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Abstract

We construct a sensor-based feedback law that provably solves the real-time collision-free robot navigation problem

in a compact convex Euclidean subset cluttered with unknown but sufficiently separated and strongly convex

obstacles. Our algorithm introduces a novel use of separating hyperplanes for identifying the robot’s local obstacle-

free convex neighborhood, affording a reactive (online-computed) continuous and piecewise smooth closed-loop

vector field whose smooth flow brings almost all configurations in the robot’s free space to a designated goal location,

with the guarantee of no collisions along the way. Specialized attention to planar navigable environments yields a

necessary and sufficient condition on convex obstacles for almost global navigation towards any goal location in

the environment. We further extend these provable properties of the planar setting to practically motivated limited

range, isotropic and anisotropic sensing models, and the nonholonomically constrained kinematics of the standard

differential drive vehicle. We conclude with numerical and experimental evidence demonstrating the effectiveness of

the proposed sensory feedback motion planner.

Keywords

Robot motion planning and control, feedback motion planning, sensor-based motion planning, artificial potential

fields, navigation functions, collision avoidance, local free space, separating hyperplanes, Voronoi diagrams

1 Introduction

Agile navigation in dense human crowds Trautman et al.

(2015); Henry et al. (2010), or in natural forests, such

as now negotiated by rapid flying Karaman and Frazzoli

(2012); Paranjape et al. (2015) and legged Wooden et al.

(2010); Johnson et al. (2011) robots, strongly motivates

the development of sensor-based reactive motion planners,

even for the relatively simple environmental models (disk

punctured planes) that seem to describe them Ilhan et al.

(2018). By the term reactive Choset et al. (2005); LaValle

(2006) we mean that motion is generated by a vector

field arising from some closed-loop feedback policy issuing

online force or velocity commands in real time as a

function of instantaneous robot state. By the term sensor-

based we mean that information about the location of the

environmental clutter to be avoided is limited to structure

perceived within some local neighborhood of the robot’s

instantaneous position — its sensor footprint.

In this paper, we propose a new reactive motion planner

taking the form of a feedback law for a first-order

(velocity-controlled), perfectly sensed and actuated disk-

shaped robot, relative to a fixed goal location, that can

be computed using only information about the robot’s

instantaneous position and structure within its sensor

footprint. We assume the a priori unknown environment

is a static topological sphere world Koditschek and Rimon

(1990), whose obstacles are convex and have smooth

boundaries whose curvature is “reasonably” high relative

to their mutual separation; and we identify the intrinsic

geometric structure within the robot’s sensory footprint

using separating hyperplanes between the robot body and

sensed (convex) obstacles Boyd and Vandenberghe (2004).

Under these assumptions, the proposed closed-loop vector

field is guaranteed to bring almost1 all (i.e., excluding at

most a measure zero subset of) initial conditions to the

desired goal. To the best of our knowledge, this is the first

time a sensor-based reactive motion planner has been shown

to be provably correct with respect to a general class of

environments.
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1.1 Motivation and Related Work

1.1.1 Feedback Motion Planning: The simple, compu-

tationally efficient artificial potential field2 approach to

real-time obstacle avoidance Khatib (1986) incurs topo-

logically necessary critical points Koditschek (1987b),

which, in practice, with no further remediation often

include (topologically unnecessary) spurious local min-

ima. In general, such local obstacle avoidance strategies

Borenstein and Koren (1991); Simmons (1996); Fox et al.

(1997); Fiorini and Shiller (1998) yield safe robot naviga-

tion algorithms but offer no assurance of (global) conver-

gence to a designated goal location. Even in topologically

simple settings such as the sphere worlds addressed here,

constructions that eliminate these spurious attractors —

e.g., navigation functions Rimon and Koditschek (1992), or

other methods Connolly and Grupen (1993) — have largely

come at the price of complete prior information. Although,

harmonic functions can be utilized to design potential func-

tions without local minima Connolly and Grupen (1993),

such intrinsically numerical constructions forfeit the reac-

tive nature of feedback motion planners under discussion

here. Hence, navigation functions (Koditschek and Rimon

1990), when they can be explicitly constructed, for exam-

ple, as in Rimon and Koditschek (1992) offer the only

available gradient-based reactive navigation approach in the

literature that provably resolves the local minima prob-

lem of more general artificial potential functions Khatib

(1986). Analyzing directly the properties of the Rimon-

Koditschek navigation function within the class of convex

sphere worlds similar to that addressed here Paternain et al.

(2017), yields a stochastic extension with provable conver-

gence properties Paternain and Ribeiro (2016) that may in

practice permit its implementation in settings where only

local, noisy sensor information is available.

Extensions to the navigation function framework par-

tially overcoming the necessity of global prior knowledge

of (and consequent parameter tuning for) a topologically

and metrically simple environment have appeared in the last

decade Lionis et al. (2007); Filippidis and Kyriakopoulos

(2011). Adjustable navigation functions are proposed to

gradually update the tuning parameter upon the discovery

of new obstacles Filippidis and Kyriakopoulos (2011), and

locally computable navigation functions are introduced by

restricting the effect of each obstacle in its immediate

vicinity such that a robot is required to deal with at most one

obstacle at a time Lionis et al. (2007) Ilhan et al. (2018).

Moreover, sequential composition Burridge et al. (1999)

has been used to cover metrically complicated environ-

ments with convex cell-based local potential decomposi-

tions Conner et al. (2009) (and extended to nonholonomi-

cally constrained finite size robots Conner et al. (2011)), but

still requires prior global knowledge of the environment.

1.1.2 Spatial Decomposition in Motion Planning: Spa-

tial decomposition methods are commonly encountered

in motion planning for modeling the connectivity of

configuration spaces and for increasing the computa-

tional performance of motion planners by substantially

reducing the associated search space Choset et al. (2005);

LaValle (2006). For example, generalized Voronoi dia-

grams Ó’Dúnlaing and Yap (1985); Choset and Burdick

(2000) and cell decomposition methods Chazelle (1987);

Choset and Pignon (1998) are typically used in the design

of roadmap methods LaValle (2006); Ó’Dúnlaing and Yap

(1985); Choset and Burdick (2000) that construct a global,

one-dimensional graphical representation (skeleton) of a

configuration space (independent of any specific robot con-

figuration) and seek for a connected path in this skeleton

to navigate a robot between any source-destination pair. A

major distinction of our construction from these roadmap

algorithms is that we follow a local, online, robot-centric

spatial decomposition approach to determine a safe neigh-

borhood of a robot configuration that also captures the local

geometric structure of the configuration space around the

robot’s instantaneous position. In a broader perspective,

we view our approach as an application of clustering, an

unsupervised learning method, for automatically extract-

ing intrinsic structures in configuration spaces Arslan et al.

(2016); Arslan (2016).

Typically, in sampling-based motion planning,

retraction onto the medial axis of a configuration space

Wilmarth et al. (1999); Holleman and Kavraki (2000)

and cell decomposition methods Foskey et al. (2001);

van den Berg and Overmars (2005) are heuristically

applied to bias sampling along the skeleton of the

configuration space, especially, in order to efficiently

find a path around narrow passages. In our numerical

and experimental studies, summarized in Section 6 and

Section 7, respectively, we also observe a similar desired

motion pattern: our vector field motion planner balances

the robot’s distance to nearby obstacles while safely

steering the robot towards its destination location. Thus, we

believe that the proposed approach offers a novel unifying

framework that simultaneously integrates desired features

of feedback motion planning and roadmap methods. For

example, in recent papers Arslan et al. (2017); Pacelli et al.

(2018), we have shown how the proposed navigation

method in this paper can be adapted to build a sensory

steering algorithm for sampling-based motion planning

in complex environments with narrow passages. Or,

again, in Vasilopoulos et al. (2018) we use extensions

Arslan and Koditschek (2017) of the ideas presented here

to develop a mobile manipulation scheme that merges

an offline deliberative task planner with a variant of our

reactive motion planner with provable guarantees of safe,

correct completion.
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Arslan and Koditschek 3

Finally, it is worth noting that our use of robot-centric

spatial decomposition is motivated by the application

of Voronoi diagrams in robotics for coverage control

of distributed mobile sensor networks Cortés et al.

(2004); Kwok and Martnez (2010); Pimenta et al. (2008);

Arslan and Koditschek (2016c), where robot-centric

Voronoi decomposition solves the sensory task assignment

problem in mobile sensor networks. Beyond their use

in optimal sensor allocation problems, we introduced in

Arslan and Koditschek (2016c) the application of robot-

centric Voronoi diagrams to the problem of multirobot

collisions. Subsequently, similar uses of Voronoi diagrams

for collision avoidance have received attention in the

multirobot navigation Zhou et al. (2017) and cluttered

tracking Pierson and Rus (2017) literature as well as for

autonomous lane change Wang et al. (2018). In none

of these settings (navigation, tracking, or lane change,

respectively) it was shown that the task could be achieved

without the possibility of entering a deadlock situation.

Thus, to the best of our knowledge, this is the first work

to present sufficient (and, for the 2D case, necessary)

conditions on an environment that guarantee a greedy

reactive navigation strategy can achieve global single robot

navigation while ensuring safety.

1.2 Summary of Contributions

This paper abandons the smooth potential field approach

to reactive planning, achieving an algorithm that is “doubly

reactive” in the sense that not merely the integrated

robot trajectory, but also its generating vector field can

be constructed on the fly in real time using only local

knowledge of the environment. Our piecewise smooth

vector field combines some of the ideas of sensor-based

exploration Choset and Burdick (2000) with those of hybrid

reactive control Conner et al. (2009). We use separating

hyperplanes of convex bodies Boyd and Vandenberghe

(2004) to identify an obstacle-free convex neighborhood of

a robot configuration, and build our safe robot navigation

field by control action towards the metric projection

Webster (1995) of the designated point destination onto this

convex set.

Our construction, guaranteed to converge with no

collisions in spaces of arbitrary (finite) dimension, requires

no parameter tuning and requires only local knowledge of

the environment in the sense that the robot need only locate

those proximal obstacles determining its collision-free

convex neighborhood. When the obstacles are sufficiently

separated (Assumption 1 stipulates that the robot must be

able to pass in between them) and sufficiently strongly

convex at their “antipode” (Assumption 2 stipulates that

they curve away from the enclosing sphere centered at

the destination which just touches their boundary at the

most distant point), the proposed vector field generates a

Fig. 1. Exact navigation of a disk-shaped robot using separating

hyperplanes of the robot body (red at the goal) and convex obsta-

cles (black solid shapes). Separating hyperplanes between the

robot and obstacles define an obstacle-free convex neighborhood

(the yellow region when the robot at the goal) of the robot, and

the continuous feedback motion towards the metric projection of

a given desired goal (red) onto this convex set asymptotically

steers almost1 all robot configurations (green) to the goal with

no collisions (from any initial condition) along the way. The

grey regions represent the augmented workspace boundary and

obstacles, and the arrows depict the direction of the resulting

vector field.

smooth flow with a unique attractor at the specified goal

location along with (the topologically necessary number

of) saddles — at least one associated with each obstacle.

Since all of its critical points are nondegenerate, our vector

field is guaranteed to steer almost1 all collision-free robot

configurations to the goal, while avoiding collisions along

the way, as illustrated in Fig. 1.

It proves most convenient to develop the theoretical

properties of this construction under the assumption

that the robot can identify and locate those nearby

obstacles whose associated separating hyperplanes define

its obstacle-free convex neighborhood (a capability termed

Voronoi-adjacent obstacle sensing in Section 3.2). Then, to

accommodate more physically realistic sensors, we adapt

the initial construction (and the proof) to the case of

two different limited range sensing modalities. Next, in

the interest of greater practicability, we further extend

the construction (and the proof) to the case of the

commonly encountered kinematic differential drive vehicle

model (retaining the convergence and collision avoidance

guarantees, at the necessary cost of a discontinuous

feedback law), with isotropic and anisotropic sensory

capabilities. Finally, we demonstrate the effectiveness of

these various navigation algorithms by reporting the results

of numerous numerical simulations and experimental

studies with a physical robot.

In a prior conference paper Arslan and Koditschek

(2016a), we proposed a different construction based

on power diagrams Aurenhammer (1987) for navigating

Prepared using sagej.cls
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among spherical obstacles using knowledge of Voronoi-

adjacent3 obstacles to construct the robot’s local workspace

(Arslan and Koditschek 2016a, Eqn. (9)). In a subsequent

conference paper Arslan and Koditschek (2016b), we

introduced a new construction for that set in (8) based

on separating hyperplanes, permitting an extension of

the navigable obstacles to the broader class of convex

bodies specified by Assumption 2, while providing the

same guarantee of almost1 global asymptotic convergence

(Theorem 3) to a given goal location. From the view

of applications, the new appeal to separating hyperplanes

permits the central advance of a purely reactive construction

from limited range sensors (24) — e.g., in the planar case

from immediate line-of-sight appearance (30) — with the

same global guarantees. This paper gives a unified view of

these results (with some tutorial background and detailed

discussions) and provides experimental validation of the

results.

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section

2 continues with a formal statement of the problem at

hand. Section 3 briefly summarizes a separating hyperplane

theorem for convex bodies, and introduces its use for

identifying collision-free robot configurations. Section 4

constructs and analyzes the reactive vector field planner

for safe robot navigation in a convex sphere world, and

provides its more practical extensions for various sensing

modalities and actuation models. Section 5 presents a

brief discussion of planar navigable environments for

greedy navigation strategies, such as the one constructed

in this paper. Section 6 and Section 7 illustrate the

qualitative properties of the proposed vector field planner

using numerical simulations and experimental results,

respectively. Section 8 concludes with a summary of our

contributions and a brief discussion of future work.

2 Problem Formulation

Consider a disk-shaped robot, of positive radius r ∈
R>0 centered at x ∈W, operating in a closed compact

convex environment W in the n-dimensional Euclidean

space Rn, where n ≥ 2, punctured by m ∈ N open convex

sets O := {O1, O2, . . . , Om} with twice differentiable

boundaries, representing obstacles.4 Hence, the free space

F of the robot is given by

F :=

{
x ∈W

∣∣∣ B(x, r) ⊆W \
m⋃
i=1

Oi

}
. (1)

where B(x, r) :=
{
q ∈ Rn

∣∣‖q− x‖ < r
}

is the open ball

centered at x with radius r, B(x, r) denotes its closure, and

‖.‖ denotes the standard Euclidean norm.

