

2 ,

2

− = − − −

− − ⋅

−

x s x s

s s u

( ) ( )

( ) ( )

(tt t t

t t t

i j

i j

− − ⋅

− − − ⋅
0 2 0

0
2

3 0

)( ) ( )

( ) ( ) ( )

s s x

s s x

(36)

for all i, j ∈ {1, . . . , nL} and t ∈I . On the other hand, it is

possible to write the evolution of the square of the range

readings as a function of the initial state of (11) as

r t t t t

t t t t t

i i

i

2
1 0

[2]
0

0
[2]

0 2

( ) 2 ,

2 ,

= − ⋅

+ − − ⋅

[ ( ) ] ( )

( )[ ( ) ] (

z s u

u s z 00

0
2 [2]

0 3 0

3
2

0 0 4

,

2

)

( ) [ ( ) ] ( )

( ) ( ) (

+ − − ⋅

+ + −+ +

t t t t t

z t t t z t

i

i nL

u s z

00

0
2

5 0 0
3

6 0

0
4

7 0
[

4

)

( ) ( ) ( ) ( )

( )
( )

+ − + −

+
−

+

+ +

+

t t z t t t z t

t t
z t

n n

n

L L

L
u 22]

0

2
,( )t t

(37)

for all i = 1, . . . , nL. Therefore, it is possible to write

r t r t z t z t

t t t

i j i j

i j

2 2
3
2

0 3
2

0

[2]
0

( ) ( )

2 ,

− = −

− − ⋅ + −
+ +( ) ( )

( ) [ ( ) (s s u tt t

t t ti j

0 2 0

0
2

3 0

) ( )]

( ) ( ) ( )

z

s s z− − − ⋅

(38)

for all i, j ∈ {1, . . . , nL} and t ∈I . The comparison between

(36) and (38), using (30), gives

2 0 2 0 2 0

0
2

3 0 3

( )( ) [ ( ) ( )]

( ) ( ) [ ( ) (

t t t t

t t t t

i j

i j

− − ⋅ −

+ − − ⋅ −

s s x z

s s x z 00 0)] =
(39)

for all i, j ∈ {1, . . . , nL} and t ∈I. Taking the time derivative

of both (39) and evaluating at t = t0 gives

( )

( )

( )

( )

[

s s

s s

s s

s s

1 2

1 3

2

1

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−

T

T

n n
T

n n
T

L L

L L

⋮ xx z 02 0 2 0 .( ) ( )]t t− = (40)

Again, under Assumption 1 the only solution of (40) is

x z2 0 2 0 .( ) ( )t t= (41)

Taking the second time derivative of (39) and evaluating at

t = t0 gives

( )

( )

( )

( )

[

s s

s s

s s

s s

1 2

1 3

2

1

−

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−

T

T

n n
T

n n
T

L L

L L

⋮ xx z 03 0 3 0 .( ) ( )]t t− = (42)

Again, under Assumption 1 the only solution of (42) is

x z3 0 3 0 .( ) ( )t t= (43)

Finally, comparing (35) with (37) and using (30), (33), (41),

and (43) allows us to write

2 0 4 0 1 0 2 0

0
2

5 0 1 0

( )[ ( ) ( ) ( )]

( ) ( ( ) [ ( )

t t z t t t

t t z t t

n

n

L

L

− − ⋅

+ − −

+

+

x x

x ⋅⋅ +

+ − − ⋅

+
−

+

x x

x x

3 0 2 0
2

0
3

6 0 2 0 3 0

0

( ) ( ) ])

( ) [ ( ) ( ) ( )]

( )

t t

t t z t t t

t t

nL

44

7 0 3 0
2

4
0[ ( ) ( ) ]z t tnL + − =x

(44)
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for all t ∈I . As the functions t − t0, (t − t0)
2, (t − t0)

3, and

(t − t0)
4 are linearly independent, it follows that the only

solution of (44) is

x t t t

x t t t t

x

n

n

n

L

L

L

+

+

+

= ⋅

= ⋅ +

4 0 1 0 2 0

5 0 1 0 3 0 2 0
2

( ) ( ) ( )

( ) ( ) ( ) ( )

x x

x x x

66 0 2 0 3 0

7 0 3 0
2

.
( ) ( ) ( )

( ) ( )

t t t

x t tnL

= ⋅

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

+

x x

x

This concludes the proof, as the initial state of (11), which is

uniquely determined, matches the initial state of the nonlinear

system (8).

