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Abstract: As chlorate concentrations have been found to be harmful to human and animal health,
governments are increasingly demanding strict control of the chlorate concentration in drinking
water. Since there are no chlorate sensors available, the current solution is sampling and laboratory
analysis. This is costly and time consuming. The aim of this work was to investigate Sensor Data
Fusion (SDF) as an alternative approach, with a focus on chlorate formation in the electrochlorination
process, and design an observer for the real-time estimation of chlorate. The pH, temperature and
UV-a absorption were measured in real time. A reduced-order nonlinear model was derived, and it
was found to be detectable. An Extended Kalman Filter (EKF), based on this model, was then used
to estimate the chlorate formation. The EKF algorithm was verified experimentally and was found
to be capable of accurately estimating chlorate concentrations in real time. Electrochlorination is an
emerging and efficient method of disinfecting drinking water. Soft sensing of chlorate concentrations,
as proposed in this paper, may help to better control and manage the process of electrochlorination.

Keywords: sensor data fusion; electrochlorination; oxychlorides; chlorate; observer; Extended
Kalman Filter; soft sensor; monitoring

1. Introduction

Electrochlorination is a widely used means of disinfecting water, including water
that is used for drinking. In this process, a brine is electrolyzed to form hypochlorite and
hypochlorous acid, which is then dosed to the water stream that is to be disinfected [1–3]. A
critical aspect of this process is that only sodium chloride, water and electricity are needed.
This is a significant improvement in safety over traditional chlorine-based disinfection
methods, which involves the transportation and storage of liquid chlorine canisters or
drums containing a concentrated free chlorine solution [4–7].

In recent years, some of the by-products that stem from chlorine-based disinfection
production processes, specifically heavier oxychloride ions such as chlorate and perchlorate,
have come under increased scrutiny after research has indicated that these pose a risk to
human and animal health [5,8]. In animal-based studies, chlorite and chlorate affect
erythrocytes, and chlorate and perchlorate affect the thyroid gland, potentially leading to
thyroidal cancer. For humans, the effects on the thyroid gland have mainly led to concerns
regarding developmental neurotoxicity [9,10]. In the environment, chlorate and perchlorate
are known to affect aquatic ecology, even at low concentrations [11–13]. Unfortunately,
these oxychloride ions are difficult to remove from water once formed, and they must
therefore be monitored carefully [14,15].

Sustainability 2022, 14, 6119. https://doi.org/10.3390/su14106119 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14106119
https://doi.org/10.3390/su14106119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2177-6257
https://orcid.org/0000-0002-5334-1293
https://orcid.org/0000-0001-5210-5929
https://orcid.org/0000-0003-4129-2794
https://orcid.org/0000-0003-4505-8663
https://doi.org/10.3390/su14106119
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14106119?type=check_update&version=1


Sustainability 2022, 14, 6119 2 of 15

The World Health Organization has been advocating stringent restrictions on permis-
sible oxychloride ion levels for some time [8], and the European Union recently introduced
regulations specifically restricting chlorite and chlorate levels [16]. In addition, the Euro-
pean Commission has adopted a recommendation to monitor perchlorate in drinking water
and food [17].

As various governing bodies are implementing such regulations, it is important to
know what is feasible in terms of monitoring frequency and accuracy [18]. This may impact
the demanded standards for monitoring, and it demonstrates the various means of proving
adherence to such demands to the industry.

There are three means of handling the more stringent regulations [18]. First, the
electrochlorination product can be sampled regularly and sent to a laboratory for analysis.
This has a high associated cost and relatively low sample frequency. In addition, the results
are known only after some days, meaning that in situations with little or no product buffer
capacity, it is impossible to swiftly respond to a high by-product concentration.

Second, a dedicated sensor could be implemented, which is able to provide readings
in real time. For chlorate sensors, research has focused on developing selective electrodes
for electrochemical measurement methods [19–23]. Early examples suffered from a narrow
pH range and short working life time [20,24]. These aspects have been improved in recent
years, and the complexity of production has been brought down, although the working
lifetime is still limited in certain cases [19,20]. To the authors’ knowledge, these results have
not been translated into a commercial product so far.

