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Dempster-Shafer (D-S) evidence theory has been widely used in various 	elds. However, how to measure the degree of con
ict
(similarity) between the bodies of evidence is an open issue. In this paper, in order to solve this problem, 	rstly we propose a
modi	ed cosine similarity tomeasure the similarity between vectors.�en a new similaritymeasure of basic probability assignment
(BPAs) is proposed based on the modi	ed cosine similarity. �e new similarity measure can achieve the reasonable measure of the
similarity of BPAs and then e�ciently measure the degree of con
ict among bodies of evidence. Numerical examples are used
to illustrate the e�ectiveness of the proposed method. Finally, a weighted average method based on the new BPAs similarity is
proposed, and an example is used to show the validity of the proposed method.

1. Introduction

Uncertainty information modeling and processing are still
an open issue. To address this issue, many mathematical
tools are presented like fuzzy sets theory [1–5], evidence
theory [6–9], rough sets theory [10–12], � numbers [13–16],� numbers theory [17, 18], and so on [19]. Decision making
and optimization under uncertain environment are heavily
studied [20–23]. Due to the e�ciency modeling and fusion
of information, evidence theory is widely used [24, 25]. And
sometimes, the methods with mixed intelligent algorithms
are used for decision making or related problems [20, 25, 26].

Dempster-Shafer (D-S) evidence theory [6, 7] provides a
natural and powerful way for the expression and fusion of
uncertain information, so it has been widely used in various
	elds of information fusion [9, 27, 28], target recognition [29,
30], decision making [31], image processing [32], uncertain
reasoning [33], and risk analysis [25, 26, 34, 35]. However,
the counterintuitive results may be obtained by conventional
combination rule when collected bodies of evidence highly
con
ict with each other [36]. For example, in the real battle
	eld, because of hard natural factors and human interference,
the information obtained by sensor tends to have high uncer-
tainty and high con
ict with other pieces of information. If
this problem cannot be solved e�ectively, it will greatly limit
the application of D-S evidence theory. Many scholars have
conducted in-depth research and put forward a number of

enhancements to the evidence combination algorithm [8, 24,
37–39]. In general, the existing methods of the con
ict infor-
mation can be divided into two categories. One method is to
modify Dempster’s combination rule. When � = 1, the rule is
not applicable. It solves the problem that how to redistribute
and manage the con
ict by modifying the rule. Another
method is to modify the data model. �e con
ict evidence is
preprocessed 	rst and then is combined by combination
rules.

Obviously, it is a critical issue to determine the degree
of con
ict between bodies of evidence. Researchers usually
use con
ict coe�cient � to indicate the degree of con
ict.
Whereas � only re
ects the noninclusive between bodies of
evidence. For example, if two bodies of evidence are in certain
con
ict, the value of � may be 0. Obviously, the result is
incorrect. �e classical con
ict coe�cient � is not a pretty
good con
ict measure. In recent years, many works on this
issue have emerged [40, 41]. In order to avoid a wrong claim
made by using only �, in [41], pignistic distance ����	
�
is introduced by Liu and two-tuple variable ⟨�, ����	
�⟩ is
proposed to measure the degree of con
ict among BPAs. But
Liu did not propose a formula to unify the two factors, since
we o�en need a measured value of con
ict when we process
the con
ict of evidence.Moreover, Jousselme distance �� [40]
is also commonly used to measure the con
ict of evidence,
which re
ects the di�erence of BPAs. Nevertheless it captures
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only one aspect of the dissimilarity among BPAs mainly
associatedwith a distancemetric. In [42]Deng et al. proposed
a new relative coe�cient to characterize the con
ict between
bodies of evidence. Although this coe�cient solves some
problems of �, there still exist some de	ciencies. For example,
it lacks physical meaning during the de	nition of relative
coe�cient and it is not equal to 0 when two BPAs are
totally contradictory with each other. In order to indicate the
con
ict between bodies of evidence precisely, a new method
to measure the degree of con
ict is proposed in this paper.

In previous works, distance and angle are o�en consid-
ered in the similarity measurement between vectors [43].
However, both the angle-based similarity measurement and
the distance-based similarity measurement cannot e�ectively
indicate the similarity among vectors. If the two factors and
other factors can be used jointly, better performance can be
expected. According to such an idea, we proposed amodi	ed
cosine similarity based on distance, cosine angle, and ratio of
vector modes to measure the similarity between vectors.