Remark 6. The usual concept of observability for nonlinear

systems is not as strong as that presented in Theorem 2, see

[33] for details. This justifies the need to explicitly detail the

observability statement.

Remark 7. The proof of Theorem 2 is specific to the

nonlinear system (8) and it follows by relating the original

nonlinear system (8) with the nonlinear system (11), regarded

as linear time-varying. The nonlinear system (11) has its roots

on the original nonlinear system (8) and it was obtained by

state augmentation. Hence, by construction, the initial

conditions of the original nonlinear system (8) correspond to

a subset of the initial conditions of (11). As all initial

conditions of (11) are uniquely determined, it follows that the

initial conditions of the original nonlinear system (8) are also

uniquely determined. This line of reasoning is more general

than the proof presented in Theorem 2 and it can be invoked,

more generally, when the method of state augmentation is

applied as in this paper. Further discussion on this issue can

be found in [23].

Remark 8. Before concluding this section, it is important to

remark that, although the observability results were derived

with respect to the nonlinear system (8), they also apply to the

original nonlinear system (6) as they are related through a

Lyapunov transformation. Also, the design of an observer for

the original nonlinear system follows simply by reversing the

state transformation (7) for the corresponding states of the

augmented system, as it will be detailed in the following

section.

3.4 Kalman filter

Although all the results derived so far have been pre-

sented in a deterministic setting, in practice there exists meas-

urement noise and often system disturbances. Therefore, a

filtering solution is proposed in this section. Theorem 2 pro-

vides a constructive result in the sense that a dynamic system

with globally exponentially stable error dynamics for the LTV

system (8) provides globally exponentially stable error

dynamics for the estimation of the state of the nonlinear

system. Therefore, a Kalman filter has been designed as

follows for the LTV system (11), although other solutions

could be devised, e.g., an H∞ filter.

In order to recover the augmented system dynamics in

the original coordinate space, consider the augmented state

transformation χ(t) = Tc(t)x(t), where Tc(t) = diag(I, RT(t),

RT(t), 1, . . . , 1). Then, the nominal augmented system

dynamics in the original coordinate space are given by

ɺc c

c

( ) ( ) ( ) ( )

( ) ( ) ( )
,

t t t t

t t t

= +

=
⎧
⎨
⎩

A Ba

y C

where

A( )

( )

( )

( )

( )1

1

t

t

t

t

t

r

T

=

−

−

−

0 R 0 0 0 0 0 0

0 S I 0 0 0 0 0

0 0 S 0 0 0 0 0

0
s R

( )

( )

(

w

w

tt r t

t

r t r t

t

n
T

n nL

T T

L

L

) ( )

( ) ( )

0

0
s R

0

a R

0
1

0 0 0

( )
0

1
0 0 0

( ) (

1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−

tt

t

t

T

T

) 0 0 1 0 0

2 ( ) 0 0 0 3 0

( ) 0 0 0 0 1

0 0 0 0 0

0 0

0 a 0

0 0 a

0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

Including system disturbances and sensor noise to tune

the Kalman filter gives the final system dynamics

ɺc c

c

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,

t t t t t

t t t t

x

y

= + +

= +
⎧
⎨
⎩

A Ba n

y C n

where it is assumed that nx(t) and ny(t) are uncorrelated,

zero-mean, white Gaussian noise processes, with

E[ ( )] ( )n n Qx x
T

xt t( ) τ δ τ= −

and

E[ ( ) ( )] ( )n n Qy y
T

yt tτ δ τ= − .

Remark 9. It is important to stress that the filter is not

optimal. Indeed, the dependence of the system matrices on the

range, acceleration, and angular velocity measurements

induce, in the presence of noise on these measurements,

multiplicative noise, and the analysis of the stochastic

stability of the filter could be carried out. Nevertheless, in a

deterministic setting, the filter has globally exponentially
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stable error dynamics and simulation results evidence results

comparable with those of the EKF.

IV. SIMULATION RESULTS

In order to evaluate the performance achieved with the

proposed navigation solution, simulations were carried out

using a kinematic model for an underwater vehicle. The fact

that the full nonlinear dynamics of the vehicle are not con-

sidered is not a drawback as the proposed filter relies solely

on the vehicle kinematics, which are exact. Therefore, the

proposed solution applies to any underwater vehicle, inde-

pendently of the particular dynamics. The trajectory

described by the vehicle is shown in Fig. 2, which moves at

1 m/s.