As alternative approach to real-time chlorate measurement through electrochemical
techniques and sensor systems based on Raman radiation have been developed [25]. It is
mainly developed for detecting explosive residue in the environment, although use for tap
water has been noted as one of the possible applications of this technology.

For chlorite and perchlorate, commercially available sensors already exist [26,27], each
based on electrochemical sensing techniques. Currently, especially perchlorate sensor
technology is being further developed [28–30]. As with the development of chlorate sensor
technology, the focus remains on electrochemical sensing techniques and with effort spent
on developing techniques based on Raman radiation as well [31].

As a third option, a soft sensing approach can be taken [32]. In this case, a number
of sensors are used in conjunction with a model of the production process to estimate the
by-product formation or to increase the accuracy or robustness of such an estimate [18].
If the model combines multiple sensors, the technique is also called Sensor Data Fusion
(SDF) [33,34]. In contrast to dedicated oxychloride ion sensors, little research has been
done concerning this approach. The closest is the aforementioned research in Raman
spectroscopy, as an algorithm is required to estimate the oxychloride ion concentrations
from the readings.

A related but more developed application of SDF is the estimation of by-products
stemming from the application of chloride-based disinfectants. Though in most works,
samples still need to be analyzed to provide the necessary data [35–37], effort is done to
progress toward a soft sensor based only on sensor probes that can provide data in real
time [38]. Due to the complex nature of the problem, the SDF algorithms are based on
advanced regression methods, such as neural networks or support vector machines [36].

The soft sensing approach is promising. It is expected that by incorporating knowledge
of the process in which the by-product is formed, a more robust and cost-efficient sensor set
may suffice to obtain a sufficiently accurate estimation of the by-product concentration [18].
A downside is that the initial implementation takes more effort and needs to be tailored to
the production process.

The present work aims to provide a start to closing the research gap that exists regard-
ing a lack of knowledge related to by-product monitoring through Sensor Data Fusion,
specifically for the monitoring of chlorate concentrations formed in the electrochlorina-
tion process. If successful, it can provide a solution to the chlorate monitoring need that
is more robust and cost-effective than the solutions that are provided thus far. The rel-
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evant processes will be identified, and a state-space model will be presented based on
these processes. The model will be analyzed for its observability, and to fuse the sensor
data, an observer algorithm will be applied. The resulting SDF algorithm will then be
verified experimentally.

2. Materials and Methods

As a first step in developing a chlorate monitoring algorithm, we will introduce a
basic, reduced-order model of the electrochlorination process and sensor system and use
this for an SDF algorithm based on observer theory. The model will be developed for a
laboratory setup, which in turn represents a commercial system but at a much smaller scale.
The laboratory setup is shown in Figure 1.

Figure 1. The laboratory electrochlorination setup.

The setup constitutes a small electrolysis cell and a sensor volume, with UV-a ab-
sorbance, pH and temperature sensors. The outflow of the sensor volume is rapidly
pumped back into the same volume in order to achieve proper mixing while maintaining a
rather low flow speed through the cell. A graphical description of the setup is shown in
Figure 2.

- +
Feed

Product

pH sensor

UV-a sensor

Electrolysis cell

Temperature sensor

Figure 2. Scheme depicting the laboratory electrochlorination setup.

When a current is applied over the electrodes, the brine feed is electrolyzed mainly
into dissolved chlorine gas and hydrogen gas, as follows [3,39,40]:

2 Cl– Cl2 + 2 e– (1)

2 H2O + 2 e– 2 OH– + H2 (2)

The chlorine gas rapidly reacts with hydroxide to form hypochlorite.
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Cl2 + 2 OH– Cl– + ClO– + H2O (3)

The hypochlorite may be protonated, depending on the pH. The equilibrium constant
is 2.9 × 10−8 mol/L at 25 °C [41].