Furthermore, a new similarity of BPAs is proposed based
on the modi	ed cosine similarity, which is used to measure
the degree of con
ict. If two bodies of evidence are consistent
with each other, we think that the similarity between them is
high; it means that the degree of con
ict among them is low.
When the proposed similarity is close to 1, the value indicates
that there is little contradiction between bodies of evidence.
When the proposed similarity is close to 0, this value indicates
that the two bodies of evidence are in high con
ict.

�is paper is organized as follows. Section 2 describes
some basic concepts. Section 3 details the problem of existing
con
ict measurements between BPAs. In Section 4, we will
investigate the new similarity of BPAs. Section 5 presents
some examples and analysis is presented. In Section 6, an
example is shown to illustrate the e�ectiveness of ourmethod.
Finally, some conclusions are summarized in Section 7.

2. Preliminaries

2.1. �e Basic Concept of D-S Evidence �eory [6, 7]

De�nition 1. Let Θ be a nonempty 	nite set which is called
the frame of discernment; its power set containing all the

possible subsets of Θ is denoted by 2Θ, where the elements
are mutually exclusive and exhaustive. De	ne the function� : 2Θ → [0, 1] as the basic probability assignment (BPA)
(also called a belief structure or a basic belief assignment),
which satis	es

∑
�⊆Θ

�(�) = 1
� (�) = 0, (1)

where �(�) is de	ned as the BPA of �, representing the
strength of all the incomplete information sets for �.

If �(�) > 0, then � is called the focal element. �e
degree of one’s belief to a given proposition is represented
by a two-level probabilistic portrayal of the information set:

the belief level and the plausibility level. �ey are de	ned as
follows:

Bel (�) = ∑
�⊆�

�(�) , ∀� ⊆ �
Pl (�) = 1 − Bel (�) = ∑

�∩� ̸=	
�(�) , ∀� ⊆ �, (2)

where Bel(�) is the sum of �(�) for all subsets � contained
in �, representing all the bodies of evidence that support
the given proposition �. Pl(�) which is the sum of �(�) for
all subsets � has a nonnull intersection of � and represents
all the bodies of evidence that do not rule out the given
proposition �. Absolutely, Pl(�) > Bel(�). �e belief inter-
val [Bel(�),Pl(�)] represents the uncertainty of �. When
Pl(�) = Bel(�), this means absolute con	rmation to �.
De�nition 2. Let �1 and�2 be two BPAs on the same frame
of discernment Θ. Dempster’s combination rule is expressed
as follows:

�(�) = {{{
∑�∩
=��1 (�)�2 (�)1 − � � ̸= �0 � = � (3)

with � = ∑
�∩
=	

�1 (�)�2 (�) , (4)

where � is a normalization constant, which is called con
ict
coe�cient of two BPAs.

According to the above formula, we can obtain that � = 0
corresponds to the absence of con
ict between �1 and �2,
whereas � = 1 implies complete contradiction between �1
and �2. �e above rule is meaningful only when � ̸= 1;
otherwise the rule cannot be applied.

2.2. Liu’s Method [41]

De�nition 3. Let � be a BPA on the frame of discernmentΘ. Its associated pignistic probability function �	
��: Θ →[0, 1] is de	ned as follows:

�	
�� (!) = ∑
�∈2Θ ,∈�

1|�| � (�)1 − � (�) , � (�) ̸= 1, (5)

where |�| is the cardinality of proposition �.
De�nition 4. Let �1 and �2 be two BPAs on frame Θ
and let �	
��1 and �	
��2 be the results of two pignistic

transformations from them, respectively. �en ����	
��1�2 is
de	ned as follows:����	
��1�2 = max

�⊆Θ
("""""�	
��1 (�) − �	
��2 (�)""""") (6)

which is called the distance between betting commitments of
the two BPAs.
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Value (|�	
��1(�)−�	
��2(�)|) is the di�erence between
betting commitments to� from the two sources.�e distance
of betting commitments is the maximum extent of the
di�erences between betting commitments to all the subsets.����	
��1�2 is simpli	ed as ����	
�.
De�nition 5. Let �1 and �2 be two BPAs on frame Θ
and let #�(�1, �2) = ⟨�, ����	
�⟩ be a two-dimensional
measurement. �1 and �2 are de	ned as in con
ict, if both����	
� > $ and � > $ hold, where � is con
ict coe�cient
and ����	
� is the distance between betting commitments in
De	nition 4 and where $ ∈ [0, 1] is the threshold of con
ict
tolerance.