Sensor noise was considered for all sensors. In par-

ticular, the range, acceleration, and angular velocity

measurements are assumed to be corrupted by additive,

uncorrelated, zero-mean white Gaussian noise processes,

with standard deviations of 1 m, 2 × 10−3 m/s2, and 0.05 °/s,

respectively. The attitude, parameterized by roll, pitch, and

yaw Euler angles, was also assumed to be corrupted by

zero-mean, additive white Gaussian noise, with standard

deviation of 0.03° for the roll and pitch, and 0.3° for the

yaw. The range measurements are assumed to be available at

a rate of 1 Hz, while the remaining sensors are sampled at

100 Hz.

The LBL configuration is composed of four acoustic

transponders and their positions are
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which satisfy Assumption 1.

The results obtained with the proposed solution are

presented in Section 4.1, and its performance compared, in

Section 4.2, with that of the extended Kalman filter and a

linear position and velocity filter based on the inversion of the

range measurements to obtain the position of the vehicle.

Remark 10. In the simulations no range measurement delays

were included, for simplicity, but these can be treated in a

similar way to [34]. The vehicle displacement during the

propagation of the signals was not considered either.

Remark 11. The loss of measurements and outliers is

common in acoustic positioning systems. The present frame-

work is beneficial for coping with these as each range meas-

urement can be treated individually. Indeed, when one or

more ranges are not available, the filter can either propagate

the corresponding states in open-loop (for small periods of

time) or simply discard them (for larger periods of time).

When a range measurement whose state had been discarded is

reacquired, the state of the filter can be augmented again and

the corresponding state is initialized with the first measure-

ment, with no impact on the stability of the filter. On the other

hand, outliers can be more easily detected at the range level,

which is a simple scalar. These are interesting issues for

further development with experimental results.

4.1 Proposed solution

To tune the Kalman filter, the state disturbance intensity

matrix was chosen as Qx = 10−5I and the output noise inten-

sity matrix as

Qy = diag( )1,1,1,1, 2, 2, 2, 2, 2, 2 .

The initial conditions were set to zero for the position and

velocity. The acceleration of gravity was initialized close to

the true value, with [0 0 10]T m/s2 as the attitude is measured

and the magnitude of the acceleration of gravity is usually

known. Notice that it would be possible to initialize the posi-

tion with a close estimate obtained from the inversion of the

first set of LBL range measurements. The states correspond-

ing to the range measurements were initialized with the first

set of measurements while the remaining states were set to

zero, apart from x11, which corresponds to the square of the

magnitude of the acceleration of gravity, which was initial-

ized with 100.

The initial evolution of the position, velocity, and accel-

eration of gravity errors is depicted in Fig. 3, whereas the
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Fig. 2. Trajectory described by the vehicle.
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initial evolution of the range errors is shown in Fig. 4. The

initial convergence of the remaining state errors is shown in

Fig. 5. As can be seen from the various plots, the convergence

of the filter is quite fast.

In order to better illustrate the performance achieved

with the proposed solution, the steady-state errors of the

position, velocity, and acceleration of gravity are shown in

Fig. 6. Notice that the errors are confined to tight intervals,
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Fig. 3. Initial convergence of the position, velocity, and acceleration of gravity error.
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considering 100 m baselines, in spite of the realistic meas-

urement noise.

4.2 Performance comparison

The proposed filter was compared with two different

solutions: the first is the extended Kalman filter applied to the

original nonlinear system (6); the second consists in applying

the linear Kalman filter proposed in [34] using a position

algebraic estimate obtained from the range measurements to

feed the filter.

The initial position estimate of the EKF was initialized

with an algebraic estimate obtained from the first set of range

measurements. The state disturbance intensity matrix was set
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to Qx = 10−5I and the output noise intensity matrix as Qy = I,

which are equivalent to the ones used in Section 4.1.

Although not shown in the paper, the evolution and steady

state error of the EKF is very similar to that of the proposed

solution. However, the solution proposed in the paper has

globally exponentially stable error dynamics, while that has

not been shown, to the best of the authors’ knowledge, for the

EKF.

Finally, simulation results are shown for the linear posi-

tion and velocity navigation filter proposed in [34] using a

position algebraic estimate obtained from the range measure-

ments to feed the filter. The filter parameters are the same as

of the EKF, and the initial estimate is also identical. The initial

evolution of the filter error is depicted in Fig. 7, whereas the

steady-state error is shown in Fig. 8. From the comparison of

figures 6 and 8 it is possible to conclude that the performance

of the augmented filter is better, particularly for the z-axis

estimates.