To maintain the local convexity of obstacle boundaries

in the free space F, we assume that our disk-shaped robot

can freely fit in between (and thus freely circumnavigate)

any of the obstacles throughout the workspace W, which is

generally refered to as the “isolated” obstacles assumption

Rimon and Koditschek (1992):

Assumption 1. Obstacles are separated from each other

by clearance of at least

d(Oi, Oj) > 2r, ∀i 6= j, (2)

and from the boundary ∂W of the workspace W as

d(Oi, ∂W) > 2r, ∀i, (3)

where d(A,B) := inf
{
‖a− b‖

∣∣ a ∈ A, b ∈ B
}

.

Before formally stating our navigation problem, it is

useful to recall a specific consequence of the well known

topological limitation of reactive planners: if a continuous

vector field planner on a generalized sphere world has

a unique attractor, then it must have at least as many

saddles as obstacles Koditschek and Rimon (1990). In

consequence, the robot navigation problem that we seek to

solve is stated as:

Reactive Navigation Problem Assuming the first-order

(fully-actuated single-integrator) robot dynamics,

ẋ = u(x), (4)

find a Lipschitz continuous controller, u : F → Rn, that

leaves the robot’s free space F positively invariant and

asymptotically steers almost1 all configurations in F to any

given goal x∗ ∈ F.

3 Encoding Collisions via Separating

Hyperplanes

In this section, we briefly recall a separating hyperplane

theorem for disjoint convex sets, and then adapt it to iden-

tify a collision-free neighborhood of a disk-shaped robot.

3.1 Separating Hyperplane Theorem

A fundamental result of convexity theory states that any

two disjoint convex sets can be separated by a hyperplane

such that they lie on opposite sides of this hyperplane:

Theorem 1. Separating Hyperplane Theorem Webster

(1995); Boyd and Vandenberghe (2004). For any two

nonintersecting convex sets A,B ∈ Rn (i.e., A ∩B = ∅),

there exists a ∈ Rn and b ∈ R such that aTx ≥ b for all

x ∈ A and aTx ≤ b for all x ∈ B.

For example, a usual choice of such a hyperplane is

Boyd and Vandenberghe (2004):

Prepared using sagej.cls
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Definition 1 The maximum margin separating hyperplane

of any two disjoint convex sets A,B ⊂ Rn, with d(A,B) >
0, is defined to be

H(A,B):=

{
x∈Rn

∣∣∣∣∣‖x−a
∗‖=‖x−b∗‖, (a∗,b∗)=arg min

a∈A,b∈B

d(a,b)

}
,

where d(x, H(A,B)) ≥ d(A,B)
2 for all x ∈ A ∪B.

It is useful to remark that although there can be more

than one pair of points a ∈ A and b ∈ B achieving

‖a− b‖ = d(A,B), they all define the same maximum

margin separating hyperplane (Lemma 4).

Another useful tool for finding a separating hyperplane

between a point and a convex set is metric projection:

Theorem 2. Webster (1995). Let A ⊂ Rn be a closed

convex set and x ∈ Rn. Then there exists a unique point

a∗ ∈ A such that

a∗ = ΠA(x) := arg min
a∈A

‖a− x‖, (5)

and one has (x−ΠA(x))
T(ΠA(x)− a) ≥ 0 for all a ∈ A.

The map ΠA(x) is called the metric projection of x onto

set A.

Hence, it is straightforward to observe that:

Lemma 1. The maximum margin separating hyperplane

of a convex set A ⊂ Rn and the ball B(x, r) of radius r ∈
R>0 centered at x ∈ Rn, satisfying d(x, A) ≥ r, is given by

H(A,B(x,r))=
{
y∈Rn

∣∣∣
∥∥∥y−(ΠB(x,r)◦ΠA)(x)

∥∥∥=‖y−ΠA(x)‖
}
,

(6)

where (Π
B(x,r) ◦ΠA)(x) = x− r

x−ΠA(x)

‖x−ΠA(x)‖
.

Proof. See Appendix B.1. �

A common application of separating hyperplanes of

a set of convex bodies is to discover their organi-

zational structure. For instance, to model its topolog-

ical structure, we define the generalized Voronoi dia-

grams V = {V1, V2, . . . , Vm} of a convex environment

W in Rn populated with disjoint convex obstacles O =
{O1, O2, . . . , Om} (i.e., d(Oi, Oj)>0 ∀i 6=j), based on

maximum margin separating hyperplanes, to be

Vi :=
{
q∈W

∣∣∣‖q−p∗i ‖ ≤
∥∥q−p∗j

∥∥,
(
p∗i , p

∗
j

)
= arg min
pi∈Oi,pj∈Oj

d(pi, pj) ∀j 6= i
}
, (7)

which yields a convex cell decomposition of a subset of W

such that, by construction, each obstacle is contained in its

Voronoi cell, i.e., Oi ⊂ Vi, see Fig. 2. Note that for point

obstacles, say Oi={pi} for some pi ∈ Rn, the generalized

Voronoi diagram of W in (7) simplifies back to the standard

Voronoi diagram of W, generated by points {p1, . . . , pm},

i.e., Vi=
{
q∈W

∣∣∣‖q−pi‖≤‖q−pj‖, ∀j 6= i
}

Okabe et al.

(2000).

3.2 Safe Neighborhood of a Robot

Throughout the sequel, we consider a disk-shaped robot,

centered at x ∈W with radius r ∈ R>0, moving in a closed

compact convex environment W ⊆ Rn populated with

open convex obstacles, O = {O1, O2, . . . , Om}, satisfying

Assumption 1. Since the workspace, obstacles, and the

robot radius are fixed, we suppress all mention of the

associated terms wherever convenient, in order to simplify

the notation.

Using the robot body and obstacles as generators of a

generalized Voronoi diagram of W, we define the robot’s

local workspace, LW(x), illustrated in Fig. 2(left), as,

LW(x):=

{
q∈W

∣∣∣∣
∥∥∥∥q−x+r

x−ΠOi
(x)

∥

∥

∥
x−ΠOi

(x)
∥

∥

∥

∥∥∥∥≤
∥∥q−ΠOi

(x)
∥∥, ∀i

}
,

(8)

where, to solve the indeterminacy, we set y
‖y‖ = 0 whenever

y = 0. Note that we here take the advantage of having

a disk-shaped robot and construct the maximum margin

separating hyperplane between the robot and each obstacle

using the robot’s centroid (Lemma 1), which will become

more significant in the sequel for a fixed radius sensory

footprint and a limited range line-of-sight sensor.

A critical property of the local workspace LW is:

Proposition 1. A robot placement x ∈W \
⋃m

i=1 Oi is

collision free, i.e., x ∈ F, if and only if the robot body is

contained in its local workspace LW(x), i.e.,5 6

x ∈ F ⇐⇒ B(x, r) ⊆ LW(x). (9)

Proof. See Appendix B.2. �

Accordingly, we define the robot’s local free space,

LF(x), by eroding LW(x), removing the volume swept

along its boundary, ∂LW(x), by the robot body radius

Haralick et al. (1987), illustrated on the left in Fig. 2, as

LF(x) := LW(x) \
(
∂LW(x)⊕B(0, r)

)
, (10a)

=
{
q ∈ LW(x)

∣∣∣B(q, r)⊆LW(x)
}
. (10b)

where 0 is a vector of all zeros with the appropriate size,

and A⊕B denotes the Minkowski sum of sets A and B,

defined as A⊕B = {a+ b | a ∈ A, b ∈ B}. Note that, for

any x ∈ F, LF(x) is a nonempty closed convex set, because

x ∈ LF(x) and the erosion of a closed convex set by an

open ball is a closed convex set.7

An immediate consequence of Proposition 1 is:

Prepared using sagej.cls
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Fig. 2. Local workspace LW (yellow) and local free space

LF (green) of a disk-shaped robot (blue) for different sensing

modalities: (left) Voronoi-adjacent3 obstacle sensing, (middle) a

fixed radius sensory footprint (red), (right) a limited range line-of-

sight sensor (red). The boundary of each generalized Voronoi cell

is defined by the maximum margin separating hyperplanes of the

robot body (blue) and obstacles (black).

Corollary 1. Any robot placement in the local free space

LF(x) of a collision-free robot location x ∈ F is also

collision free, i.e., LF(x) ⊆ F for all x ∈ F.

Finally, it is worth observing that to construct its local

workspace, the robot requires only local knowledge of the

environment in the sense that it need merely locate proximal

obstacles — those whose Voronoi cells are adjacent3 to

it (i.e., to its local workspace). This can be achieved

by assuming an adjustable radius sensory footprint and

gradually increasing its sensing range until the set of

obstacles in the sensing range satisfies a certain geometric

criterion guaranteeing that the detected obstacles exactly

define the robot’s local workspace Cortés et al. (2004).

We will refer to this sensing model as Voronoi-adjacent

obstacle sensing.

4 Exact Robot Navigation via Separating

Hyperplanes

In this section, first assuming Voronoi-adjacent obstacle

sensing, we introduce a new provably correct vector field

controller for safe robot navigation in a convex sphere

world, and list its important qualitative properties. Then

we present its extensions for two more realistic sensor

models (illustrated, respectively, in the middle and the

right panels of Fig. 2): a fixed radius sensory footprint

and a limited range line-of-sight sensor. We further adapt

our construction to the widely used nonholonomically

constrained differential drive vehicle, with isotropic and

anisotropic sensing capabilities.

4.1 Feedback Robot Motion Planner

Assuming the fully-actuated single-integrator robot

dynamics in (4), for a choice of a desired goal location

x∗ ∈ F, we propose a robot navigation strategy, called the

“move-to-projected-goal” law, u : F → Rn that steers the

robot at location x ∈ F towards the global goal x∗ through

the “projected goal”, ΠLF(x)(x
∗), as follows:

u(x) = −k
(
x−ΠLF(x)(x

∗)
)
, (11)

where k ∈ R>0 is a fixed control gain and ΠA (5) is the

metric projection onto a closed convex set A ⊂ Rn, and

LF(x) is continuously updated using the Voronoi-adjacent

obstacle sensing and its relation with LW(x) in (10).

Our construction of the “move-to-projected-goal” law in

(11) is strongly based on metric projection onto convex sets,

which can be efficiently computed using a standard off-the-

shelf convex optimization solver Boyd and Vandenberghe

(2004). If W is a convex polytope, then the robot’s local

free space, LF(x), is also a convex polytope and can

be written as a finite intersection of half-spaces. Hence,

the metric projection onto a convex polytope can be

recast as a linearly constrained least squares problem and

can be solved in polynomial time Kozlov et al. (1980),

for example, using active set method Wright and Nocedal

(1999), briefly described in Appendix F. In the case of a

convex polygonal environment, LF(x) is a convex polygon

and the metric projection onto a convex polygon can be

solved analytically, because the solution lies on one of its

edges, unless the input point is inside the polygon.

4.2 Qualitative Properties

We now continue with a list of certain key qualitative

(continuity, existence & uniqueness, invariance and

stability) properties of the vector field in (11).

Proposition 2. The “move-to-projected-goal” law in (11)

is piecewise continuously differentiable.

Proof. An important property of generalized Voronoi

diagrams in (7) inherited from the standard Voronoi

diagrams of point generators is that the boundary

of each Voronoi cell is a piecewise continuously

differentiable function of generator locations Bullo et al.

(2009); Rockafellar (1985). In particular, for any x ∈ F

the boundary of the robot’s local workspace LW(x) is

piecewise continuously differentiable since it is defined by

the boundary of the workspace and separating hyperplanes

between the robot and obstacles, parametrized by x and

ΠOi
(x), and metric projections onto convex cells are

piecewise continuously differentiable Kuntz and Scholtes

(1994). Hence, the boundary of the local free space

LF(x) is also piecewise continuously differentiable

because LF(x) is the nonempty erosion of LW(x) by

a fixed open ball. Therefore, one can conclude using

the sensitivity analysis of metric projections onto moving

convex sets Shapiro (1988); Liu (1995) that the “move-to-

projected-goal” law is Lipschitz continuous and piecewise

continuously differentiable. �

Proposition 3. The robot’s free space F in (1) is positively

invariant under the “move-to-projected” law (11).

Proof. Since x and ΠLF(x)(x
∗) are both in LF(x) for any

x ∈ F, and LF(x) is an obstacle-free convex neighborhood
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of x (Corollary 1), the line segment joining x and

ΠLF(x)(x
∗) is free of collisions. Hence, at the boundary

of F, the robot under the “move-to-projected-goal” law

either stays on the boundary or moves towards the interior

of F, but never crosses the boundary, and so the result

follows. �

Proposition 4. For any initial x ∈ F, the “move-to-

projected-goal” law (11) has a unique continuously

differentiable flow in F (1) defined for all future time.

Proof. The existence, uniqueness and continuous differen-

tiability of its flow follow from the Lipschitz continuity of

the “move-to-projected-goal” law in its compact domain

F, because a piecewise continuously differentiable function

is locally Lipschitz on its domain Chaney (1990), and a

locally Lipschitz function on a compact set is globally

Lipschitz on that set Khalil (2001). �

Proposition 5. The set of stationary points of the “move-

to-projected-goal” law (11) is {x∗} ∪
⋃m

i=1 Si, where

Si :=

{
x∈F

∣∣∣∣ d(x, Oi)=r,
(x−ΠOi

(x))T(x−x∗)

‖x−ΠOi
(x)‖‖x−x∗‖ =1

}
.(12)

Proof. It follows from (5) that the goal location x∗ is

a stationary point of (11), because x∗ ∈ LF(x∗). In fact,

for any x ∈ F, one has ΠLF(x)(x
∗) = x∗ whenever x∗ ∈

LF(x). Hence, in the sequel of the proof, we only consider

the set of robot locations satisfying x∗ 6∈ LF(x).
Let x ∈ F such that x∗ 6∈ LF(x). Recall from (8) and

(10) that LW(x) is determined by the maximum margin

separating hyperplanes of the robot body and obstacles, and

LF(x) is obtained by eroding LW(x) by an open ball of

radius r. Hence, x lies in the interior of LF(x) if and only

if d(x, Oi) > r for all i. As a result, since x∗ 6∈ LF(x), one

has x = ΠLF(x)(x
∗) only if d(x, Oi) = r for some i.