2.3. Correlation Coe�cient [45]

De�nition 6. Let the distribution of random variables&,' be

& : {+1, . . . , +�-1, . . . , -�}
' : {31, . . . , 3�41, . . . , 4�} . (7)

�en the partial entropy of& on ' is de	ned as follows:

5� (&) = − �∑
�=1
4� log-�. (8)

�e entropy of random variables is de	ned as follows:

5(&) = − �∑
�=1
-� log-�. (9)

De�nition 7. �e relative entropy of random variables&,' is
de	ned as the sum of their partial entropy:5(&; ') = 5� (&) + 5� (') . (10)

De�nition 8. �e partial correlation coe�cient and corre-
lation coe�cient of random variables &,' are de	ned as
follows:

7� (&) = 5 (')5� (&)
7� (') = 5 (&)5� (')

7 (&; ') = 5 (& ⊗ ')5 (&; ') = 5 (&) + 5 (')5� (') + 5� (&) .
(11)

In [45], the authors have proved that the correlation
coe�cient has the following property:0 ≤ 7� (&) , 7� (') , 7 (&; ') ≤ 1. (12)

If and only if the distribution of&,' is the same, then7� (&) = 7� (') = 7 (&; ') = 1. (13)

�is property indicates that the correlation coe�cient 7(&; ')
is the characteristic metrics of identity and consistency of the
distribution of random variables& and '.

In order to measure the degree of con
ict between bodies
of evidence, Deng et al. in 2011 [42] proposed a similar partial
entropy, and it is de	ned as follows:

5� (&) = �∑
�=1
4� ∗ 	−5�� . (14)

According to checking, the coe�cient 	−5�� in (14) is relatively
close to log.

2.4. Jousselme Distance [40]

De�nition 9. Let�1 and�2 be two BPAs on the same frame
of discernmentΘ.� � and �� are focal elements of�1 and�2,
respectively. �e Jousselme distance, denoted by ��(�1, �2),
is de	ned as follows:�� (�1, �2) = √0.5 ∗ (AAAA�1AAAA2 + AAAA�2AAAA2 − 2 ⟨�1, �2⟩), (15)

where ‖�1‖2 = ⟨�1, �1⟩; ‖�2‖2 = ⟨�2, �2⟩; ⟨�1, �2⟩
represents the scalar product of two vectors. It is de	ned as
follows:

⟨�1, �2⟩ = 2|Θ|∑
�=1

2|Θ|∑
�=1

�1 (� �)�2 (��) """""� � ∩ ��""""""""""� � ∪ ��""""" , (16)

where� � and �� are the elements of frameworkΘ, |� �∩��| is
the cardinality of common objects between elements � � and��, and |� � ∪ ��| is the number of subsets of union of � � and��.
2.5. New Con�ict Coe�cient [46]

De�nition 10. �enew con
ict coe�cient �� of two bodies of
evidence is de	ned as follows:

�� = 12 × (� + ��) , (17)

where � is classical con
ict coe�cient and �� is the Jousselme

distance. �e larger the �� is, the larger the degree of con
ict
will be.

When both measurements are 0, it is safe to say that there
is no contradiction between �1 and �2. Only when both� and �BPA have a relatively high value, this pair of values
indicates a strong con
ict between �1 and �2. When both
measurements have a relatively low value, this indicates that
the two BPAs have little contradiction.

2.6. Cosine Similarity. �ere are two vectors � = [+1, +2, . . . ,+�], +� ≥ 0, � = 0, . . . , H, and � = [31, 32, . . . , 3�], 3� ≥ 0,� = 0, . . . , H. Due to the complexity in fault diagnosis [47, 48],
evidence theory is used to handle sensor fusion to obtain the
reasonable result [24]. It is necessary to develop the similarity
function to measure the similarity between the collected
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Figure 1: Geometric explanation of cosine similarity measurement.

bodies of evidence. �e formulation of cosine similarity of
vectors [43, 47] is de	ned as follows:

sicos (�, �) = cos (�) = � ⋅ �|�| |�|
= ∑��=1 � � ∗ ��√∑��=1 (� �)2 ∗ √∑��=1 (��)2 ,

(18)

where 0 ≤ cos(�) ≤ 1.
If angle � between � and � is 0∘, then their similarity is

1. On the contrary, if the angle between them is 90∘, then the
similarity is 0.�e geometric explanation of cosine similarity
measurement is shown in Figure 1.