Remark 12. In the simulations, sensor bias was not consid-

ered, particularly accelerometer bias. However, it is straight-

forward to generalize the system dynamics to also include

accelerometer bias, while the analysis of observability can be

easily inferred from the results presented in [35]. It was

chosen not to include that situation in order to focus on the

specific subject and contribution of the paper, which is the

design of novel sensor-based navigation solutions based on

multiple range measurements.

V. THREE AND TWO RANGE

MEASUREMENTS

So far it has been assumed that at least four noncoplanar

landmarks are available, in order to fit the configuration of a

long baseline acoustic setup. Although the nonlinear system

(8) and the augmented system (11) are general and admit any

number of landmarks, the observability depends both on the

number and geometric configuration of the landmarks. The

specific case of single range measurements is not within

the scope of this paper, while the LBL configuration was

considered in Section III. The cases that fall between remain.

Regardless of the number of landmarks, there exist essentially

two additional situations of interest: (i) two landmarks, which

give two range measurements; and (ii) three noncolinear land-

marks, which give three range measurements. For any other

number of landmarks, the observability analysis falls in

one of the previous categories: LBL configuration, three
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Fig. 7. Initial convergence of the position, velocity, and acceleration of gravity error (linear position filter).
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noncolinear landmarks, two landmarks, or a single landmark.

Therefore, in the remainder of this section, only two and three

noncolinear landmarks are addressed.

The following theorem addresses the observability of

the nonlinear system (11) with three noncolinear landmarks.

Theorem 3. Suppose that Assumption 2 holds and consider

the nonlinear system (11), with nL = 3, and suppose that the

three landmarks are noncolinear. Let d⊥ be a unit vector

orthogonal to the plane defined by the three landmarks. Then,

(11) is observable on [t0, tf], t0 < tf, in the sense that any initial

condition is uniquely determined by the corresponding

response {y(t), t ∈[t0, tf]} and system input {u(t), t ∈ [t0, tf]},

if the set of functions
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u d

is linearly independent on [t0, tf].

Proof. The proof is essentially a combination of the

technical contents of the proof for single range

measurements, detailed in [29], and the proof for the LBL

configuration. It is presented in Appendix B.

The case of two landmarks is addressed in the following

theorem.

Theorem 4. Suppose that Assumption 2 holds and consider

the nonlinear system (11), with nL = 2. Let d⊥1 and d⊥2

denote two unit orthogonal vectors, also orthogonal to the

direction defined by the two landmarks. Then, the system (11)

is observable on [t0, tf], t0 < tf, in the sense that any initial

condition is uniquely determined by the corresponding

response {y(t), t ∈ [t0, tf]} and system input {u(t), t ∈ [t0, tf]},

if the set of functions
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is linearly independent on [t0, tf].

Proof. The proof follows the same steps as that of Theorem

3 and therefore it is omitted.

The conditions stated in Theorems 3 and 4 do not

provide, apparently, significant information on the motion

constraints that the vehicle must satisfy so that the linear
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Fig. 8 Detailed evolution of the position, velocity, and acceleration of gravity error (linear position filter).
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motion quantities are observable. Equivalent conditions are

established in the following theorem, which allow for

appropriate motion planning and control.

Theorem 5. The sets of functions F3 and F2 are linearly

independent on [t0, tf] if and only if the sets of functions
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Proof. Substituting x1(t) = p(t) in (34) allows to write
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where αi ∈ R, βi ∈ R, i = 1, . . . , 7. The proof for the second

set of functions is analogous and therefore it is omitted.

Theorems 3 and 4 provide only sufficient conditions on

the observability of the range-based nonlinear system with

three and two landmarks, respectively. Next, the conservative-

ness of these conditions is asserted. First, it is shown in the

following theorems that certain minimal sets of functions are

required to be linearly independent in order for the system to

be observable, with three and two landmarks, respectively.

Theorem 6. Consider the nonlinear system (8), with nL = 3,

and suppose that the three landmarks are noncolinear. Let d⊥

be a unit vector orthogonal to the plane defined by the three

landmarks. If the set of functions
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where γ ∈ R\ {0}. Let r ti
a( ) and r ti

b( ), i = 1, . . . , nL, denote

the range readings of the system with initial conditions xa(t0)

and xb(t0), respectively. From (35) it can be seen that

[ ] [ ] ( )

[ ( ) ( )

r t r t t t

t t t t

i
a

i
b( ) ( ) 4 ,

4

2 2
1

[2]
0

2 0 3 0

− = ⋅

+ − + −

⊥γα
γ α α

d u
22 [2]