Note that if d(x, Oi) = r, then, since d(Oi, Oj) > 2r
(Assumption 1), d(x, Oj) > r for all j 6= i. Therefore,

there can be only one obstacle index i such that x =
ΠLF(x)(x

∗) and d(x, Oi) = r. Further, given d(x, Oi) = r,

since ΠLF(x)(x
∗) is the unique closest point of the closed

convex set LF(x) to the goal x∗ (Theorem 2), its optimality

Boyd and Vandenberghe (2004) implies that one has x =
ΠLF(x)(x

∗) if and only if the maximum margin separating

hyperplane between the robot and obstacle Oi is tangent

to the level curve of the squared Euclidean distance to the

goal, ‖x− x∗‖2, at ΠOi
(x), and separates x and x∗, i.e.,

(x−ΠOi
(x))

T
(x− x∗)

‖x−ΠOi
(x)‖‖x− x∗‖

= 1. (13)

Thus, one can locate the stationary points of the “move-

to-projected-goal” law in (11) associated with obstacle Oi

as in (12), and so the result follows. �

Fig. 3. Stationary points of the “move-to-projected-goal” law in

(11): there is one unique attractor (red) at the goal location, and

there is one saddle point (blue) associated with each obstacle.

Note that, for any equilibrium point si ∈ Si associated with

obstacle Oi, one has that the equilibrium si, its projection

ΠOi
(si) and the goal x∗ are all collinear, see Fig. 3.

Lemma 2. The “move-to-projected-goal” law (11) in a

small neighborhood of the goal x∗ is given by

u(x) = −k(x− x∗), ∀ x ∈ B(x∗, ǫ), (14)

for some ǫ > 0; and around any stationary point si ∈ Si

(12), associated with obstacle Oi, it is given by

u(x)=−k

(
x−x∗+

(
x−ΠOi

(x)
)T
(x∗−hi)∥∥x−ΠOi
(x)
∥∥2

(
x−ΠOi

(x)
)
)
,(15)

for all x∈B(si, ε) and some ε>0, where

hi :=
x + ΠOi

(x)

2
+

r

2

x−ΠOi
(x)∥∥x−ΠOi
(x)
∥∥ . (16)

Proof. See Appendix B.3. �

Since our “move-to-projected-goal” law strictly

decreases the (squared) Euclidean distance to the goal

x∗ away from its stationary points (Proposition 7), to

guarantee the existence of a unique stable attractor at x∗

we require the following assumption:

Assumption 2. (Obstacle Curvature Condition) The

Jacobian matrix JΠOi
(si) of the metric projection of any

stationary point si ∈ Si onto the associated obstacle Oi

satisfies 8

JΠOi
(si) ≺

∥∥x∗−ΠOi
(si)
∥∥

r +
∥∥x∗−ΠOi

(si)
∥∥ I ∀i, (17)

where I is the identity matrix of appropriate size.

In brief, the obstacle curvature condition in Assumption

2 states that at a stationary point si ∈ Si, the associated

configuration space (i.e., robot-radius dilated workspace)
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Fig. 4. Geometric interpretation of the obstacle curvature

condition in Assumption 2. At an unstable stationary point,

the associated configuration space (i.e., robot-radius dilated

workspace) obstacle should be contained in the enclosing ball

of the goal of radius equal to the Euclidean distance of the

stationary point to the goal. For the configuration depicted in the

left illustration, the obstacle curvature condition fails. Contrarily,

for the two contrasting configurations depicted in the middle and

right illustrations, the obstacle curvature condition holds true.

obstacle should be contained in the enclosing ball,

B(x∗, ‖si − x∗‖), of the goal of radius equal to the

Euclidean distance of the stationary point si to the goal x∗,

see Fig. 4 and refer to Appendix C for a detailed geometric

interpretation of Assumption 2. For example, the obstacle

curvature condition always holds for spherical obstacles,

independent of the goal location (Corollary 2). Also note

that a similar obstacle curvature condition is necessarily

made in the design of navigation functions for spaces with

convex obstacles in Filippidis and Kyriakopoulos (2012);

Paternain et al. (2017).

Proposition 6. If Assumption 2 holds for the goal x∗

and for all obstacles, then x∗ is the only locally stable

equilibrium of the “move-to-projected-goal” law (11), and

all the stationary points, si∈Si (12), associated with

obstacles, Oi, are nondegenerate saddles.

Proof. It follows from (14) that the goal x∗ is a locally

stable point of the “move-to-projected-goal” law, because

its Jacobian matrix, Ju(x
∗), at x∗ is equal to −k I.

Now, to determine the type of any stationary point si ∈
Si associated with obstacle Oi, define

g(x) :=

(
x∗−ΠOi

(x)
)T(

x−ΠOi
(x)
)

∥∥x−ΠOi
(x)
∥∥2 −

r

2
∥∥x−ΠOi

(x)
∥∥ −

1

2
,

(18)

and so the “move-to-projected-goal” law in a small

neighborhood of si in (15) can be rewritten as

u(x) = −k
(
x− x∗ + g(x)

(
x−ΠOi

(x)
))
. (19)

Hence, using
∥∥si−ΠOi

(si)
∥∥ = r, one can verify that its

Jacobian matrix at si is given by

Ju(si)=−kg(si)

( ∥

∥

∥
x∗−ΠOi

(si)
∥

∥

∥

r+
∥

∥

∥
x∗−ΠOi

(si)
∥

∥

∥

Q−JΠOi
(si)

)
− k

2 (I−Q),

(20)

where g(si) = −

∥

∥

∥
x∗−ΠOi

(si)
∥

∥

∥

r
−1 < −2, and

Q = I−

(
si−ΠOi

(si)
)(
si−ΠOi

(si)
)T

∥∥si−ΠOi
(si)
∥∥2 . (21)

Note that JΠOi
(x)
(
x−ΠOi

(x)
)
= 0 for all x ∈ Rn \Oi

Holmes (1973); Fitzpatrick and Phelps (1982). Hence, if

Assumption 2 holds, then one can conclude, from g(si) <
−2 and (20), that the only negative eigenvalue of Ju(si)
and the associated eigenvector are −k

2 and
(
si −ΠOi

(si)
)
,

respectively; and all other eigenvalues of Ju(si) are

positive. Thus, si is a nondegenerate saddle point of the

“move-to-projected-goal” law associated with Oi. �

Proposition 7. Given that the goal location x∗ and obsta-

cles satisfy Assumption 2, the goal x∗ is an asymptotically

stable equilibrium of the “move-to-projected-goal” law

(11), whose basin of attraction includes F, except a set of

measure zero.1

Proof. Consider the squared Euclidean distance to the

goal as a smooth Lyapunov function candidate, i.e.,

V (x) := ‖x− x∗‖2, and it follows from (5) and (11) that

V̇ (x) = −k 2(x− x∗)
T(

x− ΠLF(x)(x
∗)
)

︸ ︷︷ ︸
≥‖x−ΠLF(x)(x

∗)‖2

since x∈LF(x) and ‖x−x∗‖2≥‖ΠLF(x)(x
∗)−x∗‖2

, (22)

≤ −k
∥∥x−ΠLF(x)(x

∗)
∥∥2 ≤ 0, (23)

which is zero iff x is a stationary point. Hence, we

have from LaSalle’s Invariance Principle Khalil (2001)

that all robot configurations in F asymptotically reach

the set of equilibria of (11). Therefore, the result follows

from Proposition 2 and Proposition 6, because, under

Assumption 2, x∗ is the only stable stationary point of the

piecewise continuous “move-to-projected-goal” law (11),

and all other stationary points are nondegenerate saddles

whose stable manifolds have empty interiors Hirsch et al.

(2003). �

Finally, we find it useful to summarize important qual-

itative properties of the “move-to-projected-goal” law as:

Theorem 3. The piecewise continuously differentiable

“move-to-projected-goal” law in (11) leaves the robot’s

free space F (1) positively invariant; and if Assumption

2 holds, then its unique continuously differentiable flow,

starting at almost1 any configuration x ∈ F, asymptotically

reaches the goal location x∗, while strictly decreasing the

squared Euclidean distance to the goal, ‖x− x∗‖2, along

the way.

Moreover, since the “move-to-projected-goal” law in

(11) is piecewise continously differentiable, it can be
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lifted to higher-order dynamical models Koditschek (1987a,

1991); Fierro and Lewis (1997); Arslan and Koditschek

(2017). In particular, in Arslan and Koditschek (2017)

we show how the invariance and stability properties

of the “move-to-projected-goal” law of the first-order

(velocity-controlled) robot can be provably extended to the

second-order (force-controlled) robot model via reference

governors Kolmanovsky et al. (2014).

4.3 Extensions for Limited Range Sensing

A crucial property of the “move-to-projected-goal” law

(11) is that it only requires the knowledge of the robot’s

Voronoi-adjacent3 obstacles to determine the robot’s local

workspace and so the robot’s local free space. We now

exploit that property to relax our construction so that it can

be put to practical use with commonly available sensors that

have bounded radius footprint. This extension results from

the construction of the robot’s local workspace (8) in terms

of the maximum margin separating hyperplanes of convex

sets. In consequence, because the intersection of convex

sets is convex Boyd and Vandenberghe (2004), perceived

obstacles in the robot’s (convex) sensory footprint are,

in turn, themselves always convex. We will present two

specific instances, pointing out along the way how they

nevertheless preserve the sufficient conditions for the

qualitative properties listed in Section 4.2.

4.3.1 Navigation using a Fixed Radius Sensory

Footprint: Suppose the robot is equipped with a sensor

with a fixed sensing range, R ∈ R>0, whose sensory

output, denoted by SR(x) := {S1, S2, . . . , Sm}, at a

location, x ∈W, returns some computationally effective

dense representation of the perceptible portion, Si :=Oi ∩
B(x, R), of each obstacle, Oi, in its sensory footprint,

B(x, R). Note that Si is always open and might possibly be

empty (if Oi is outside the robot’s sensing range), see Fig.

2(middle); and we assume that the robot’s sensing range is

greater than the robot body radius, i.e., R > r.

As in (8), using the maximum margin separating

hyperplanes of the robot and sensed obstacles, we define

the robot’s sensed local workspace, illustrated in Fig.

2(middle), as,

LWS(x):=
{
q∈W ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−ΠSi
(x)

‖x−ΠSi
(x)‖

∥∥∥≤
∥∥q−ΠSi

(x)
∥∥, ∀i s.t. Si 6=∅

}
.(24)

Note that B
(
x, r+R

2

)
is equal to the intersection of the

closed half spaces containing the robot body and defined

by the maximum margin separating hyperplanes of the

robot body, B(x, r), and all individual points, q ∈ Rn \
B(x, R), outside its sensory footprint. That is to say, the

region outside the robot’s sensory footprint is assumed to

be occupied by obstacles.

An important observation revealing a critical connection

between the robot’s local workspace LW in (8) and its

sensed local workspace LWS in (24) is: For any x∈W,

Proposition 8. LWS(x)=LW(x) ∩B
(
x, r+R

2

)
.

Proof. See Appendix B.4. �

In accordance with its local free space LF(x) in (10),

we define the robot’s sensed local free space LFS(x) by

eroding LWS(x) by the robot body, illustrated in Fig.

2(middle), as,

LFS(x) :=
{
q ∈ LWS(x)

∣∣∣B(q, r)⊆LWS(x)
}
, (25a)

= LF(x) ∩B
(
x, R−r

2

)
, (25b)

where the latter follows from Proposition 8 and that

the erosion operation is distributed over set intersection

Haralick et al. (1987). Note that, for any x ∈ F, LFS(x) is

a nonempty closed convex set containing x as is LF(x).

To safely steer a single-integrator disk-shaped robot in

(4) towards a given goal location x∗∈F using a fixed

radius sensory footprint, we propose the following “move-

to-projected-goal” law,

u(x) = −k
(
x−ΠLFS(x)(x

∗)
)
, (26)

where k > 0 is a fixed control gain, and ΠLFS(x) (5) is

the metric projection onto the robot’s sensed local free

space LFS(x), and LFS(x) is assumed to be continuously

updated.

Due to the nice relations between the robot’s different

local neighborhoods in Proposition 8 and (25b), the revised

“move-to-projected-goal” law for a fixed radius sensory

footprint inherits all qualitative properties of the original

one presented in Section 4.2, summarized as:

Proposition 9. The “move-to-projected-goal” law of a

disk-shaped robot equipped with a fixed radius sensory

footprint in (26) is piecewise continuously differentiable;

and if Assumption 2 holds, then its unique continuously

differentiable flow asymptotically steers almost1 all

configurations in its positively invariant domain F towards

any given goal location x∗ ∈ F, while strictly decreasing

the (squared) Euclidean distance to the goal along the way.

Proof. The proof of the result follows patterns similar

to those of Proposition 2 - Proposition 7, because of

the relations between the robot’s local neighborhoods in

Proposition 8 and (25b), and so it is omitted for the sake

of brevity. �
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4.3.2 Navigation using a 2D LIDAR Range Scanner:

We now present another practical extension of the “move-

to-projected-goal” law for safe robot navigation using a

2D LIDAR range scanner in an unknown convex planar

environmentW ⊆ R2 populated with convex obstacles O =
{O1, O2, . . . , Om}, satisfying Assumption 1. Assuming an

angular scanning range of 360 degrees and a fixed radial

range of R ∈ R>0, we model the sensory measurement

of the LIDAR scanner at location x∈W by a polar curve

Stewart (2012) ρx : [−π, π)→ [0, R], defined as,

ρx(θ):= min




R,

min
{
‖p−x‖

∣∣∣p∈∂W, atan2(p−x)=θ
}
,

min
i

{
‖p−x‖

∣∣∣p∈Oi, atan2(p−x)=θ
}


.

(27)

We further assume that the LIDAR sensing range is greater

than the robot body radius, i.e., R > r.

Suppose ρi : (θli , θui
)→ [0, R] is a convex curve

segment of the LIDAR scan ρx (27) at location x ∈W

(please refer to Appendix G for the notion of convexity in

polar coordinates which we use to identify convex polar

curve segments in a LIDAR scan, corresponding to the

convex obstacle and workspace boundary), then we define

the associated line-of-sight obstacle as the open epigraph of

ρi whose pole is located at x Stewart (2012),

Li := {x} ⊕ e̊piρi, (28)

= {x}⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣θ∈(θli, θui
), ̺>ρi(θ)

}
, (29)

which is an open convex set. Here, Å denotes the interior

of a set A. Accordingly, we assume the availability of

a sensor model LR(x) := {L1, L2, . . . , Lt} that returns

the list of convex line-of-sight obstacles detected by the

LIDAR scanner at location x, where t denotes the number

of detected obstacles and changes as a function of robot

location.