3. The Problem of Existing Conflict
Measurements between BPAs

Example 11. Let Θ be a frame of discernment with 	ve
elements !1, !2, !3, !4, !5. We assume the BPAs from three
distinct sources, and they are de	ned as follows:�1 (!1) = �1 (!2) = �1 (!3) = �1 (!4) = �1 (!5)= 0.2�2 (!1) = �2 (!2) = �2 (!3) = �2 (!4) = �2 (!5)= 0.2�3 (!1) = �3 (!2) = �3 (!3) = �3 (!4) = 0.25.

(19)

If classical con
ict coe�cient � is used to measure the degree
of con
ict among bodies of evidence, we get �(�1, �2) =�(�1, �3) = 0.8, which indicates that the degree of con
ict
between�1 and�2 is equal to the degree of con
ict between�1 and �3, and they are both in high con
ict. In fact, since�1 is identical to �2, they are not in con
ict. Moreover,
the degree of con
ict between �1 and �3 intuitively should
be higher than the degree of con
ict between �1 and�2. With Liu’s method, we get #�(�1, �2) = ⟨�(�1, �2),����	
�(�1, �2)⟩ = ⟨0.8, 0⟩, which considers that �1 and�2 have no apparent severe di�erent beliefs and Dempster’s
combination rule should be used with caution.

�is example shows that classical con
ict coe�cient �
cannot measure the degree of con
ict between bodies of

Table 1: Comparison of � and �� values of 	ve pairs of BPAs in
Example 12.

Pair � ��
1st 0 0.7071

2nd 0 0.6325

3rd 0 0.5774

4th 0 0.5345

5th 0 0.5

evidence. Liu’s method #� = ⟨�, ����	
�⟩ is not good enough
to measure the degree of con
ict.

Example 12. Let �1 and �2 be two BPAs from two distinct
sources on Θ = {!1, !2, . . . , !8}. �e 	ve pairs of BPAs are
shown as follows:

1st pair:�1(!1, !2, !3) = 1,�2(!1, !2, !4) = 1;
2nd pair: �1(!1, !2, !3, !4) = 1, �2(!1, !2, !3, !5)= 1;
3rd pair: �1(!1, !2, !3, !4, !5) = 1, �2(!1, !2, !3,!4, !6) = 1;
4th pair: �1(!1, !2, !3, !4, !5, !6) = 1, �2(!1, !2,!3, !4, !5, !7) = 1;
5th pair: �1(!1, !2, !3, !4, !5, !6,w7) = 1, �2(!1,!2, !3, !4, !5, !6, !8) = 1.

�e summary of � and �� values of the 	ve pairs is given in
Table 1. From the 1st pair of BPAs to the 5th pair of BPAs, we
can know that two BPAs always have only one incompatible
element and the number of compatible elements increases
from two to six. Intuitively, every pair of BPAs is in certain
con
ict and the degree of con
ict between�1 and�2 should
be lower than the similarity between�1 and�2. In addition,
the degree of con
ict should decrease and the similarity
should increase from the 1st pair of BPAs to the 5th pair of
BPAs.

As can be seen fromTable 1, � = 0 is constant for 	ve pairs
of BPAs and it indicates that there is no con
ict. Although the
Jousselme distance �� decreases from the 1st pair of BPAs to
the 5th pair of BPAs, the value of �� is higher than 0.5 which
means that there is high con
ict between BPAs. Obviously,
both � and �� are counterintuitive.

�is example shows that � cannot reveal the con
ict
between BPAs and �� is not good enough to characterize
con
ict precisely.

Example 13. Let �1, �2 be two BPAs from two distinct
sources on frame Θ = {!1, !2, . . . , !2�}, such that�1 is �1 (!1) = �1 (!2) = ⋅ ⋅ ⋅ = �1 (!�) = 1H (20)

and�2 is�2 (!�+1) = �2 (!�+2) = ⋅ ⋅ ⋅ = �2 (!2�) = 1H . (21)
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Figure 2: Di�erent con
ict measurements.