0

1 2 0 3 0
2

,

4

] ( )

[ ( ) ( ) ]( )

d u

s s d

⊥

⊥

⋅

+ + − + − − ⋅

t t

t t t t j iγ α α α

for all t ∈ [t0, tf], i = 1, 2, 3. For i ≠ j, notice that, by definition,

d⊥ is orthogonal to si − sj. This allows us to conclude that

(sj − si) · d⊥
= 0 for all i = 1, 2, 3 and therefore
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for all t ∈ [t0, tf], i = 1, 2, 3. Substituting (45) in (46) gives

[ ] [ ]r t r ti
a

i
b( ) ( ) 02 2− = for all t ∈ [t0, tf], i = 1, 2, 3. As the

ranges are positive, this implies that r t r ti
a

i
b( ) ( )= for all

t ∈ [t0, tf], i = 1, 2, 3, which means that there exist different

initial states that yield identical outputs, hence the system is

not observable.

Theorem 7. Consider the nonlinear system (8), with nL = 2.

Let d⊥1 and d⊥2 denote two unit orthogonal vectors, also

orthogonal to the direction defined by the two landmarks. If

the set of functions
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Proof. Suppose that the set of functions F2
1r is not linearly
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where γ ∈ R \ {0}. The remainder of the proof amounts to

show that the outputs of the system for these two different

initial conditions are identical. This follows the same steps of

Theorem 6 and therefore it is omitted.

Comparing the set of functions F3 and F3
1r , or F2 and

F2
1r , it seems that there is some conservativeness by including

the polynomials t − t0, (t − t0)
2, (t − t0)

3, and (t − t0)
4. The fol-

lowing theorems show that these polynomials influence the

observability of the system.

Theorem 8. Consider the nonlinear system (8), with nL = 3,

and suppose that the 3 landmarks are noncolinear. Let d⊥ be

a unit vector orthogonal to the plane defined by the three

landmarks. Suppose that there exists a non-null vector

[α1 α2]
T such that

[ ( )] ( ) ( )u d[2]
0 1 0 2 0

2,t t t t t t⋅ = − + −⊥ α α (47)

for all t ∈ [t0, tf]. Then the system (8) is not observable on

[t0, tf].

Proof. Fix j ∈ {1, 2, 3} and consider any two initial

conditions
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,

where γ ∈ R. Let r ti
a( ) and r ti

b( ), i = 1, . . . , nL denote the

range readings of the system with initial conditions xa(t0) and

xb(t0), respectively. From (35) it is straightforward to show that

[ ] [ ] ( ) ( )

( ) [

r t r t t t t t

t t

i
a

i
b( ) ( ) 4 4

4

2 2
0 1 0

2
2

0
2

1 2

− = − − − −

− − +

γα γα
α α (( )]

[ ( ) ( ) ] ( )
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t t

t t t t t t

−

+ + − + − ⋅

+ + +

⊥

0
2

1 0 2 0
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0

1 2

4 ,

4

γ α α
γ α α

d u

ss s dj i− ⋅ ⊥)

for all t ∈ [t0, tf], i = 1, 2, 3. For i ≠ j, notice that, by definition,

d⊥ is orthogonal to si − sj. This allows to conclude that

(sj − si) · d⊥
= 0 for all i = 1, 2, 3 and therefore

[ ] [ ] ( )

( ) ( ) [

r t r t t t

t t t t

i
a

i
b( ) ( ) 4

4 4

2 2
0 1

0
2

2 0
2

1 2

− = − −

− − − − +

γα
γα α α (( )]

[ ( ) ( ) ] ( )

t t

t t t t t t

−

+ + − + − ⋅⊥

0
2

1 0 2 0
2 [2]

04 ,γ α α d u

(48)

for all t ∈ [t0, tf], i = 1, 2, 3. Substituting (47) in (48) gives

[ ] [ ]r t r ti
a

i
b( ) ( ) 02 2− = for all t ∈ [t0, tf], i = 1, 2, 3. As the

ranges are positive, this implies that r t r ti
a

i
b( ) ( )= for all

t ∈ [t0, tf], i = 1, 2, 3, which means that there exist different

initial states that yield the identical outputs, hence the system

is not observable.

Theorem 9. Consider the nonlinear system (8), with nL = 2.