Following the lines of (8) and (10), we define the robot’s

line-of-sight local workspace and line-of-sight local free

space, illustrated in Fig. 2(right), respectively, as

LWL(x):=
{
q ∈ Lft(x) ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−ΠLi
(x)

‖x−ΠLi
(x)‖

∥∥∥≤
∥∥q−ΠLi

(x)
∥∥, ∀i

}
.(30)

LFL(x) :=
{
q ∈ LWL(x)

∣∣∣B(q, r)⊆LWL(x)
}
, (31)

where Lft(x) denotes the LIDAR sensory footprint at x,

given by the hypograph of the LIDAR scan ρx (27) at x,

i.e.,

Lft(x) := {x} ⊕ hypρx, (32)

={x}⊕
{
(̺ cos θ, ̺ sin θ)

∣∣∣θ∈(−π, π], 0≤̺≤ρx(θ)
}
.(33)

Similar to Proposition 1 and Corollary 1, we have:

Proposition 10. For any x ∈ F, LWL(x) is an obstacle-

free closed convex subset of W and contains the robot body

B(x, r). Therefore, LFL(x) is a nonempty closed convex

subset of F and contains x.

Proof. See Appendix B.5. �

Accordingly, to navigate a fully-actuated single-

integrator robot in (4) using a LIDAR scanner towards

a desired goal location x∗ ∈ F, with the guarantee of

no collisions along the way, we propose the following

“move-to-projected-goal” law

u(x) = −k
(
x−ΠLFL(x)(x

∗)
)
, (34)

where k > 0 is fixed, and ΠLFL(x) (5) is the metric

projection onto the robot’s line-of-sight free space LFL(x)
(31), which is assumed to be continuously updated.

We summarize important properties of the “move-to-

projected-goal” law for navigation using a 2D LIDAR range

scanner as:

Proposition 11. The “move-to-projected-goal” law of

a LIDAR-equipped disk-shaped robot in (34) leaves the

robot’s free space F (1) positively invariant; and if

Assumption 2 holds, then its unique, continuous and

piecewise differentiable flow asymptotically brings all but

a measure zero set of initial configurations in F to any

designated goal location x∗ ∈ F, while strictly decreasing

the (squared) Euclidean distance to the goal along the way.

Proof. See Appendix B.6. �

Note that the “move-to-projected-goal” law in (34)

might have discontinuities, because of possible occlusions

between obstacles. If there is no occlusion between

obstacles in the LIDAR’s sensing range, then the LIDAR

scanner provides exactly the same information about

obstacles as does the fixed radius sensory footprint of

Section 4.3.1, and so the “move-to-projected-goal” law

in (34) is piecewise continuously differentiable as is its

version in (26). In this regard, one can avoid occlusions

between obstacles by properly selecting the LIDAR’s

sensing range: for example, since d(x, Oi) ≥ r for any

x ∈ F and d(Oi, Oj) > 2r for any i 6= j (Assumption 1), a

conservative choice of R that prevents occlusions between

obstacles is r < R ≤ 3r.

Finally, as a practical guide for the effective use of

LIDAR range scan, we find it useful to emphasize that

a LIDAR range scanner actually behaves as a (finite-

resolution) physical sensory solver of metric projection of

the robot’s centroid onto obstacles, because:

Lemma 3. Each convex polar curve segment (see

Appendix G) in a LIDAR scan defines one strict local

minimum in the range curve ρ (specifying the closest point
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Fig. 5. Each convex polar curve segment (highlighted with

yellow), associated with convex workspace obstacles, defines a

strict local minimum (cyan points) in the LIDAR range scan ρ
(red), but a strict local minimum of the range map ρ might be

associated with a concave polar curve segment, associated with a

concave workspace obstacle.

of the associated convex line-of-sight obstacle to the robot),

but the converse is generally not true, that is to say, a strict

local minimum of the range scan might be associated with

a concave polar curve segment (i.e., a concave workspace

obstacle, as illustrated in Fig. 5).

Proof. The result follows from the fact that each convex

polar curve segment defines a convex line-of-sight obstacle

in the workspace and the closest point of a convex set to a

given point, i.e., metric projection, is unique (Theorem 2).

See Fig. 5 for an example where the converse fails. �

Therefore, since we here only consider convex workspace

obstacles, in our numerical and experimental implementa-

tions using a LIDAR scanner, we directly use the strict local

minima of a range scan to compute the local workspace and

the local free space in (30) and (31), respectively.

4.4 An Extension for Differential Drive Robots

Maintaining the specialization to the plane, W ⊂ R2,

we now consider a disk-shaped differential drive robot

described by state (x, θ) ∈ F × [−π, π), centered at x ∈
F with body radius r ∈ R>0 and orientation θ ∈ [−π, π),
moving in W. The kinematic equations describing its

motion are

ẋ = v

[
cos θ
sin θ

]
, and θ̇ = ω, (35)

where v ∈ R and ω ∈ R are, respectively, the linear

(tangential) and angular velocity inputs of the robot.

In contrary to the “move-to-projected-goal” law of a

fully actuated robot in (11), a differential drive robot can

not directly move towards the projected goal ΠLF(x)(x
∗)

of a given goal location x∗ ∈ F̊, unless it is perfectly

aligned with ΠLF(x)(x
∗), because it is underactuated due

to the nonholonomic constraint
[
− sin θ
cos θ

]T
ẋ = 0. 9 In

consequence, to determine the robot’s linear motion, we

restrict the robot’s local free space LF(x) (10) to conform

to the nonholonomic constraint as

LFv(x, θ) := LF(x) ∩HN , (36)

where

HN :=

{
x + ν

[
cos θ
sin θ

]∣∣∣ ν ∈ R

}
(37)

is the straight line motion range due to the nonholonomic

constraint. Note that LF(x) ∩HN is a closed line segment

in W and contains x. Similarly, to determine the robot’s

angular motion, we define

LFω(x) := LF(x) ∩HG, (38)

where

HG :=
{
λx + (1− λ)x∗ ∈ R2

∣∣∣ λ ∈ R
}

(39)

is the line going through x and x∗.

Accordingly, based on a standard differential drive

controller Astolfi (1999), we propose the following “move-

to-projected-goal” law for a differential drive robot, 10 11

v=−k
[

cos θ
sin θ

]T(
x−ΠLFv(x,θ)(x

∗)
)
, (40a)

ω=k atan




[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)

[
cos θ
sin θ

]T(
x−

ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2

)


, (40b)

where k > 0 is fixed, and LFv(x, θ), LFω(x) and LF(x)
are assumed to be continuously updated. Here, we follow

Astolfi (1999) by resolving the indeterminacy through

setting ω = 0 whenever x =
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2 . Note

that this introduces the discontinuity necessitated by

Brockett’s condition Brockett (1983).

We summarize some important properties of the “move-

to-projected-goal” law of a differential drive robot as:

Proposition 12. Given the goal and obstacles satisfy

Assumption 2, the “move-to-projected-goal” law of a disk-

shaped differential drive robot in (40) asymptotically steers

almost1 all configurations in its positively invariant domain

F × [−π, π) towards any given goal location x∗ ∈ F̊,

without increasing the Euclidean distance to the goal along

the way.

Proof. See Appendix B.7. �

Note that the “move-to-projected-goal” law of a differential

drive robot in (40) can be extended to limited range sensing

models by using the robot’s sensed local free space LFS

(25) or the robot’s line-of-sight local free space LFL (31)

instead of the local free space LF (10), and the resulting

vector field planner maintains qualitative properties.
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4.5 An Extension for Differential Drive Robots

with Anisotropic LIDAR Range Scanners

Consider a disk-shaped differential drive robot, repre-

sented by state (x, θ) ∈ F × [−π, π) and evolving accord-

ing to (35) as described in Section 4.4, equipped with an

anisotropic LIDAR range scanner of angular sensing range

strictly less than 360 degrees, whose range measurements,

at a robot configuration (x, θ), are represented by a polar

curve ρx,θ : [−α, α]→ [0, R] defined as

ρx,θ(φ) := ρx(φ⊞ θ), (41)

where 0 < 2α < 2π is the angular sensing range of the

LIDAR scanner in radians, R > 0 is the LIDAR’s radial

sensing range, and ρx is the range map defined in (27). Here,

to ensure the interval [−π, π) of radians, the addition and

subtraction operations of radians are defined as

φ⊞ θ := mod (φ+ θ + π, 2π)− π, (42)

φ⊟ θ := mod (φ− θ + π, 2π)− π, (43)

where mod (a, b) denotes a modulo b, i.e., the remainder

of the division of a by b. Following an opportunistic

approach, we find it convenient to define an extended range

map ρ̂x : [−π, π)→ [0, R] as

ρ̂x(ϕ) :=

{
ρx,θ(ϕ⊟ θ) , if ϕ⊟ θ ∈ [−α, α],

R , otherwise,
(44)

=

{
ρx(ϕ) , if ϕ⊟ θ ∈ [−α, α],
R , otherwise,

(45)

which assumes that the unseen region of the workspace

by the anisotropic LIDAR sensor is empty. Notice that the

anisotropic range map ρx,θ is defined in the robot’s body

coordinates, whereas the extended range map ρ̂x is defined

in the global configuration coordinates.

By construction, the anisotropic LIDAR scanner cannot

observe some portion of the workspace behind the robot,

because its sensing direction is well-aligned with the

forward direction of the differential drive robot. Hence,

to ensure safe navigation, we restrict our differential

drive robot to move only in forward direction, where the

robot’s forward motion range that is consistent with the

nonholonomic constraint is given by

HF :=

{
x + ν

[
cos θ
sin θ

]∣∣∣ ν ≥ 0

}
. (46)

Now, following the lines of Section 4.3.2 and using the

the extended range map ρ̂x in (44), one can construct the

robot’s line-of-sight local free space LFL(x) as described

in (31). Moreover, as in (36) and (38), we define the local

free spaces for linear and angular motion as

LFLv(x, θ) := LFL(x) ∩HF , (47)

LFLω(x) := LFL(x) ∩HG, (48)

where HG in (39) is the line passing through the robot

position x and the goal x∗. Accordingly, to navigate towards

a given goal location x∗ ∈ F̊, we propose the following

“move-to-projected-goal” law specifying the linear, v, and

the angular, ω, velocity inputs for a forward-moving

differential robot with an anisotropic LIDAR sensor,

v=−k
[

cos θ
sin θ

]T(
x−ΠLFLv(x,θ)(x

∗)
)
, (49a)

ω=k atan2

([
− sin θ
cos θ

]T(
x−

ΠLF
Lω(x)(x

∗)+ΠLF
L

(x)(x
∗)

2

)
,

[
cos θ
sin θ

]T(
x−

ΠLF
Lω(x)(x

∗)+ΠLF
L

(x)(x
∗)

2

))
,(49b)

where k > 0 is a fixed control gain. Note that, by

construction, the linear velocity v is nonnegative and so

always yields forward motion.

The “move-to-projected-goal” law in (49) for a forward

moving differential drive robot with an anisotropic LIDAR

sensor inherits all the qualitative properties from the

associated versions in (34) and (40) presented in Section

4.3.2 and Section 4.4, respectively, as long as the LIDAR’s

angular scanning range is 180 degrees:

Proposition 13. Given that the goal and obstacles satisfy

Assumption 2, the “move-to-projected-goal” law of a

forward moving disk-shaped differential drive robot with

an anisotropic LIDAR scanner in (49) has no stationary

points other than the locations specified by Proposition 5,

and asymptotically brings almost1 all initial conditions in

F × [−π, π) to any given goal location x∗ ∈ F̊ with no

collisions along the way if and only if the LIDAR’s angular

scanning range is 180 degrees, i.e., 2α = π.

Proof. See Appendix B.8. �

5 2D Navigable Environments for a

Greedy Robotic Agent

In this section, we address the properties of planar

convex sphere world environments, considered as fixed

configurations of convex obstacles, that afford distance-

diminishing reactive navigation to arbitrarily chosen goals

in the free space. Here, “reactive navigation” denotes any

Lipschitz continuous vector field whose flow is positive

invariant on and whose basin around the asymptotically

stable goal point comprises almost all of the environment.

The term “distance-diminishing,” the property that the

Euclidean norm to the chosen destination is non-increasing

along all trajectories of the resulting flow, represents our

intuitive notion of a “greedy” algorithm. The “move-to-

projected-goal” law in (11) offers one example of such a

greedy reactive navigation rule for environments that satisfy

Assumption 2 in Section 4.2 relative to a specific choice

of goal. The question now arises whether that assumption
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is overly restrictive. We will show, contrarily, that this

assumption is not merely sufficient but also necessary

for greedy navigation. In consequence, it turns out that

any environment possessing a distance-diminishing reactive

navigation law whose designated goal may be placed at will

in the free space must have obstacles that are not merely

convex but also “round” in a sense to be made precise

below.

Before proceeding, it is convenient to introduce some

additional terminology.

Definition 2 A fully-actuated first-order robotic agent,

moving towards a goal location x∗ ∈ F according to a safe

Lipschitz continuous navigation policy ux∗ : F → Rn, i.e.,

ẋ = ux∗(x), (50)

is said to be distance-diminishing iff the Euclidean distance

of the robot to the goal is nonincreasing along the

navigation trajectory, i.e.,

∇x‖x− x∗‖2 · ux∗(x) ≤ 0. (51)

It is straightforward to observe that such a greedy robotic

agent cannot achieve (almost) global reactive navigation in

a planar environment punctured by any nonconvex obstacle.

We now develop a further necessary condition on convex

obstacles that is required to assure the capability of such a

greedy navigation agent to reach arbitrarily placed goals.

Definition 3 A convex planar set with twice differentiable

boundary is said to be round iff the center of curvature (i.e.,

the center of the osculating circle) at any boundary point is

contained in the set itself.

For example, an ellipsoid of aspect ratio (the ratio of the

major axis to the minor axis) less than 2 (e.g., a disk) is a

round convex set.

Proposition 14. In a planar convex sphere world with

isolated obstacles (Assumption 1), if a distance-diminishing

reactive navigation policy can reach arbitrarily placed

goals in free space then all configuration space (i.e., robot-

radius dilated workspace) obstacles are round.