ClO– + H+ HOCl (4)

The main parasitic reactions are the so-called Foerster reactions, both of which are
similar in nature and compete with the chlorine formation in Reaction (1) [42]. Through
these reactions, the chlorate is formed as follows:

6 ClO– + 3 H2O 2 ClO –
3 + 4 Cl– + 6 H+ +

3
2

O2 + 6 e– (5)

6 HClO + 3 H2O 2 ClO –
3 + 4 Cl– + 12 H+ +

3
2

O2 + 6 e– (6)

Reactions (1), (2), (5) and (6) each demand energy to occur. A final anodic parasitic
reaction, also demanding energy, is that of oxygen evolution [42]:

2 H2O O2 + 4 H+ + 4 e– (7)

The chlorine production, Foerster reactions and oxygen reactions together have been
found to account for the full current over the anode [42].

Reactions (5) and (6) indicate that to estimate the chlorate formation, the hypochlorite
and hypochlorous acid concentration in the cell must be known. The hypochlorite in the
cell volume can be deduced from the free chlorine and pH in the sensor volume, and a
model containing the chemical balances and mixing dynamics in the two volumes. Once
the chlorate formation in the cell is estimated from the hypochlorite concentration, the
chlorate concentration in the outflow can be determined, which is assumed to be equal to
the concentration in the sensor volume.

We therefore aim to determine the free chlorine concentration in the sensor volume.
The UV-a absorption sensor was chosen to determine the hypochlorite concentration
directly, as hypochlorite strongly absorbs light in the UV range [43]. A certain fraction of
the free chlorine can be present in the form of hypochlorous acid, depending on the pH
of the solution. Therefore, a pH probe was included as well. Finally, especially the pH
readings are affected by temperature [44], which necessitates a temperature sensor.

To make a suitable model, careful consideration has to be given to the timescales
involved, as they vary widely between the different processes. Extremely fast reactions
take place at the electrodes and in restoring the hydroxide–hydronium and hypochlorite–
hypochlorous acid balances [45]. Including the dynamics of these processes would yield a
so-called “stiff” system that would require long computing times with little to no benefit in
accuracy [46,47]. Instead, we will implement quasi-steady state simplifications; that is, we
will assume that steady state is immediately reached for the fastest processes.

To handle the hydroxide–hydronium balance, it is convenient to ignore self-ionization
and simply base the pH on the hydroxide produced at the electrode. The latter significantly
outweighs the hydrogen ions available in the feed to react with hydroxide, with the pH
quickly rising above 9 in our experiments. The chlorine gas is assumed to instantly react
with hydroxide, as shown in Reaction (3). The hypochlorite–hypochlorous acid balance has
been made instantaneous in the model by including the equilibrium reaction explicitly and
using that to reduce the model order.

In the medium time scale, which would be in the minute-range, mixing and temper-
ature effects dominate. Mixing is included explicitly, whereas temperature readings are
used to directly correct the sensor data of the other two sensors prior to being used by
the observer.
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In the long term, being weeks or months, hypochlorate will decompose into chlo-
rite, chlorate and finally perchlorate [45,48]. On the time scales of the experiments and
monitoring process, this effect is insignificant and is therefore ignored.

The model thus regards the following effects: hypochlorite and chlorate formation
at the electrodes, the hypochlorite–hypochlorous acid balance, and mixing in the cell
and sensor volumes. Only the pH and UV-a sensors are explicitly included in the ob-
server, but their readings are temperature-corrected using the temperature sensor. It
is assumed that the chlorate formation rate is linearly dependent on the hypochlorite
concentration, and it consumes hypochlorite and hypochlorous acid at three times the
rate at which chlorate is formed. This corresponds to the experimental results found by
Czarnetzki and Janssen [42].

As the goal of this study is to investigate, design and apply a classical observer, the
above is implemented as a nonlinear state-space model, as shown in Equations (8) and (9).

dx
dt

= f (t, x, u, θ) (8)

y = g(t, x, θ) (9)

Here, the vector x contains the states, vector u contains the inputs, vector y contains
the outputs, and vector θ contains the parameters. Although the function g may also be a
function of u, this is not the case here.