In this example, the two BPAs totally contradict with each
other since �1 and �2 support the di�erent hypothesis. In
Song et al.’s method [49], a new measurement of con
ict was
presented based on the de	nition of correlation coe�cient.
�is method is reasonable and e�ective. But in this example,
it is unreasonable. When H = 1, we get cor(�1, �2) = 0.2.
When H = 2, we get cor(�1, �2) = 0.399. When H = 3, we get
cor(�1, �2) = 0.5606. According to the value of cor(�1, �2),
it is unreasonable because of the high con
ict. But in our
method, it is reasonable. Based on (4), we can obtain that clas-
sical con
ict coe�cient � = 1 for H = 1, 2, . . . ,∞. �e other
di�erent measurements of con
ict between �1 and �2 are
shown in Figure 2.

As can be seen from Figure 2, we can know that ��,����	
� and 0.5 ∗ (� + ��) are 1, 7 = 0 when H = 1, which are
consistent with the above analysis. But when H > 1, they are
all against the above intuitive analysis. �e values of ����	
�
and �� tend toward 0, 0.5 ∗ (� + ��) tends toward 0.5, and7(�1, �2) tends toward 1, which indicates that �1 and �2
are closer and closer with the increase of H. �e results are
counterintuitive and reasonable. �erefore, they cannot be
used to measure the con
ict of BPAs in this example.

4. New Similarity of BPAs

To determine whether there is con
ict between bodies of evi-
dence, the similarity between bodies of evidence can be con-
sidered. If there is little con
ict between bodies of evidence,
then the similarity is high. If the two bodies of evidence are
in high con
ict, then the similarity is low. �erefore the sim-
ilarity of BPAs can be used to measure the degree of con
ict
between bodies of evidence.

4.1.Modi�edCosine Similarity of Vectors. Cosine similarity in
[43, 50] is a measurement of similarity between two vectors

p

q

o

p1

Figure 3: Integrated similarity analysis.

of an inner product space that measures the cosine of the
angle between them. �e angle-based cosine similarity is a
direction-based similarity measure. �erefore, it measures
the similarity between two vectors only based on the direction
but ignoring the impact of the distance of two vectors. In [50],
Zhang and Kor�age proposed a new similarity measurement
(integrated similarity measurement) based on distance and
angle. �e integrated similarity measurement is de	ned as
follows:

O = P−� ∗ #�, (22)

where P−� is a distance-based similarity measurement [7]. �
is the Euclidean distance between vectors � and �, and P is a
constant whose value is greater than 1. #� is a modi	er based
on angle. More detailed information can be found in [50].

Although the integrated similaritymeasurement takes the
strengths of both the distance and direction of two vectors
into account, there still exist de	ciencies. For example, in
Figure 3, the angle � between vector Q-(Q-1) and Q4 is 0∘ and|Q-| = 0.1, |-4| = |4-1| = 5.

According to (22) and the same parameters in [50], we
can get the conclusion: O(Q-, Q4) = O(Q-1, Q4). But we think
that the similarity between Q- and Q4 should be di�erent from
the similarity between Q-1 and Q4, since from Figure 3, we
can get that ∠-Q4 = ∠-1Q4 = 0∘ and |Q4 − Q-| = |-4| =|Q-1 −Q4| = |4-1| = 5, but |Q-|/|Qq| = 0.0197 is much smaller
than |Q4|/|Q-1| = 0.505. Intuitively, it is expected that |Q4| is
more similar to |Q-1| than to |Q-|. �erefore, we consider that
the similarity between Q-1 and Q4 should be higher than the
similarity between Q- and Q4.