Proof. Proof by contrapositive. Suppose Ôi be a configu-

ration space obstacle, obtained by dilating the workspace

obstacle Oi with the robot radius r, that is not round. Then,

there exists a boundary point x ∈ ∂Ôi of Ôi at which the

center of curvature c lies outside Ôi. Now consider a point

x∗ ∈ F that is located strictly in between the boundary

point x and its center of curvature c, which is guaranteed

to exist because c 6∈ Ôi. Since ‖x− c‖ > ‖x− x∗‖, the

balls B(c, ‖x− c‖) and B(x∗, ‖x− x∗‖) are tangent at x
and satisfy B(x∗, ‖x− x∗‖) ( B(c, ‖x− c‖). Hence, there

does not exist a collision-free path in F from x to x∗ along

which the distance to x∗ is nonincreasing. Due to continuity,

this holds for a small neighborhood of x, and so a distance-

diminishing robotic agent cannot reach to x∗ starting from

this set of nonzero measure. Thus, the result follows. �

Theorem 4. In a planar convex sphere world, the move-

to-projected-goal law in (11) guarantees safe navigation

towards any free space goal configuration starting from

almost1 any initial configurations if and only if all

configuration space obstacles are round.

Proof. The necessity of obstacles being round follows from

Proposition 14. The sufficiency of obstacles being round

follows from that a round obstacle satisfies the curvature

condition in Assumption 2, which can be verified using

Proposition 5, Proposition 15 and Lemma 9. �

An interesting research question that we leave open for a

future study is that how these results on planar navigable

environments extend to higher dimensions. It is not difficult

to convince oneself that a greedy robotics agent can

navigate around isolated configuration space obstacles that

can be written as a cross product of round planar sets or all

of whose 2D cross-sections are round; for instance, sphere,

torus or unbounded cylinder are navigable obstacles for a

greedy robotic agent Filippidis and Kyriakopoulos (2012).

6 Numerical Simulations

To demonstrate the motion pattern generated by our

“move-to-projected-goal” law around and far away from

the goal, we consider a 10× 10 and a 50× 10 environment

cluttered with convex obstacles and a desired goal located

at around the upper right corner, as illustrated in Fig. 6 and

Fig. 7, respectively. 12 We present in these figures example

navigation trajectories of the “move-to-projected-goal” law

for different sensing and actuation modalities. We observe

a significant consistency between the resulting trajectories

of the “move-to-projected-goal” law and the boundary

of the Voronoi diagram of the environment, where the

robot balances its distance to all proximal obstacles while

navigating towards its destination — a desired autonomous

behaviour for many practical settings instead of following

the obstacle boundary tightly. In our simulations, we avoid

occlusions between obstacles by properly selecting the

LIDAR’s sensing range, and in so doing both limited range

sensing models provide the same information about the

environment away from the workspace boundary and the

associated “move-to-projected-goal” laws yield almost the

same navigation paths. As observed in Fig. 6, although they

are initiated at the same location, a fully actuated and a

differential drive robot may follow significantly different

trajectories due to their differences in system dynamics and

controller design. It is also useful to note that the “move-

to-projected-goal” law decreases not only the Euclidean
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(a) (b) (c) (d) (e) (f)

Fig. 6. Example navigation trajectories of the “move-to-projected-goal” law starting at a set of initial configurations (green) towards a

designated point goal (red) for different sensing and actuation models: (a,b,c) a fully actuated robot, (d,e,f) a differential drive robot,

(a,d) Voronoi-adjacent3 obstacle sensing, (b,e) a fixed radius sensory footprint, (c,f) a limited range LIDAR sensor. Also see Extension

1 for the resultant motion.

Fig. 7. Example navigation trajectories of the “move-to-projected-goal” law in (11) starting at a set of initial positions (green) far away

from the goal (red). Also see Extension 2 and refer to Appendix I for additional figures illustrating the navigation pattern far away from

the goal for different sensing and actuation models

distance, ‖x− x∗‖, to the goal, but also the Euclidean

distance,
∥∥ΠLF(x)(x

∗)− x∗
∥∥, between the projected goal,

ΠLF(x)(x
∗), and the global goal, x∗, illustrated in Fig. 8.

Fig. 8. The Euclidean distance,
∥
∥ΠLF(x)(x

∗)− x∗
∥
∥, between

the projected goal, ΠLF(x)(x
∗), and the global goal, x∗, for

different sensing modalities: (left) Voronoi-adjacent3 obstacle

sensing, (middle) a fixed radius sensory footprint, (right) a limited

range line-of-sight sensor.

7 Experimental Validation

For experimental validation of the proposed “move-to-

projected-goal” law, we set up a 8m×4m environment

cluttered with eight cylindrical obstacles of radius ( 0.1m

and 0.3m) and introduce a TurtleBot 2 platform13 equipped

with a Hokuyo UTM-30LX scanning rangefinder14,

illustrated in Fig. 9 (top). We use a Vicon motion capture

system15 for ground truth measurements: it tracks the

robotic platform in real time at 100Hz and localizes

workspace obstacles as well as registering (and visualizing)

designated initial and goal locations, thereby offering the

flexibility to test and record experiments involving arbitrary

configurations of obstacles and source-destination goals.

During our experiments with the Hokuyo UTM-30LX 40Hz

LIDAR scanner, we limit the measurement range from

maximum range 30m to 2m (due to the workspace limits)

and the angular scanning range from 270◦ to 180◦ (due

to Proposition 13), and the local free space is constructed

using the local minima of range measurements, as described

in Section 4.3.2 (see Lemma 3) and Section 4.5, after

smoothing with a five-point Gaussian moving average

filter with the unit variance Szeliski (2011). To eliminate

higher-order dynamical effects, we limit the velocity of the

TurtleBot 2 platform from its maximum speed of 0.65m/s

to 0.45m/s, and we model the robot body as a disk of

radius 0.3m (with 0.05m safety clearance). We implement

our navigation algorithms in Python16, running onboard

vector field updates at better than 100Hz, and manage

our experiments using Robot Operating System (ROS)17

with onboard robot motion control updates at 20Hz. In

the experiments now reported, we always start up our

platform at around the same “right-hand bottom” corner of

the workspace depicted in Fig. 9 (denoted by the black and

blue striped disk), and then command it to sequentially visit

a varied array of initial positions (denoted by cyan disks)

from each of which it must then navigate towards a fixed

designated goal position (denoted by the red disk).
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Fig. 9. (top) Experimental setup: a TurtleBot 2 platform equipped

with a Hokuyo UTM-30LX range scanner navigates around

cylindrical (depicted as black circles in the figures below)

obstacles (physical black foam rollers and red barrels as viewed

in the photo) from a set of initial (cyan) positions towards a

goal (red) location. (center) Navigation using Voronoi-adjacent

obstacle sensing via motion capture, (bottom) Navigation using

anisotropic 2D LIDAR range scans delivered in real time (40Hz)

by the Hokuyo device. Also see Extension 3 and Extension 4 for

the full motion.

In our first set of experiments, we test the “move-

to-projected-goal” law in (40) for the (forward-moving
11) differential drive robot model using Voronoi-adjacent3

obstacle sensing via motion capture. In the second set

of experiments, we test the “move-to-projected-goal” law

in (49) for the (forward-moving) differential drive robot

model with an anisotropic range scanner. Fig. 9 (center)-

(bottom), respectively, depicts the resulting navigation

trajectories for these two different experimental settings.

As expected, the two different sensing models yield

distinctly different local free space estimates, resulting

in significantly different navigation paths from the same

set of initial conditions relative to the fixed problem (i.e.

obstacle-goal) configuration. It is also worth remarking that

the navigation trajectories from goal to start, and from

start to goal often exhibit different homotopy classes (i.e.,

with respect to the projected position coordinates on the

punctured plane) since the navigation policy is a function of

both robot position and orientation. Moreover, as suggested

by Fig. 6 and Fig. 9, these experimental studies conducted at

speeds consistent with the presumed “first order unicycle”

robot dynamics model exhibit very little gap between theory

and practice. Throughout these trials, we observe a similar

motion pattern: the robot balances its distance to perceived

environmental clutter while moving towards its destination.

8 Conclusions

In this paper we construct a sensor-based feedback law

that solves the real-time collision-free robot navigation

problem in a domain cluttered with convex obstacles.

Our algorithm introduces a novel use of separating

hyperplanes for identifying the robot’s local obstacle-

free convex neighborhood, affording a piecewise smooth

velocity command instantaneously pointing towards the

metric projection of the designated goal location onto this

convex set. Given separated and appropriately “strongly”

convex obstacles, we show that the resulting vector field

has a smooth flow with a unique attractor at the goal

location (along with the topologically inevitable saddles

— at least one for each obstacle). Since all of its critical

points are nondegenerate, our vector field asymptotically

steers almost all configurations in the robot’s free space

to the goal, with the guarantee of no collisions along the

way. We also present its practical extensions for limited

range isotropic and anisotropic sensing models and the

widely used differential drive model, while maintaining

formal guarantees. We illustrate the effectiveness of the

proposed navigation algorithm in numerical simulations

and experimental studies.

Work now in progress targets a fully smoothed version

of the move-to-projected-goal law (by recourse to reference

governors Kolmanovsky et al. (2014)), permitting its lift

to more complicated dynamical models such as force-

controlled (second order) and more severely underactuated

systems Arslan and Koditschek (2017). This will enable its

empirical demonstration for safe, high-speed navigation in

a forest-like environments Vasilopoulos et al. (2017) and

in dynamic human crowds. We are also investigating the

extension of these ideas for coordinated, decentralized

feedback control of multirobot swarms. Another exciting

research direction is combining a discrete-time version

of the “move-to-projected-goal” law (Appendix H) with

a (e.g., sampling-based) motion planning algorithm to
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solve online robot navigation problem in complex high-

dimensional configuration space Arslan et al. (2017).

Appendix A

Index to Multimedia Extensions

Table 1. Index to Multimedia Extensions

Extension Media Description

Type

1 Video General framework and numerical

simulations

2 Video Motion pattern far away from goal

3 Video Experimental validation

4 Video Chasing a moving goal

Appendix B

Proofs

B.1 Proof of Lemma 1

Proof. By definition (5), the metric projectionΠA(x) of the

ball’s centroid x onto the convex set A is the unique closest

point of A to x. Hence, due to the symmetry of the ball,

the closest point of B(x, r) to A lies on the line segment

joining x and ΠA(x), and is given by (Π
B(x,r) ◦ΠA)(x) =

x− r
x−ΠA(x)

‖x−ΠA(x)‖
, and so the closest point of A to B(x, r) is

ΠA(x). Thus, the result follows. �

B.2 Proof of Proposition 1

Proof. To prove the result, it is convenient to rewrite (8) as

LW(x) = W ∩
⋂
i

HSi, where

HSi :=
{
q∈Rn

∣∣∣
∥∥∥q−x+r

x−ΠOi
(x)

‖x−ΠOi
(x)‖

∥∥∥≤
∥∥q−ΠOi

(x)
∥∥
}
.(52)

Note that for any x ∈ F, HSi is the half space defined

by the maximum margin separating hyperplane between

the robot body B(x, r) and obstacle Oi (Lemma 1), and

contains the robot. Moreover, since Oi is open, we have

Oi ∩HSi = ∅ for any x ∈ F.

Hence, using (1), one can verify the result as follows:

x ∈ F ⇐⇒

{
B(x, r) ⊆W,

B(x, r) ∩Oi = ∅ ∀i,
(53)

⇐⇒





B(x, r) ⊆W,

B(x, r) ⊆ HSi ∀i,
Oi ∩HSi = ∅ ∀i,

(54)

⇐⇒

{
B(x, r) ⊆ LW(x),
Oi ∩ LW(x) = ∅ ∀i,

(55)

which completes the proof. �

B.3 Proof of Lemma 2

Proof. The result for the goal location x∗ follows from the

continuity of Voronoi diagrams in (7) and x∗ ∈ LF(x∗).
To see the result for any stationary point si ∈ Si, recall

from the proof of Proposition 5 that si lies on the boundary

segment of LF(si) defined by the separating hyperplane

between the robot and ith obstacle, and si has a certain

nonzero clearance from the boundary segment of LF(si)
defined by the separating hyperplane between the robot

and any other obstacle. Hence, using the continuity of

Voronoi diagrams, for any x ∈ B(si, ε) the “projected-

goal” ΠLF(x)(x
∗) can be located by taking the projection

of x∗ onto (a shifted version of) the maximum margin

separating hyperplane between the robot and ith obstacle

as

ΠLF(x)(x
∗)=x∗−

(
x−ΠOi

(x)
)T
(x∗−hi)∥∥x−ΠOi
(x)
∥∥2

(
x−ΠOi

(x)
)
,(56)

where hi is defined as in (16), and so this completes the

proof. �

B.4 Proof of Proposition 8

Proof. As discussed in the proof of Proposition 1, for

any x ∈W we have LW(x) = W ∩
⋂
i

HSi, where HSi

is defined as in (52). Similarly, one can rewrite (24) as

LWS(x) = W ∩B
(
x, r+R

2

)
∩
⋂
i

ĤSi, where

ĤSi :=
{
q∈Rn

∣∣∣
∥∥∥q−x+r

x−ΠSi
(x)

‖x−ΠSi
(x)‖

∥∥∥≤
∥∥q−ΠSi

(x)
∥∥
}
. (57)

Note that if Si = ∅, then the predicate in (57) is trivially

holds and so ĤSi = Rn; otherwise, since Si=Oi ∩
B(x, R), we have ΠSi

(x) = ΠOi
(x) and so ĤSi = HSi.

Moreover, if Si = ∅ (i.e., d(x, Oi) > R), then we also have

from Definition 1 and Lemma 1 that B
(
x, r+R

2

)
⊂ HSi.