We first define the states: x1 and x4 are the hypochlorite concentration plus the
hypochlorous acid concentration (that is, in this model, the free chlorine) in the cell and
sensor set, respectively, x2 and x5 are the hydroxide concentration minus the hypochlorous
acid concentration in the cell and sensor set, respectively and x3 and x6 are the chlorate
concentration in the cell and sensor set, respectively. Some of these are combinations of
concentrations; this is due to the quasi-steady-state approximation of the hypochlorite–
hypochlorous acid reactions. We then implement the following differential state equations:

dx1

dt
= − Q

Vc
x1 +

IηClO–

FVceClO–
− ν

IηClO –
3

FVceClO –
3

[ClO–]c (10)

dx2

dt
=

Q
Vc

[OH–]in −
Q
Vc

x2 (11)

dx3

dt
= − Q

Vc
x3 +

IηClO –
3

FVceClO –
3

[ClO–]c (12)

dx4

dt
=

Q
Vs

x1 −
Q
Vs

x4 (13)

dx5

dt
=

Q
Vs

x2 −
Q
Vs

x5 (14)

dx6

dt
=

Q
Vs

x3 −
Q
Vs

x6 (15)

with:

x1 := [ClO–]c + [HClO]c (16)

x2 := [OH–]c − [HClO]c (17)

x3 := [ClO –
3 ]c (18)

x4 := [ClO–]s + [HClO]s (19)

x5 := [OH–]s − [HClO]s (20)

x6 := [ClO –
3 ]s (21)

The hypochlorite concentration in Equations (10) and (12) can be determined as follows:
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[ClO–]c =
keq + 2x1 + x2 −

√
k2

eq + 4keqx1 + 2keqx2 + x2
2

2
(22)

The derivation has been included in Appendix A. The c and s subscripts denote that
the variable in question pertains to the cell or sensor volume, respectively. The static inputs
u and parameters θ used are listed in Tables 1 and 2, respectively, along with the value used
in both the experiment and the model. The volumes have been measured, and the current
efficiencies are based on colorimetry and ion chromatography analysis for the hypochlorite
and chlorate, respectively.

Table 1. Model inputs and the (static) quantities used for the simulation and experiment.

Symbol Description Quantity Unit

Q Flow 9.0 × 10−5 L/s
I Current 2.3 C/s

[OH–]in Hydroxide inflow 1.3 × 10−9 mol/L

Table 2. Model parameters.

Symbol Description Quantity Unit

F Faraday constant 96,485 C/mol
Vc Cell volume 0.105 L
Vs Sensor volume 0.288 L

ηClO– ClO– current efficiency 0.74 -
ηClO –

3
ClO –

3 current efficiency per ClO– concentration 0.38 L/mol
eClO– Electrons transferred per ClO– ion produced 2 [39,40] -
eClO –

3
Electrons transferred per ClO –

3 ion produced 3 [42] -
keq Equilibrium constant ClO–-HClO balance 2.9 × 10−8 [41] mol/L
ν ClO– or HClO to ClO –

3 ratio in Reactions (5) and (6) 3 [42] -

Using derivations similar to Appendix A as well as Equations (19) and (20), we find
the following expressions for the outputs y:

y1 = [ClO–]s =
keq + 2x4 + x5 −

√
k2

eq + 4keqx4 + 2keqx5 + x2
5

2
(23)

y2 = [OH–]s =
−keq + x5 +

√
k2

eq + 4keqx4 + 2keqx5 + x2
5

2
(24)

These outputs are compared with the sensor data from the UV-a, pH and temperature
sensors. The UV-a sensor provides luminosity data. To find the hypochlorite concentration,
the absorbance was calculated from the luminosity data and a linear calibration curve was
applied. The pH data have been temperature corrected [44]. The hydroxide concentration
was then calculated from the corrected pH.

Observability analysis yields that when linearized, this system is not observable [49,50].
However, it is detectable due to the stability of the system. In practical terms, this means
that the convergence rate of the observer will typically be limited for the non-observable
states [51]. The time it takes for the algorithm to approach an accurate estimate will be
dictated by the dynamics of the model [50].