From the above example, we think that the vector norm
(vector magnitude) should be an important factor for the
similarity between vectors. �e bigger the ratio of vector
norm (the smaller vector norm is numerator) is, the higher
the similarity between two vectors will be. In order to
measure precisely the similarity between two vectors, vector
norm should be taken into account besides distance and
angle. From the above analysis, themodi	ed cosine similarity
based on angle, distance, and vector norm is proposed in
De	nition 14.
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De�nition 14. Let � = [+1, +2, . . . , +�] and � = [31, 32, . . . , 3�]
be two vectors of U�. �e modi	ed cosine similarity between
vectors � and � is de	ned below:

SI (�, �)
= {{{

12 {P−� +min(|�||�| , |�||�|)} sicos (�, �) � ̸= 0, � ̸= 00 � = 0 or � = 0, (23)

where +−� is the distance-based similarity measurement [7].� is the Euclidean distance between vectors � and �, andP is a constant whose value is greater than 1. �e larger the P
is, the greater the distance impact on vector similarity will be.
min(|�|/|�|, |�|/|�|) is the minimum of |�|/|�| and |�|/|�|.
sicos(�, �) is the cosine similarity which is de	ned in (18).

�e modi	ed cosine similarity satis	es the following
properties:

(1) SI(�, �) = SI(�, �) (symmetry);

(2) 0 ≤ SI(�, �) ≤ 1 (nonnegativity);
(3) when � ̸= 0 and � ̸= 0, SI(�, �) = 1 ⇔ � = �;
(4) when � ̸= 0 and � ̸= 0, SI(�, �) = 0 ⇔ � ⊥ �;

Proof of Property (1). Based on (18) and (23), it is easy to get
SI(�, �) = SI(�, �).
Proof of Property (2). If � ̸= 0 and � ̸= 0, then � ≥ 0,0 < min(|�|/|�|, |�|/|�|) ≤ 1, and 0 ≤ sicos ≤ 1. Hence 0 <+−� ≤ 1 when + ≥ 1. �en, based on (23), we can obtain 0 ≤
SI(�, �) ≤ 1. In addition, if � = 0 or � = 0, SI(�, �) = 0. In
summary, 0 ≤ SI(�, �) ≤ 1.
Proof of Property (3). When � ̸= 0 and � ̸= 0, if � = �,
namely, � = 0, |�| = |�| > 0 and � = 0, we can get the
following formulas based on (18) and (23):

P−� = 1
min(|�||�| , |�||�|) = 1

sicos = 1.
(24)

It is obvious that SI(�, �) = 1. When � ̸= 0 and � ̸= 0, we
can see that 0 < P−� ≤ 1, 0 < min(|�|/|�|, |�|/|�|) ≤ 1, and0 ≤ sicos ≤ 1. Hence, if SI(�, �) = 1, we can obtain P−� =
min(|�|/|�|, |�|/|�|) = sicos = 1; namely, � = 0, |�| = |�|,
and � = 0; therefore � = �. In summary, when � ̸= 0 and� ̸= 0, SI(�, �) = 1 ⇔ � = �.
Proof of Property (4). If � ̸= 0 and � ̸= 0, then
min(|�|/|�|, |�|/|�|) > 0. Hence, based on (23), if SI(�, �) =0, then sicos = 0. �erefore, based (18), we can get � ⊥ �.

If � ⊥ �, we can obtain sicos = 0 based on (18).
Furthermore we can obtain SI(�, �) = 0 based on (23). In
summary, when� ̸= 0 and� ̸= 0, SI(�, �) = 0 ⇔ � ⊥ �.

4.2. New Similarity of BPAs Based on the Modi�ed Cosine
Similarity. Under the frame of discernmentΘ = {!1, !2, . . . ,!�}, there are two evidence sources _1 and _2. Let �1
and �2 be the BPAs, respectively. �1 and �2 can be
expressed, respectively, as [Bel1(!�),Pl1(!�)], ` = 1, . . . , a,
and [Bel2(!�),Pl2(!�)], ` = 1, . . . , a, where !�, ` = 1, . . . , a
are the singleton subsets [6].

According to the above con	dence intervals, BPAs are in
the form of two vectors on the singleton subsets. �e two
vectors are expressed, respectively, below:

Bel� = [Bel� (!1) ,Bel� (!2) , . . . ,Bel� (!�)] , � = 1, 2
Pl� = [Pl� (!1) ,Pl� (!2) , . . . ,Pl� (!�)] , � = 1, 2. (25)

�en we can calculate the belief function vector similarity
SI(Bel1,Bel2) and the plausibility function vector similarity
SI(Pl1,Pl2) based on the modi	ed cosine similarity.