Thus, we obtain that

ĤSi ∩B
(
x, r+R

2

)
=HSi ∩B

(
x, r+R

2

)
, ∀i. (58)

Therefore, one can verify the result as follows:

LWS(x) = W ∩B
(
x, r+R

2

)
∩
⋂

i

ĤSi, (59)

= W ∩
⋂

i

(
ĤSi ∩B

(
x, r+R

2

))
, (60)

= W ∩
⋂

i

(
HSi ∩B

(
x, r+R

2

))
, (61)

=

(
W ∩

⋂

i

HSi

)
∩B

(
x, r+R

2

)
, (62)

= LW(x) ∩B
(
x, r+R

2

)
. (63)

�
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B.5 Proof of Proposition 10

Proof. For any x ∈ F, the LIDAR sensory footprint in (32)

can be equivalently rewritten using the global knowledge of

the robot’s workspace as

Lft(x) = W ∩B(x, R) \
⋃

i

Ai. (64)

where Ai is the augmented line-of-sight obstacle associated

with obstacle Oi, defined as

Ai :=
{
α(p− x) + p

∣∣∣p ∈ Oi, α ∈ [0,∞)
}
. (65)

Hence, since R > r, it follows from (30) that

LWL(x) = L̂WL(x) \
⋃

i

Ai, (66)

where

L̂WL(x):=
{
q ∈W ∩B

(
x, r+R

2

)∣∣∣
∥∥∥q−x+r

x−ΠLi
(x)

‖x−ΠLi
(x)‖

∥∥∥≤
∥∥q−ΠLi

(x)
∥∥, ∀i

}
. (67)

Note that, as discussed in the proof of Proposition 1, since

x ∈ F, L̂WL(x) is a closed convex set and free of any line-

of-sight obstacle Li, i.e., L̂WL(x) ∩ Li = ∅ for all i; and

it contains the robot body, i.e., B(x, r) ⊆ L̂WL(x).
Now observe that if obstacle Oi is in the LIDAR’s sens-

ing range, i.e, Oi ∩B(x, R) 6= ∅, then Ai ∩B(x, R) =

Lj ∩B(x, R) for some j. Hence, since L̂WL(x) is free of

line-of-sight obstacles, we have from (66) that LWL(x) =

L̂WL(x). Thus, the result follows since LFL(x) is the

erosion of LWL(x) by the robot body radius r. �

B.6 Proof of Proposition 11

Proof. As discussed in the proof of Proposition 3, the

positive invariance of F under the “move-to-projected-

goal” law in (34) follows from that for any x ∈ F the

robot’s line-of-sight local free space LFL(x) (31) is an

obstacle-free closed convex subset of F, and contains both x
and ΠLFL(x)(x

∗) (Proposition 10 and Theorem 2). Hence,

−k
(
x−ΠLFL(x)(x

∗)
)
∈TxF is either interior directed or,

at worst, tangent to the boundary of F.

The existence, uniqueness and continuity of its flow

can be observed using a partitioning of F such that the

“move-to-projected-goal” law is piecewise continuously

differentiable in each connected component of any partition

element. Let Dt denote the set of collision free robot

locations at which the number of detected line-of-sight

obstacles is equal to t ∈ N, i.e.,

Dt :=
{
x ∈ F

∣∣ ∣∣LR(x)
∣∣ = t

}
. (68)

Recall that LR(x) = {L1, L2, . . . , Lt} is our sensor model

that returns the list of convex line-of-sight obstacles

detected by the LIDAR at location x. Hence, the collection

of Dt’s defines a partition of F.

Now observe that Dt is generally disconnected and the

“move-to-projected-goal” law is piecewise continuously

differentiable when its domain is restricted to any connected

component of Dt since each line-of-sight obstacle is

associated with an open convex segment of a LIDAR scan

and each connected component ofDt is uniquely associated

with a certain collection of obstacles and workspace

boundary segments. Hence, since a piecewise continuously

differentiable function is Lipschitz continuous on a compact

set Chaney (1990); Khalil (2001), the “move-to-projected-

goal” law has a unique continuously differentiable flow

in every connected component of Dt. Further, when the

robot enters a connected component of Dt, it stays in that

connected component for a nonzero time since a line-of-

sight obstacle Li is an open set and can not instantaneously

appear or disappear under any continuous motion. Thus, the

unique, continuous and piecewise differentiable flow of the

move-to-projected-goal” law in F is constructed by piecing

together its unique, continuously differentiable trajectories

in every connected component of Dt’s.

Finally, using a similar pattern to the proofs of

Proposition 5 and Proposition 6, one can verify that the

set of stationary points of (34) is {x∗}∪
m⋃
i=1

Si, where Si

is defined as in (12); and if Assumption 2 holds, then the

goal x∗ is the only locally stable point of (34), and all

the stationary points, Si, associated with obstacles, Oi, are

nondegenerate saddles. Moreover, as discussed in the proof

of Proposition 7, the “move-to-projected-goal” law in (34)

strictly decreases the (squared) Euclidean distance to x∗

away from its stationary points, and so x∗ is the unique

attractor of (34) whose basin of attraction includes all but

a measure zero set of F. �

B.7 Proof of Proposition 12

Proof. The positive invariance of F × (−π, π] under the

“move-to-projected-goal” law (40) and the existence and

uniqueness of its flow can be established using similar

patterns of the proofs of Proposition 2, Proposition 3 and

Proposition 4, and the flow properties of the differential

drive controller in Astolfi (1999).

As in the proof of Proposition 7, using the squared

distance to goal, V (x) = ‖x− x∗‖2, as a smooth Lypunov

function, one can verify the stability properties from (5),

(35), and (40) as follows: for any (x, θ) ∈ F × (−π, π]

V̇ (x) = −k 2(x− x∗)
T(

x−ΠLFv(x,θ)(x
∗)
)

︸ ︷︷ ︸
≥‖x−ΠLFv(x,θ)(x

∗)‖2

since x∈LFv(x,θ) and ‖x−x∗‖2≥‖ΠLFv(x,θ)(x
∗)−x∗‖2

, (69)
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≤ −k
∥∥x−ΠLFv(x,θ)(x

∗)
∥∥2 ≤ 0. (70)

Hence, it follows from LaSalle Invariance Principle

Khalil (2001) that all configurations in F × (−π, π]
asymptotically reach the set of configurations where robots

are located at the associated projected goal ΠLFv(x,θ)(x
∗)

at any arbitrary orientation,

{
(x, θ) ∈ F × (−π, π]

∣∣∣x = ΠLFv(x,θ)(x
∗)
}
. (71)

Note that for any fixed ΠLFv(x,θ)(x
∗), ΠLFω(x)(x

∗)
and ΠLF(x)(x

∗), the standard differential drive con-

troller asymptotically aligns the robot’s direction toward
ΠLFω(x)(x

∗)+ΠLF(x)(x
∗)

2 , i.e.,

[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗) + ΠLF(x)(x

∗)

2

)
=0. (72)

Hence, using the optimality of metric projection

in (5) one can conclude that ΠLFv(x,θ)(x
∗)=

ΠLFω(x)(x
∗)=ΠLF(x)(x

∗) whenever x=ΠLFv(x,θ)(x
∗)

and

[
− sin θ
cos θ

]T(
x−

ΠLFω(x)(x
∗)+ΠLF(x)(x

∗)

2

)
=0.

Therefore, using a similar approach as the proofs of
Proposition 5, Lemma 2 and Proposition 6, one can verify
that the set of stationary points of (40) is given by

{x∗}×(−π, π]
⋃
{

(si,θ)∈F×(−π, π]

∣
∣
∣
∣
si∈Si,

[
− sin θ
cos θ

]T

(si−x∗)=0

}

,

(73)

where Si is defined as in (12); and every robot config-

uration located at x∗ is locally stable and all stationary

points associated with obstacles are nondegenerate saddles

with stable manifolds of measure zero. Thus, the result

follows. �

B.8 Proof of Proposition 13

Proof. Since our forward moving differential drive robot

has a symmetric disk-shaped body and the LIDAR scanning

window is symmetric with respect to the robot’s forward

direction, safe navigation requires at least an angular

scanning range of 180 degrees. In the rest of the proof, we

will show that to eliminate any spurious stationary points,

the LIDAR’s angular scanning range should be less than or

equal to 180 degrees. Therefore, the result directly follows

from Proposition 11 and Proposition 12.

First, by definition (31), we always have that if the

robot is away from the stationary points specified by

Proposition 5, then x ∈ ˚LFL(x). Hence, if the robot is

relatively aligned with the goal, i.e.,
[

cos θ
sin θ

]T
(x∗ − x) > 0,

then the robot’s linear velocity is always nonzero, because

x 6= ΠLFLv(x,θ)(x
∗). Thus, there cannot be any spurious

stationary point if
[

cos θ
sin θ

]T
(x∗ − x) > 0.

Otherwise, i.e.,
[

cos θ
sin θ

]T
(x∗ − x) ≤ 0, due to the for-

ward motion constraint, the robot’s linear velocity is zero at

any position in the free space F and the robot turns in place

to asymptotically align with
ΠLF

Lω(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 .

Since LFLv,LFLω ⊂ LFL, asymptotic alignment with
ΠLF

Lω(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 guarantees that the robot rela-

tively aligns with the goal (i.e.,
[

cos θ
sin θ

]T
(x∗ − x) > 0) in

finite time, and continue moving towards its destination.

Hence, the only issue that might happen during turn-in-

place motion is an undesired sign change in the angular

velocity due to some appearing and disappearing obstacles

perceived at around the angular limits of the LIDAR sensor.

Note that if the global goal x∗ is behind the

robot, i.e.,
[

cos θ
sin θ

]T
(x∗ − x) ≤ 0, then the angular motion

goal
ΠLF

Lω(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 is also behind the robot,

i.e.,
[

cos θ
sin θ

]T(ΠLF
Lω

(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 −x
)
≤ 0. Hence,

ΠLF
Lω

(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 is located either on the second

or third quadrant of the robot’s body coordinate frame.

A newly appearing or disappearing obstacle along the

LIDAR’s scanning angle limits introduces or removes

a separating hyperplane constraint and so reshapes the

local free space LFL(x), which, depending on the

LIDAR’s angular sensing range, might cause a jump of
ΠLF

Lω(x)(x
∗)+ΠLF

L
(x)(x

∗)

2 from the second quadrant to the

third quadrant or vise versa, causing a sign change in the

angular velocity control ω in (49).

If the LIDAR’s angular scanning range is less than or

equal to 180 degrees, i.e., 2α ≤ π, then such a chance in

separating hyperplane constraints defining LFL(x) cannot

cause a chance in the sign of ω, because the added or

removed separating hyperplane never crosses the boundary

of the second and the third quadrants of the robot’s

body coordinate frame. Whereas, if the LIDAR’s angular

scanning range is greater then 180 degrees, i.e., 2α >

π, then the chance in separating hyperplane constraints

shaping LFL(x) can cause a sign change in ω because

the associated hyperplane always crosses the boundary of

the second and third quadrants of the robot’s body frame

and can cause a sudden jump of
ΠLF

Lω
(x)(x

∗)+ΠLF
L

(x)(x
∗)

2
between these quadrants. Thus, the sign chance in ω can be

avoided only if the LIDAR’s angular scanning range is less

than or equal to π, which completes the proof. �
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Appendix C

Geometric Interpretation of the Obstacle

Curvature Condition

A convenient way of characterizing metric limitations,

such as the obstacle curvature condition in Assumption

2, of the “move-to-projected-goal” law is in terms of the

enclosing balls of the goal x∗, defined as:

Definition 4 The enclosing ball, Bx :=B(x∗, ‖x−x∗‖−r),
of the goal x∗ associated with a robot location x ∈ Rn \
B(x∗, r) is the largest open ball, centered at x∗, that does

not intersect with the robot body B(x, r).

In other words, the enclosing ball Bx is the largest ball

centered at the goal x∗ such that a disk-shaped robot of

radius r starting at location x can go around it without

increasing the Euclidean distance to the goal.

Observe that for any stationary point si ∈ Si

(12) associated with obstacle Oi, one has Bsi =
B
(
x∗,
∥∥x∗ −ΠOi

(si)
∥∥) and ΠBsi

(si) = ΠOi
(si), because

si, ΠOi
(si) and x∗ are all collinear (Proposition 5). That is

to say, Bsi is tangent to (i.e, the osculating ball of) Oi at

ΠOi
(si). Hence, we have

ΠBsi
(x) =

∥∥x∗−ΠOi
(si)
∥∥ x− x∗

‖x− x∗‖
∀x ∈ Rn\Bsi , (74)

and so the Jacobian matrix JΠBsi

(si) of the metric

projection of si onto the associated enclosing ball Bsi is

given by

JΠBsi

(si)=

∥∥x∗−ΠOi
(si)
∥∥

r+
∥∥x∗−ΠOi

(si)
∥∥Qi(si), (75)

where

Qi(x):=I−

(
x−ΠOi

(x)
)(
x−ΠOi

(x)
)T

∥∥x−ΠOi
(x)
∥∥2 , ∀x∈Rn\Oi.(76)

Therefore, since Qi(si) 4 I, one can conclude that the

upper bound in (17) of Assumption 2 is due to the enclosing

ball Bsi of the goal x∗ associated with si. Because any path

starting at x ∈ Rn along which the distance to the goal x∗ is

strictly decreasing should stay in Bx for all future time; and

the “move-to-projected-goal” law yields such navigation

paths (Theorem 3).

More precisely, the geometric connection between

enclosing balls of the goal and the curvature condition in

Assumption 2 can be established as follows:

Proposition 15. Let si ∈ Si (12) be a critical point

associated with obstacle Oi. If Oi \ΠOi
(si) ⊂ Bsi , then

JΠOi
(si) ≺

∥∥x∗ −ΠOi
(si)
∥∥

∥∥x∗ −ΠOi
(si)
∥∥+ r

I. (77)

Therefore, if Oi \ΠOi
(si) ⊂ Bsi for all i ∈ {1, 2, . . . ,m}

and si ∈ Si, then Assumption 2 holds.

Proof. Since ΠBsi
(si) = ΠOi

(si), the result can be

verified using a similar pattern of the proof of Lemma

9; here the only difference is that the entire Oi, except

ΠOi
(si), is strictly contained in Bsi . �

Alternatively, using functional representations of obsta-

cles, one can verify Assumption 2 as follows:

Proposition 16. Let each obstacle Oi be associated with a

convex function fi : R
n → R such that Oi = f−1

i (−∞, ci)
for some ci ∈ R. Then, Assumption 2 holds if

∇2fi
(
ΠOi

(si)
)

∥∥∇fi
(
ΠOi

(si)
)∥∥ ≻

1∥∥x∗ −ΠOi
(si)
∥∥ , (78)

for all i ∈ {1, 2, . . . ,m} and si ∈ Si (12).