The Extended Kalman Filter (EKF) is used to finally fuse the available, temperature-
corrected sensor readings of UV-a absorbance and pH with the above model, as is shown
in Figure 3 [52–54]. The EKF can only be applied to a set of states which is observable,
which is the combination of x1, x2, x4 and x5 for this model. For the non-observable states,
which regard the chlorate concentrations in the cell and sensor volumes, the Kalman gain
is set to zero. The filter’s measurement noise covariance matrix R is a diagonal matrix
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with its diagonal elements set to 0.1 mmol2 and 100 µmol2, representing the covariance for
measurement of for y1 and y2, respectively. The process noise covariance matrix Q has only
been given non-zero values on its diagonal, specifically the simulated steady-state values
of the corresponding states multiplied with a scaling parameter α, which was given a value
of 10−4.

K

Cell and sensors
pH, uncor.

x

u

x̂

g

f ∫
d
dt

x̂

P0 Q R
pH

TUV-a abs.

[ClO−]

K

T cor.Cal.

ŷ1

ŷ2

x̂

Figure 3. Scheme depicting the algorithm and its interaction with the electrochlorination setup. The
‘Cal.’ block maps the UV-a absorbance data to hypochlorite concentration, the ‘T cor.’ block corrects
the pH readings for temperature and the ‘K’ block calculates the Kalman gain.

To estimate the chlorate concentration’s standard deviation σClO –
3

, a Monte Carlo
analysis has been performed. The observable states are assumed to have a Gaussian distri-
bution, and the EKF’s covariance matrix P is assumed to be representative for the variances
and covariances of the estimates of these states. The assumed probability distributions for
the initial conditions of the non-observable states (x3,t=0 and x6,t=0) and the parameters
are given in Table 3, with µ indicating the mean, σ indicating the standard deviation and k
and θ being the gamma distribution shape and scale parameters, respectively. The gamma
distribution was used because the chlorate concentration states cannot be negative, and
they are assumed to have a distribution that is asymmetric at the start of the experiment
with lower concentrations being more likely. For x3,t=0 and x6,t=0, a large initial variance
was assumed, as the chlorate concentrations are initially unknown. The volumes Vc and Vs
are assumed to be known with a low degree of uncertainty. With the given distribution
parameters, there is a 95% chance that the actual value is within ±1% of the nominal value.
The efficiencies and equilibrium constant are assumed to be less accurate, with a 95%
confidence interval spanning ±10% of the nominal value. The sample size was 100, and a
latin hypercube was used for sampling.

Table 3. Probability distributions used for the Monte Carlo analysis of the chlorate estimation.

Model Parameter Distribution Distribution Parameters

x3,t=0 Gamma k = 1, θ = 2.67 × 10−2 L/mol
x6,t=0 Gamma k = 1, θ = 2.67 × 10−2 L/mol

Vc Normal µ = 0.105 L, σ = 5.25 × 10−5 L
Vs Normal µ = 0.288 L, σ = 1.44 × 10−4 L

ηClO– Normal µ = 0.74, σ = 8.82 × 10−2

ηClO –
3

Normal µ = 0.38 L/mol, σ = 6.06 × 10−2 L/mol
keq Normal µ = 2.9 × 10−8 mol/L, σ = 1.45 × 10−9 mol/L

We verified the SDF algorithm by running an electrochlorination process for four
hours. Prior to the start, the system was filled with feed water, and both pumps were
already running. The feed water was a 28 g/L solution of VWR Sodium Chloride ≥ 99.0%
ACS in demineralized water. At t = 0 min, a current-controlled potential was applied to
the cell, which caused free chlorine and by-products to be produced.



Sustainability 2022, 14, 6119 8 of 15

The pH sensor was an Atlas Scientific ENV-40-pH probe, and for temperature mea-
surement, an Endress + Hauser Ceragel CPS71D was used. The UV-a absorption sensor
was an EasyMeasure prototype, operating at a fixed peak wavelength of 401 nm. The
calibration curve for this sensor is shown in Figure 4. All the sensor data were logged every
4.3 s and fed to the SDF algorithm.

0 20 40 60 80 100

[ClO−] (mmol/L)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
U

V
-a

 a
bs

or
ba

nc
e 

( 
- 

)

Figure 4. Calibration curve of the UV-a absorption sensor.