Let d⊥1 and d⊥2 denote two unit orthogonal vectors, also

orthogonal to the direction defined by the two landmarks and

suppose that there exists a non-null vector [α1 α2]
T such that

[ ( )] ( ) ( )u d[2]
0 1 0 2 0

2, 1t t t t t t⋅ = − + −⊥ α α

or
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[ ( )] ( ) ( )u d[2]
0 1 0 2 0

2, 2t t t t t t⋅ = − + −⊥ α α

for all t ∈ [t0, tf]. Then the system (8) is not observable on

[t0, tf].

Proof. The proof is similar to the proof of Theorem 8 and

therefore it is omitted.

VI. CONCLUSIONS

This paper presented a novel sensor-based long baseline

position and velocity navigation filter for underwater vehicles

based directly on the sensor measurements. Traditional solu-

tions resort either to the extended Kalman filter or to solutions

based on position algebraic estimates obtained from the range

measurements. The solution presented herein departs from

previous approaches as the range measurements are explicitly

embedded in the filter design, therefore avoiding inversion

algorithms. Moreover, the nonlinear system dynamics are

considered to their full extent and no linearizations are

carried out whatsoever.

State augmentation is at the core of the proposed

framework. Indeed, the proposed system has 13 + nL states,

which compares to a minimum of nine states for traditional

solutions. This system can be regarded as LTV which allows

the implementation of a GES Kalman filter to estimate the

system state. The achieved performance coupled with the

guarantee of global asymptotic stability justifies the addi-

tional computational complexity. In addition to that, the

framework allows for any number of range measurements,

and only the observability of the system varies, as expected.

The specific cases of two and three range measurements,

which fall into a framework between single range measure-

ments and the LBL configuration, were also analyzed in

detail. Additional sensors, like depth sensors, are also trivi-

ally added to the filtering framework, without any signifi-

cant additional computational complexity. An alternative

framework, which employs relative velocity readings instead

of acceleration readings, is also easily devised, following

steps similar to those detailed in [28] but considering the

LBL structure presented in this paper.

The performance of the proposed solution was evalu-

ated in a simulation environment. It was shown that the filter

achieves similar performance to the extended Kalman filter

and outperforms linear position and velocity filters based on

position algebraic estimates obtained directly from the range

measurements. Finally, it is important to stress that, although

the solution derived in the paper was applied for AUVs, it is

general and easily applied to any autonomous vehicle

equipped with an LBL range system.
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VII. APPENDIX A

7.1 TRANSITION MATRIX

The transition matrix ϕ (t, t0) associated with the system

matrix A(t) given by (9) can be computed resorting to the

Peano-Baker series, which in this case results in the sum of

the first five terms only, as the remaining are null.

Straightforward but long and tedious computations

allow us to write
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and ϕCA(t, t0) and ϕCC(t, t0) are omitted for the sake of

simplicity, as they are not required in the paper.

VIII. APPENDIX B

8.1 PROOF OF THEOREM 3

Proof. Suppose that (11) is not observable on [t0, tf]. Then, it

follows from Lemma 1 that the observability Gramian is not

positive definite and therefore
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Therefore, not only it must be d4 = 0 but also d1 = 0 or, if d1

is not null, it must be orthogonal to the plane defined by the

landmarks, i.e., either d1 = 0 or d1 is parallel to d⊥. From (50)

it follows that
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for all t ∈ [t0, tf], which, in particular, for t = t0, implies that
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Since the landmarks are noncolinear, the only nontrivial solu-

tion of (52) is such that d2 is parallel to d⊥. From (51) it

follows that
d

dt
t t t
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Again, as the landmarks are noncolinear, the only nontrivial

solution of (53) is such that d3 is parallel to d⊥. Now, expand-

ing (51) allows us to write
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for all t ∈ [t0, tf], i = 1, 2, 3, which in turn implies that
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for all t ∈ [t0, tf], i = 1, 2, 3. Now, integrating both sides of

(54) gives
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for all t ∈ [t0, tf], i = 1, 2, 3, or, equivalently,
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From (52) and (53) it is possible to simplify (55) as
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for all t ∈ [t0, tf], where d1, d2, and d3 are either zero or

parallel to d⊥. However, d1 = d2 = d3 = 0 is not a solution.

Indeed, if that was the case, from (52) and (53) it would

follow that d5 = d6 = 0 and, it would be impossible to satisfy

(56) with a non-null d, as (t − t0)
3 and (t − t0)

4 are linearly

independent. Then, at least one of the sets of functions
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is not linearly independent on [t0, tf], from which follows that

set of functions F3 is not linearly independent. Then, if the set

of functions F3 is linearly independent on t ∈ [t0, tf], (11) is

observable on [t0, tf].
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