Proof. Consider the enclosing ball Bsi of the goal

x∗ associated with si ∈ Si. We have from Defi-

nition 4 that Bsi = β−1
(
−∞,

∥∥x∗−ΠOi
(si)
∥∥), where

β(x) := ‖x−x∗‖2. Hence, it follows that

∇2β
(
ΠBsi

(si)
)

∥∥∥∇β
(
ΠBsi

(si)
)∥∥∥

=
1∥∥x∗ −ΠOi

(si)
∥∥ . (79)

Thus, since ΠBsi
(si) = ΠOi

(si), one can conclude the

result from Lemma 7 and Lemma 8. �

Two immediate corollaries of Proposition 15 and

Proposition 16 for the case of spherical and ellipsoidal

obstacles are:

Corollary 2. If all obstacles are open balls, then

Assumption 2 holds for any goal x∗ ∈ F.

Corollary 3. Let each obstacle Oi be an open ellipsoid

defined as Oi = f−1
i (−∞, ci) for some ci ∈ R, where

fi := (x− pi)
T
Ai(x− pi) and Ai ∈ Rn×n is symmetric

positive definite. Then, Assumption 2 holds if

λmin(Ai)

λmax(Ai)
>

∥∥pi −ΠOi
(si)
∥∥

∥∥x∗ −ΠOi
(si)
∥∥ , (80)

for all i ∈ {1, 2, . . .m} and si ∈ Si, where λmin(Ai) and

λmax(Ai) are, respectively, the minimum and maximum

eigenvalues of Ai.

Proof. The results follows from Proposition 16 and

∇2fi
(
ΠOi

(si)
)

∥∥∇fi
(
ΠOi

(si)
)∥∥ =

A∥∥A
(
pi −ΠOi

(si)
)∥∥ , (81)

<
λmin(Ai)

λmax(Ai)

1∥∥pi −ΠOi
(si)
∥∥ I. (82)

�
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In consequence, one can briefly conclude that it is easier

for a robot to navigate around obstacles more spherical

(i.e., not too flat) and towards goal locations away from

obstacles, while strictly decreasing the Euclidean distance

to the goal.

Appendix D

Uniqueness of Maximum Margin Separating

Hyperplanes

For any two disjoint convex sets A,B ∈ Rn, there

can be more than one pair of points a ∈ A and b ∈ B

achieving ‖a− b‖ = d(A,B); however, they all have the

same maximum margin separating hyperplane:

Lemma 4. Let A,B ⊂ Rn be two disjoint convex sets,

and a1, a2 ∈ A and b1, b2 ∈ B be points with ‖a1−b1‖ =
‖a2−b2‖ = d(A,B). Then, for any x ∈ Rn, the following

equality always holds

(a1−b1)
T

(
x−

a1+b1
2

)
= (a2−b2)

T

(
x−

a2+b2
2

)
. (83)

Proof. First, to see that a1 − b1 = a2 − a2, consider

(a1−b1)
T(a2−b2) = (a1−b1)

T

(

a2−
a1+b1

2

)

+ (b1−a1)
T

(

b2−
a1+b1

2

)

, (84)

= d(A,B)2 +
1

2
(a1−b1)

T(a2−a1)
︸ ︷︷ ︸

≥0, by Theorem 2

+
1

2
(b1−a1)

T(b2−b1)
︸ ︷︷ ︸

≥0, by Theorem 2

,(85)

≥ d(A,B)2. (86)

where the inequality follows from Theorem 2 since

‖a1 − b1‖ = d(A,B) = d(a1, B) = d(A, b1). Moreover,

it follows from the Cauchy-Schwartz inequality that

(a1−b1)
T
(a2−b2) ≤ ‖a1−b1‖‖a2−b2‖ = d(A,B)2. (87)

Hence, since (a1−b1)
T
(a2−b2)=‖a1−b1‖

2=‖a2−b2‖
2,

one always has

a1 − b1 = a2 − b2. (88)

Also observe from (85) that

(a1 − b1)
T
(a1 − a2) = 0, (89a)

(a1 − b1)
T(b1 − b2) = 0. (89b)

Therefore, the result can be verified as follows:

(a2−b2)
T

(

x−
a2+b2

2

)

= (a1−b1)
T

(

x−
a2+b2

2

)

, (90)

= (a1−b1)
T

(

x−
a1+b1

2

)

+ (a1−b1)
T

(
a1+b1

2
−
a2+b2

2

)

︸ ︷︷ ︸

=0, by (89)

, (91)

= (a1−b1)
T

(

x−
a1+b1

2

)

. (92)

�

Appendix E

On the Jacobian of Metric Projection

A well known property of metric projections is being

nonexpansive:

Lemma 5. Webster (1995). The metric projection onto

a closed convex set A ⊆ Rn is Lipschitz continuous with

Lipschitz constant 1, i.e. ‖ΠA(x)−ΠA(y)‖ ≤ ‖x− y‖ for

all x, y ∈ Rn.

Note that a Lipschitz function in Rn is differentiable

almost everywhere, and ΠA is piecewise continuously

differentiable Kuntz and Scholtes (1994).

Lemma 6.Holmes (1973); Fitzpatrick and Phelps (1982).

The Jacobian JΠK
(x) of the metric projection onto a closed

convex set K ⊆ Rn with twice continuously differentiable

(C2) boundary is a positive semi-definite and symmetric

operator of norm at most unity, i.e.,

0 4 JΠK
(x) 4 I, ∀x ∈ Rn \K, (93)

and one has JΠK
(x)(x−ΠK(x)) = 0.

The Jacobian matrix of the metric projection onto a

convex set can be analytically obtained using its functional

representation in terms of a level set of a convex function:

Lemma 7. Let K ∈ Rn be a closed convex set associated

with a twice continuously differentiable (C2) convex

function f : Rn → R such that K = f−1(−∞, c] for some

c ∈ R; and let ∇f : Rn → Rn and ∇2f : Rn → Rn×n

denote the gradient and Hessian of function f , respectively.

Then, the Jacobian JΠK
(x) of the metric projection of

x ∈ Rn \K onto K is given by

JΠK
(x)=Q(I+QPQ)−1Q=Q−I+(I+QPQ)−1, (94)

where

Q := I−

(
x− ΠK(x)

)(
x−ΠK(x)

)T

‖x−ΠK(x)‖2
, (95)

P :=
‖x−ΠK(x)‖

‖∇f(ΠK(x))‖
∇2f(ΠK(x)). (96)
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Proof. Using the relation between K and f , one can

rewrite the metric project onto K as

ΠK(x) = arg min
y∈K

‖y − x‖ = arg min
f(y)≤c

‖y− x‖. (97)

Further, due to the optimality of ΠK(x), the outward

surface normal of K at ΠK(x) is given by
x−ΠK(x)

‖x−ΠK(x)‖ =
∇f(ΠK(x))

‖∇f(ΠK(x))‖ , and we have

x = ΠK(x) + ‖x−ΠK(x)‖
∇f(ΠK(x))

‖∇f(ΠK(x))‖
. (98)

Hence, using JΠK
(x)(x−ΠK(x)) = 0 (Lemma 6), the

derivative of (98) yields

JΠK
(x) = (I−QP)−1Q. (99)

Note that it is not straightforward to observe that the closed

form of JΠK
(x) in (99) is positive definite and symmetric

(Lemma 6). Alternatively, using the matrix identity

(I+AB)−1A = A(I+BA)−1 Petersen and Pedersen

(2012) and QQ = Q, a more informative closed form of

JΠK
(x) can be obtained as follows:

JΠK
(x) = (I−QP)−1Q = (I−QQP)−1Q︸ ︷︷ ︸

=Q(I−QPQ)−1

Q, (100)

= Q(I−QPQ)−1Q. (101)

Moreover, using a special case of Woodbury

matrix identity (a.k.a. the matrix inversion lemma)

Petersen and Pedersen (2012),

(I+QP)−1 = I−Q(I+PQ)−1P, (102)

we also have

JΠK
(x) = (I−QP)−1Q =

(
I−Q(I+PQ)−1P

)
Q,(103)

= Q− I+ I−Q(I+PQQ)−1PQ︸ ︷︷ ︸
=(I+QPQ)−1

, (104)

= Q− I+ (I+QPQ)−1. (105)

Recall that QQ = Q. Thus, the lemma follows. �

Lemma 8. Let K1,K2 ∈ Rn be two closed convex sets

associated with twice differentiable convex functions f1 :
Rn → R and f2 : Rn → R, respectively, such that K1 =
f−1
1 (−∞, c1] and K2 = f−1

2 (−∞, c2] for some c1, c2 ∈ R.

And let x ∈ Rn \ (K1 ∪K2) with ΠK1(x) = ΠK2(x).
Then the following equivalence holds

∇2f1(ΠK1(x))

‖∇f1(ΠK1(x))‖
4
∇2f2(ΠK2(x))

‖∇f2(ΠK2(x))‖
⇐⇒JΠK1

(x)<JΠK2
(x).

(106)

Proof. The result directly follows from Lemma 7 and the

following matrix relation of positive definite matrices, A

and B, Bhatia (2007)

A 4 B⇐⇒ A−1
< B−1. �

Lemma 9. LetK1,K2 ⊆ Rn be two convex sets with twice

continuously differentiable (C2) boundary.

If K1 ⊇ K2, then the Jacobians JΠK1
(x) and JΠK2

(x)
of metric projections onto K1 and K2, respectively, satisfy

JΠK1
(x) < JΠK2

(x), (107)

for all x ∈ Rn \K1 with ΠK1(x) = ΠK2(x).

Proof. For any x ∈ Rn \K1 with ΠK1(x) = ΠK2(x) and

y ∈ Rn, one can write the metric projection of x + y onto

K1 and K2, respectively, as

ΠK1(x + y) = ΠK1(x) + JΠK1
(x)y + o(y), (108a)

ΠK2(x + y) = ΠK2(x) + JΠK2
(x)y + o(y), (108b)

where lim
‖y‖→0

o(y)
‖y‖ = 0. Further, since K1 ⊇ K2, by the

monotonicity of metric projections, we have

‖x + y−ΠK1(x + y)‖2 ≤ ‖x + y−ΠK2(x + y)‖2.
(109)

Now it follows from (108), (109) and Lemma 6 that

∥∥(I−JΠK2
(x)
)
y
∥∥2

‖y‖2
−

∥∥(I−JΠK1
(x)
)
y
∥∥2

‖y‖2
≥

‖x−ΠK1(x)−o(y)‖
2

‖y‖2
−
‖x−ΠK2(x)−o(y)‖

2

‖y‖2

+
2yT

(
JΠK1

(x)−JΠK1
(x)
)
o(y)

‖y‖2
,(110)

where the right hand side converges to zero as ‖y‖ → 0.

Therefore, for any y ∈ Rn, one always has

∥∥(I−JΠK2
(x)
)
y
∥∥2 ≥

∥∥(I−JΠK1
(x)
)
y
∥∥2. (111)

Thus, the result follows since 0 4 JΠK1
(x),JΠK2

(x) 4 I

(Lemma 6). �

Appendix F

On the Computation of Metric Projection

onto Convex Polytopes

One can recast metric projection onto convex polytopes

and distance between them as convex quadratic optimiza-

tion problems, and solve them iteratively using the active

set method, summarized below.
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Consider a convex quadratic optimization problem with

equality and inequality constraints (QP-IE):

min
x∈Rn

f(x) =
1

2
xTQ x + xTc

subject to aTi x = bi, i ∈ E, (QP-IE)

aTj x ≥ bj , j ∈ I,

where Q ∈ Rn×n is a positive definite matrix, E and I

are sets of indices for equality and inequality constraints,

respectively, and c, ai ∈ Rn and bi ∈ R, where i ∈ E ∪ I.

Also, let

X :=
{
x∈Rn

∣∣∣aiTx = bi ∀i∈E, aj
Tx ≥ bj ∀j∈I

}
(112)

denote the set of feasible solutions of (QP-IE), and let

A(x) := E ∪
{
j ∈ I| ai

Tx = bj
}

be the index set of active

constraints at a feasible solution x ∈ X.

Among many alternative solvers Wright and Nocedal

(1999); Boyd and Vandenberghe (2004), active set methods

offers an iterative solution for the convex quadratic

optimization problem (QP-IE), whose iterations, denoted

by xk+1=AS(xk), satisfy for any feasible solution xk∈X
the properties:

(i) (Feasible Iterations) AS(xk) ∈ X ,

(ii) (Monotonic Decrease) f(xk) ≥ f(AS(xk)),

(iii) (Finite-Step Global Convergence) AS(xk) converges

in polynomial steps to the global solution of (QP-IE).

More precisely, to find the global solution of (QP-IE), the

active set method starts with a feasible solution x0 ∈ X

and, at each iteration k ∈ N, it solves an associated convex

quadratic optimization problem with equality constraint to

find an update step, pk ∈ Rn:

min
pk∈Rn

1

2
pk

TQ pk + pTk gk (QP-EQ)

subject to aTi pk = 0, i ∈Wk

where gk = Qxk + c and Wk ⊆ A(xk) is a subset of

the indices of the active constraints at xk with linearly

independent constraint gradients, ai’s, and is referred to

as the working set. The solution to (QP-EQ), denoted by

(pk, λk) = SolveQPEQ(xk,Wk), can be found by solving

[
Q AT

A 0

][
−pk
λk

]
=

[
gk
0

]
, (113)

where A = [ai
T]i∈W(xk) is the Jacobian of working

set constraints, and λk denotes the vector of Lagrange

multipliers for (QP-EQ) and is used to check the Karush-

Kuhn-Tucker (KKT) optimality condition of xk for (QP-

IE).

Algorithm 1: The Active Set Algorithm

Wright and Nocedal (1999)[Chapter 16]

Input: x0 ∈ X – Initial Feasible Solution

W0 ⊂ A(x0) – Initial Working Set

Output: x∗ ∈ X – The global solution of (QP-IE)

1 for k = 0, 1, . . . do

2 (pk, λ)← SolveQPEQ(xk,Wk);
3 if pk = 0 then

4 if λi ≥ 0 ∀i ∈Wk ∩ I then

5 x∗ ← xk; return x∗;

6 else

7 j ← arg min
j∈Wk∩I

λj ;

8 xk+1 ← xk; Wk+1 ←Wk \ {j};

9 else

10 αk ← min

(
1, min

i∈I\Wk, aTi pk<0

bi−aTi xk

aTi pk

)
;

11 xk+1 ← xk + αkpk;

12 if ∃i ∈ A(xk+1) \Wk then18

Wk+1←Wk∪{i};
13 else Wk+1 ←Wk ;

In summary, the active set method repeatedly uses the

solution of (QP-EQ) to generate a new estimated solution

xk+1 for (QP-IE), and terminates at the global solution of

(QP-EQ), as shown in Algorithm 1. For more details, refer

to Wright and Nocedal (1999)[Chapter 16].