To verify the algorithm’s estimates, every 15 min, a sample was taken from the outlet.
This was analyzed for chlorate and perchlorate via ion chromatography (IC) using a
ThermoFischer Dionex IonPac AS22 column. The time samples were also analyzed for
free chlorine using colorimetry based on the N,N-diethyl-p-phenylenediamine reagent, as
described in Hach document number DOC316.53.01449 [55]. Free chlorine analysis was
done directly after the sample was taken. The samples for the IC analysis were stored
overnight at 5 ◦C and were analyzed the following day.

The results of these analyses were then compared with the estimates from the SDF
algorithm. For the sake of demonstration, the initial state values of the algorithm were
given a large error.

3. Results

Figure 5 shows the results for the hypochlorite plus hypochlorous acid concentration
and chlorate concentration. Both the results from the SDF algorithm and the sample
analysis are shown. The results regard the concentrations in the sensor volume.
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Observer
Ion Chromatography
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Figure 5. (Left) Hypochlorite plus hypochlorous acid concentration in the sensor volume. The circular
markers (◦) are colorimetric measurements. The solid line is the estimate of the SDF algorithm, which
is given an initial concentration of 50 mmol/L. (Right) Chlorate concentration in the sensor volume.
The circular markers (◦) are ion chromatography measurements. The solid line is the estimate of the
SDF algorithm, which is given an initial concentration of 1 mmol/L. The dashed lines denote the 1 σ

confidence interval.
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In both cases, the initial error vanishes, and the estimate becomes accurate. The
free chlorine estimate converges very rapidly, requiring only 11 s to eliminate the initial
error of 50 mmol/L. The chlorate estimate requires a relatively long time to converge,
approximately two hours.

It was found that the uncertainty for the free chlorine was very low. Due to the high
pH of the process, ClO– constitutes the majority of the free chlorine, and the concentration
thereof was measured directly at a high rate and low variance using the UV-a absorption
sensor. The calculated uncertainty does depend on the scaling parameter α used for
defining the system noise covariance matrix Q. The relation between α and the average
standard deviation of free chlorine in the sensor volume σ is shown in Figure 6. Over
the given range, σ is low regardless of α, as it does not exceed 0.5% of the average free
chlorine concentration.

−

Figure 6. The relation between the process variance scaling parameter α and the average standard
deviation of the free chlorine estimate σ.

4. Discussion

The SDF algorithm provides an estimation of the chlorate concentration that becomes
accurate over time. Compared to a hypothetical chlorate sensor based on selective elec-
trodes, the present solution is expected to provide a more affordable solution, employing a
robust sensor set that should have a longer time between maintenance [18,20]. A downside
is that it takes some time for the estimates to converge and the uncertainty to become low, as
shown in Figure 5. Based on the Monte Carlo analysis, with large initial error of 1 mmol/L
with corresponding uncertainty, the relative uncertainly toward the end of the experiment
is higher than that of prototype selective electrodes, with a standard deviation of 5.7% of
the estimated value, compared to 3 to 4% for the most recent selective electrodes [19,20].

Compared to laboratory analysis, a major difference is that the SDF algorithm provides
data in real time. This enables a quick response to high chlorate levels. In addition, the SDF
implementation may reduce the number of samples taken, depending on whether this soft
sensor is accepted as proof of adherence to the new regulations.

Even if the presented method is accepted as a means of proving compliance to regu-
lations, this does not fully eliminate the necessity of sampling. Sampling is still required
to determine the current efficiencies ηClO– and ηClO –

3
, which are parameters in the model.

This relates to a fundamental difficulty in the estimation of by-products through SDF.
Namely, that in order to reconstruct a by-product concentration, that concentration must
cause a certain measurable change to the system. However, a by-product concentration
is typically too low to have such a measurable impact, or it may be difficult to measure
in the presence of the much more highly concentrated main product. For example, in the
case of electrochlorination, the sodium, chloride and hypochlorite ions overshadow any
change in conductivity, so a change in chlorate concentration is difficult to detect using
an electrical conductivity probe. Similarly, the hypochlorite and hypochlorous acid redox
potential dwarf that of chlorate. The lack of impact of a chlorate concentration on any of
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the modeled processes is why the system as presented is not fully observable. Essentially,
the algorithm includes a final, uncorrected prediction step, from the system’s observable
states to the chlorate concentration. The challenge is to make that step as small and robust
as possible.

The current efficiencies are known to correlate nonlinearly to variables such as flow
speed, sodium chloride concentration and temperature [1,40,56,57]. Such relations can be
integrated into the algorithm. This would mean that the model can remain accurate over
a broader set of conditions, which would reduce the need for sample-based calibration.
However, in that case, additional sensors are necessary. For example, a conductivity sensor
may be used to estimate the NaCl concentration, and a temperature probe may be used to
estimate the electrode temperature.

The current robustness of the presented SDF algorithm cannot be determined com-
pletely from a single electrochlorination test. Additional verification should be done in
order to understand under what conditions the model is sufficiently accurate. These addi-
tional tests ought to span the complete set of expected conditions seen in practice. Similarly,
a single test cannot determine how often samples should be taken for calibration.

The slow dynamics of the chlorate estimation error implies that sudden changes in
chlorate concentration cannot be tracked instantaneously. For monitoring purposes, this
is acceptable; after all, the error dynamics are similar to and in fact determined by the
system’s dynamics [50,51]. The system itself, due to its flow and volume properties, does
not allow a quicker transient than can be estimated. This means that once the initial error
in the chlorate state is corrected, the estimates should remain accurate in spite of the slow
dynamics and are suitable for monitoring for regulatory compliance. In fact, if the initial
guess is correct, the estimation of the chlorate concentration at the sensor volume should
be accurate throughout. However, since quick changes in the chlorate concentration at the
electrodes cannot be estimated using this algorithm, it is not suitable for control at a short
time scale. On a longer time scale, the proposed solution could help to achieve process
optimization targets, for instance minimizing the production of chlorate or to minimize
energy consumption whilst adhering to the regulations regarding chlorate concentrations.

Although the free chlorine dynamics correspond well with the dynamics of the ex-
perimental setup, the chlorate dynamics as determined by the ion chromatography are
somewhat slower than the model suggests. A possible explanation is that the chlorate
production rate depends on the electrode temperature [1,56]. The conducted experiment
was done starting with electrodes at room temperature. During the experiment, the tem-
perature of the fluid in the cell increased by 9.7 ◦C. For the purposes of this algorithm, this
means that the electrochlorination system should be at steady state when taking samples to
determine the current efficiencies.

In practice, the UV-a absorption, pH and temperature sensors would preferably be
integrated in the electrochlorination machine, as the current over the electrodes and the
flow through the flow cell need to be known. In addition, placing the sensors close to the
outflow of the flow cells would minimize the sensor system’s dynamics.

Another practical consideration is that the UV-a absorption sensor will be affected by
any turbidity of the inflow. In the algorithm, this will lead to a higher assumed hypochlorite
concentration. This may be corrected for by using a differential measurement, that is,
measuring the UV-a absorbance of the feed water and using the difference to the UV-a
absorbance of the outflow to estimate the hypochlorite concentration. This method does
assume that the electrochlorination process does not affect the turbidity. An alternative
might be to use light absorbance sensors of different wavelengths to estimate the level of
turbidity in the outflow and using that data to correct the UV-a absorbance reading.

A difference from practice is that in industrial implementations, the electrodes are
placed in a bath rather than in a forced-flow cell. This implies two differences: in practice,
the flow is caused by bubble formation, rather than forced flow, and a portion of the
electrolyzed fluid may recirculate back to the electrodes. Since the model already regards
the cell as a single, well-mixed volume and the residence time is determined by the flow
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rate, the model is generally appropriate for this situation. However, the verification step
differs from practice, since in the experiments conducted for this work, the fluid passed
the electrodes only once, by force. It is possible that additional parasitic reactions occur
in practice that were not seen in our experiments due to these differences. For instance,
chlorite may be formed from the electrolysis of hypochlorite in significant quantities [45,58].
If that proves to be the case, the model may need to be expanded.