To conclude this part, we emphasize a virtue of the

active set method beyond its polynomial time complexity.

We believe its feasible iterations and guaranteed monotonic

decrease make it a compelling option for general

incremental anytime computations of distance between

convex bodies, metric projection onto convex sets, and,

of course, our “move-to-projected-goal” law in (11). This

anytime nature affords opportunistic interruption of its

computation while relying on the last iterated feasible

solution as an estimate of the global optimal solution. In

the context of dynamically evolving motion planning or

dynamic settings, these interruptions can be event based

and the results of the previous computation can improve the

initiation of its successor.

Appendix G

Convexity in Polar Coordinates

Similar to the notion of convexity in Cartesian

coordinates, a polar curve ρ : (θl, θu)→ R≥0 is said to be

convex with respect to the pole if and only if its epigraph,19

epiρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu), ̺ ≥ ρ(θ)
}

, is a convex set;

and, likewise, ρ is said to be concave if and only if
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its hypograph,hypρ :=
{
(θ, ̺)

∣∣θ∈(θl, θu), 0 ≤ ̺ ≤ ρ(θ)
}

is a convex set McMahon and Snyder (1898); Eggleston

(1958), see Fig. 10.

Fig. 10. Convexity in polar coordinates. A polar curve is convex

(concave) with respect to the pole iff its epigraph (hypograph) is a

convex set, as illustrated on the right (left, respectively).

Alternatively, like the first- and second-order conditions

for convexity of Cartesian functions, one can verify the

convexity of a polar curve as follows:

Theorem 5. Second-Order Convexity Condition

McMahon and Snyder (1898). A twice differentiable

polar curve ρ : (θl, θu)→ R>0 is said to be convex with

respect to the pole if 20

Γ := ρ2 + 2

(
dρ

dθ

)2
− ρ

d2ρ

dθ2
≤ 0. (114)

Theorem 6. Three-Point Convexity Condition Eggleston

(1958). A polar curve ρ : (θl, θu)→ R>0 is convex with

respect to the pole if 21

det







1
ρ(θ1)

cos θ1 sin θ1
1

ρ(θ2)
cos θ2 sin θ2

1
ρ(θ3)

cos θ3 sin θ3





·det





1 cos θ1 sin θ1
1 cos θ2 sin θ2
1 cos θ3 sin θ3




≤0,

(115)

for all θ1, θ2, θ3 ∈ (θl, θu).

Note that the second determinant term in (115) quantifies

the circular order of θ1, θ2 and θ3, i.e., it is positive

(negative) if these angles are given in counter-clockwise

(clockwise, respectively) order.

In accordance with Theorem 6, since a LIDAR scanner

has a fixed angular resolution in practice, say ∆θ ∈ (0, π),
to check the convexity of a LIDAR scan in counter-

clockwise angular order, we find it convenient to define

Υ(θ):= det







1
ρ(θ−∆θ) cos(θ −∆θ) sin(θ +∆θ)

1
ρ(θ) cos(θ) sin(θ)
1

ρ(θ+∆θ) cos(θ +∆θ) sin(θ +∆θ)





.

(116)

Therefore one can identify the convex polar curve

segments of a LIDAR scan using the convexity measures

Γ (114) and Υ (116) as illustrated in Fig. 11.
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Fig. 11. Segmentation of a LIDAR scan into convex polar curves

using convexity measures Γ (114) and Υ (115). 22 23

Appendix H

An Extension for a Discrete-Time Robot

Model

Keeping in mind its potential application to online robot

navigation in a nonconvex environment when combined

with a standard (e.g., sampling based) motion planning

algorithm — a future research direction we will explore in a

subsequent paper, we now introduce a discrete-time version

of the “move-to-projected-goal” law in (11) to iteratively

navigate towards a designated goal location x∗ ∈ F as

follows: for any xk ∈ F,

xk+1 = xk −
(
xk −ΠLF(xk)(x

∗)
)
∆t, (117)

where k ∈ N is a discrete time index, ∆t ∈ (0, 1] is a

fixed sample time (step size), and ΠLF(xk)(x
∗) (5) is the

metric projection of the goal x∗ onto the robot’s local free

space LF
(
xk
)

(10). Note that we here avoid collisions

along the line segment joining consecutive robot states, xk

and xk+1, by limiting the range of values of ∆t to (0, 1]
since xk+1 becomes a convex combination of the robot

state xk and the projected goal ΠLF(xk)(x
∗), i.e., xk+1=

(1−∆t)x + ∆tΠLF(xk)(x
∗), and the line segment joining

them is always free of collisions (Corollary 1).

Therefore, using the continuity of the move-to-projected-

goal law in (11) (Proposition 2) and the type of its stationary

points (Proposition 6), one can conclude that:

Corollary 4. If Assumption 2 holds for the goal and for all

obstacles, then the discrete-time “move-to-projected-goal”

law in (117) starting from almost any robot location in

F (1) iteratively reaches a small neighborhood, B(x∗, ǫ)
for some ǫ > 0, of the goal x∗ in finite steps with the

guarantee of no collisions along the line segments joining

two consecutive robot states, while strictly decreasing the

Euclidean distance to the goal.

Note that the discrete-time “move-to-projected-goal” law

in (117) can be simply adapted to limited range sensing

models, by using the robot’s sensed local free space LFS
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(25) or the line-of-sight local free space LFL (31), as

well as to the differential drive model while retaining the

convergence and collision avoidance guarantees.

To demonstrate its motion pattern, we present in Fig. 12

the resulting navigation paths of the discrete-time “move-

to-projected-goal” law in (117) for different sampling times

and sensing models.

Fig. 12. Example navigation paths of the discrete-time “move-

to-projected-goal” law for different sampling times and sensing

models: (left) ∆t = 1, (middle) ∆t = 0.5, and (right) ∆t = 0.25;

and (top) local Voronoi-adjacent3 obstacle sensing, and (bottom)

a fixed radius sensory footprint.

Appendix I

Motion Pattern Far Away from the Goal

In Fig. 13, we present the motion pattern generated by

the “move-to-projected-goal” law starting at a set of initial

robot configurations far away from the goal, located at

the upper right corner of a 50× 10 environment populated

with convex obstacles, for different sensing and actuation

models.
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Notes

1. Topological reasoning precludes the possibility of any

continuous reactive planner achieving global asymptotic

stability (i.e., guaranteeing convergence to a point goal

from all initial conditions) except on a contractible space

Bhatia and Szegö (2002) (e.g., absent any obstacles in

the present setting). Even for deliberative navigation (i.e.,

when motions connecting specified initial and final desired

configurations can be planned offline with perfect knowledge

of the environment) it is known that non-contractible spaces

do not admit continuous motion planners Farber (2003).

Since, as in our problem, the free space of a robotic system

is generally non-contractible, the domain of a continuous

navigation planner must generally exclude at least a set of

measure zero.

2. We adopt standard usage to denote by this term the use of the

negative gradient field of a scalar valued function as the force

or velocity control law for a fully actuated, kinematic (first-

order dynamics) robot.

3. A pair of Voronoi cells in Rn is said to be adjacent if they

share a n− 1 dimensional face.

4. N is the set of all natural numbers; R and R>0 (R≥0)

denote the set of real and positive (nonnegative) real numbers,

respectively.

5. Note that F ( W \
⋃m

i=1 Oi for a disk-shaped robot of radius

r > 0.

6. One can generalize the same result in (9) for any x ∈ W if the

robot’s local workspace LW(x) is defined to be

cl

({

q∈W

∣
∣
∣
∣
∣

∥
∥
∥
∥
q−x+r

x−Π
Oi

(x)
∥

∥

∥
x−Π

Oi
(x)

∥

∥

∥

∥
∥
∥
∥
<
∥
∥q−ΠOi

(x)
∥
∥,∀i

})

,

which is empty whenever x ∈ Oi for some i = 1, . . . ,m;

otherwise, is equal to (8). Here, cl(A) denotes the closure of

a set A.

7. The erosion of a closed half-space by an open ball is a closed

half-space. Hence, since the erosion operation is distributed

over set intersection Haralick et al. (1987), and a closed

convex set can be defined as (possibly infinite) intersection

of closed half-spaces Boyd and Vandenberghe (2004), and an

arbitrary intersection of closed sets is closed Munkres (2000),

the erosion of a closed convex set by an open ball is a closed

convex set.

8. For any two symmetric matrices A,B ∈ RN×N , A ≺ B

(and A 4 B) means that B−A is positive definite (positive

semidefinite, respectively).

9. Here, we require the goal to be in the interior F̊ of F to

guarantee that the differential-drive robot can nearly align its

orientation with the (local) goal in finite time.

10. In the design of angular motion we particularly select a local

target location,
ΠLFω(x)(x∗)+ΠLF(x)(x∗)

2
∈ F̊ given x∗ ∈ F̊,

in the interior F̊ of F to increase the convergence rate of

the resulting vector field. One can consider other convex

combinations of ΠLFω(x)(x
∗) and ΠLF(x)(x

∗) (or an eroded

version of LF by a certain clearance margin), and the resulting

vector field retains qualitative properties.

11. In (40), one can limit a differential drive robot to move only

in forward direction by restricting the linear velocity input

to nonnegative reals and using atan2 instead of atan while

computing the angular velocity input.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 13. Example navigation trajectories of the “move-to-projected-goal” law starting at a set of initial conditions (green) far away

from the goal (red) for different sensing and actuation models: (a,b,c) a fully actuated robot, (d,e,f) a differential drive robot, (a,d) local

Voronoi-adjacent3 obstacle sensing, (b,e) a fixed radius sensory footprint, (c,f) a limited range line-of-sight sensor.

Prepared using sagej.cls



26 The International Journal of Robotics Research XX(X)

12. For all simulations we set r = 0.5, R = 2 and k = 1, and

all simulations are obtained through numerical integration of

the associated “move-to-projected-goal” law using the ode45

function of MATLAB.

13. http://www.turtlebot.com/

14. http://www.hokuyo-aut.jp/

15. http://www.vicon.com/

16. http://www.python.org/

17. http://www.ros.org/

18. The working set Wk should always contain the indices of

linearly independent constraint gradients and so should be

updated accordingly.

19. Note that here the epigraph and the hypograph of a polar curve

are given in polar coordinates, and one can equivalently write

them in Cartesian coordinates as

epiρ =
{
(̺ cos θ, ̺ sin θ)

∣
∣θ ∈ (θl, θu), ̺ ≥ ρ(θ)

}
,

hypρ =
{
(̺ cos θ, ̺ sin θ)

∣
∣θ ∈ (θl, θu), 0 ≤ ̺ ≤ ρ(θ)

}
.

20. In McMahon and Snyder (1898), the convexity of a polar

curve with respect to the pole is characterized based on its

tangent lines: a polar curve at a point is convex iff the curve

in a small neighborhood of that point lies on the opposite

side of the tangent at that point to the pole. Accordingly, the

second-order convexity condition in (114) is derived using the

perpendicular distance p of the pole to the tangent line of a

polar curve ρ at point (θ, ρ(θ)), given by

1

p2
= u

2 +

(
du

dθ

)2

,

where u := 1
ρ

; and the polar curve ρ is said to be convex with

respect to the pole if and only if dp
dρ

is negative, where

dp

dρ
= p

3
u
2

(

u+
d2u

dθ2

)

=
p3

ρ2

(

ρ
2+2

(
dρ

dθ

)2

−ρ
d2ρ

dθ2

)

.

21. Let vt = (cos θt, sin θt) and pt = (ρ(θt) cos θt, ρ(θt) sin θt)

for t = 1, 2, 3. Then, to have a geometric understanding of the

three-point convexity condition one can equivalently rewrite

(115) as

(
(p2−p1)×(p3−p2)

)
·
(
(v2−v1)×(v3−v2)

)
≤ 0,

where × and · denote the cross and dot products, respectively.

22. Here, we set the LIDAR’s angular resolution to ∆θ =
π

100
, and approximately compute the first- and second-order

derivatives of a simulated LIDAR range data, respectively,

using its three-point first- and second-order central differences

Fornberg (1988) after smoothing with a five-point Gaussian

moving average filter with unit variance, σ2 = 1 Szeliski

(2011).

23. A practical heuristic for identifying convex segments of a

LIDAR scan is its segmentation based on local maxima;

however, such a heuristic approach might detect some concave

curve segments in addition to all convex segments in a LIDAR

scan.

References

Arslan O (2016) Clustering-Based Robot Navigation and Control.

PhD Thesis, University of Pennsylvania.

Arslan O, Guralnik DP and Koditschek DE (2016) Coordinated

robot navigation via hierarchical clustering. Robotics, IEEE

Transactions on 32(2): 352–371.

Arslan O and Koditschek DE (2016a) Exact robot navigation

using power diagrams. In: IEEE International Conference on

Robotics and Automation. pp. 1–8.

Arslan O and Koditschek DE (2016b) Sensor-based reactive

navigation in unknown convex sphere worlds. The 12th

International Workshop on the Algoritmic Foundations of

Robotics (WAFR) .

Arslan O and Koditschek DE (2016c) Voronoi-based coverage

control of heterogeneous disk-shaped robots. In: IEEE

International Conference on Robotics and Automation. pp.

4259–4266.

Arslan O and Koditschek DE (2017) Smooth extensions of

feedback motion planners via reference governors. In: IEEE

International Conference on Robotics and Automation. pp.

4414–4421.

Arslan O, Pacelli V and Koditschek DE (2017) Sensory

steering for sampling-based motion planning. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems.

pp. 3708–3715.

Astolfi A (1999) Exponential stabilization of a wheeled mobile

robot via discontinuous control. Journal of Dynamic Systems,

Measurement, and Control 121(1): 121–126.

Aurenhammer F (1987) Power diagrams: Properties, algorithms

and applications. SIAM Journal on Computing 16(1): 78–96.
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