Although no perchlorate was found in our experiments, the chlorate estimation
method may still be useful for perchlorate monitoring. In practice, the product is stored
in a buffer tank for some time, where chlorate slowly reacts with hypochlorite to produce
perchlorate [45,48]. To get an accurate estimate of the perchlorate concentration, it is useful
to know how much chlorate is entering the buffer tank. This can be calculated on the basis
of the SDF algorithm described here.

In a laboratory setting, with a known chemical matrix and parameters, the SDF
algorithm accomplished its aim of accurately estimating the chlorate concentration, using
a pH, temperature and UV-a absorption sensor. This indicates that should the outlined
challenges be overcome, the soft sensing approach is viable and a promising alternative.

5. Conclusions

Due to recent regulatory demands regarding chlorate in drinking water, there is a need
to monitor chlorate formed in electrochlorinators. The results of this study demonstrate
that Sensor Data Fusion is a viable approach to solving this problem.

For this method, a UV-a absorption sensor, pH probe and temperature probe were
used. These are robust sensors based on well-known technologies. To fuse the sensor data,
a reduced-order nonlinear state-space model was developed that, under linear analysis,
was detectable. An observer based on this model can reduce the error of the unobserved
states to zero. In this work, an Extended Kalman Filter was used.

The resulting SDF algorithm was verified through a laboratory experiment. Even with
a large initial estimation error, the estimates of the chlorate concentration became accurate
over time. A Monte Carlo analysis showed that the standard deviation is comparable to
that of selective electrodes.

Future work should focus on estimating the current efficiencies in real time. This is
expected to reduce the required calibration frequency.
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Appendix A. Derivation of the Hypochlorite Concentration

The model described in this article requires the hypochlorite concentration [ClO–] to
be known, both in the cell volume and in the sensor volume. This concentration will be
derived here for the cell volume based on the states x1 and x2. In a similar fashion, the
hypochlorite concentration in the sensor volume can be found as well based on the states
x4 and x5.

The hypochlorite and hypochlorous acid concentrations are, under the quasi-steady-
state approximation, related as follows:

[HOCl]c = keq
[ClO–]c
[OH–]c

(A1)

The states x1 and x2 have been defined as follows:

x1 := [ClO–]c + [HClO]c (A2)

x2 := [OH–]c − [HClO]c (A3)

When inserting Equations (A1) and (A3) in Equation (A2), the following equation can
be obtained:

[ClO–]c = x1 − keq
[ClO–]c

x1 + x2 − [ClO–]c
(A4)

This equation can be rewritten in quadratic form, as follows.

[ClO–]2c − (keq + 2x1 + x2)[ClO–]c + x2
1 + x1x2 = 0 (A5)

This can then be solved for [ClO–]c.

[ClO–]c =
keq + 2x1 + x2 ±

√
k2

eq + 4keqx1 + 2keqx2 + x2
2

2
(A6)

Now, we only need to determine whether the plus–minus sign should be a plus or a
minus. Since the hypochlorous acid concentration [HOCl]c cannot be negative, x1 must be
greater than or equal to [ClO–]c. Therefore, the following inequality must hold:

x1 ≥
keq + 2x1 + x2 ±

√
k2

eq + 4keqx1 + 2keqx2 + x2
2

2
(A7)

This can be simplified as follows:

https://www.wetsus.eu
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keq + x2 ±
√

k2
eq + 4keqx1 + 2keqx2 + x2

2 ≤ 0 (A8)

In case the plus–minus sign is a plus, and knowing x1 and keq must be non-negative,
only trivial solutions hold. In case it is a minus, Inequality (A8) holds for all non-negative
keq, all non-negative x1, and all x2. Therefore, in order for Inequality Equation (A8) to hold,
the plus–minus sign must be a minus. This yields the following equation for [ClO–]c:

[ClO–]c =
keq + 2x1 + x2 −

√
k2

eq + 4keqx1 + 2keqx2 + x2
2

2
(A9)
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