Finally, the new similarity of BPAs is de	ned below:

SIBPA = (1 − d) ∗ SI (Bel1,Bel2) + d ∗ SI (Pl1,Pl2) (26)

with 0 ≤ d ≤ 1, (27)

where d is the total uncertainty of BPAs, which is de	ned as

d = ∑2�=1∑��=1 (Pl� (!�) − Bel� (!�))∑2�=1∑��=1 (Pl� (!�)) . (28)

Because of Pl�(!�) ≥ Bel�(!�) and d ≥ 0, we get that if
Pl�(!�) = Bel�(!�), then d will obtain the minimum value
0; if Bel�(!�) = 0, then d will obtain the maximum value 1.

�e belief Bel(!�) in the con	dence interval represents
the minimum trust that explicitly supports !�, and the plau-
sibility Pl(!�) expresses the potential support for !�. Pl(!�) −
Bel(!�) indicates the uncertainty of !�. Obviously, the larger
the uncertainty d is, the higher the in
uence on the similarity
of BPA will be, but the in
uence of belief function similarity
on the similarity of BPA should be lower. �e new similarity
of BPAs SIBPA satis	es the following properties:

(1) �1 = �2 ⇒ SIBPA(�1, �2) = 1;
(2) SIBPA(�1, �2) = SIBPA(�2, �1);
(3) 0 ≤ SIBPA(�1, �2) ≤ 1;
(4) SIBPA(�1, �2) = 0, if and only if �1 and �2 have no

compatible element.

Some proofs are detailed as follows.

Proof of Property (3). Based on (23), (25), and (28), we can
obtain that 0 ≤ d ≤ 10 ≤ 1 − d ≤ 10 ≤ SI (Bel1,Bel2) ≤ 10 ≤ SI (Pl1,Pl2) ≤ 1.

(29)
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So, we get SIBPA(�1, �2) ≥ 0 based on (26). Moreover, if
SI(Bel1,Bel2) = SI(Pl1,Pl2) = 1, then SIBPA(�1, �2) will
get the maximum value 1 when d ∈ [0, 1]. In summary,0 ≤ SIBPA(�1, �2) ≤ 1.
Proof of Property (4). Assuming that d = 0, according to (28),
we can obtain Pl�(!�) = Bel�(!�), � = 1, 2, ` = 1, 2, . . . , a;
then SI(Bel1,Bel2) = SI(Pl1,Pl2). Hence, based on (26), we
can get

SIBPA = (1 − d) ∗ SI (Bel1,Bel2) + d ∗ SI (Pl1,Pl2)= SI (Bel1,Bel2) . (30)

If SIBPA(�1, �2) = 0, then SI(Bel1,Bel2) = 0; namely, SI(Pl1,
Pl2) = 0. SI(Pl1,Pl2) = 0 means that �1 and �2 have no
compatible element.

Assuming that d = 1, if SIBPA(�1, �2) = 0, we can easily
obtain SI(Pl1,Pl2) = 0 based on (26), which means that �1
and�2 have no compatible element.

If 0 < d < 1, based on (26), we can easily see that

SIBPA (�1, �2) = 0 f⇒ SI (Pl1,Pl2) = SI (Bel1,Bel2)= 0 (31)

which means that�1 and�2 have no compatible element.
If �1 and �2 are not compatible, it is not di�cult to

obtain SI(Pl1,Pl2) = SI(Bel1,Bel2) = 0; then we could obtain
SIBPA(�1, �2) = 0. In summary, if and only if�1 and�2 have
no compatible elements, SIBPA(�1, �2) = 0.

�e establishment of the above four properties shows that
the new similarity SIBPA is the characteristic metrics of sim-
ilarity of evidence and is consistent with the distribution of
bodies of evidence�1 and�2.�erefore, SIBPA can be used to
measure the con
ict (similarity) between bodies of evidence�1 and �2. Since the modi	ed cosine similarity SI takes the
impact of the ratio of vector norm into account, SI overcomes
the de	ciency of the integrated similarity measurement in
[50].Moreover, the new similarity of BPA based on themodi-
	ed cosine similarity takes the impact of belief function, plau-
sibility function, and uncertainty d into account, so SIBPA can
e�ectively measure the degree of con
ict between bodies of
evidence.

5. Example and Analysis

In this section, four examples are presented to illustrate the
e�ectiveness of the proposed similarity of BPAs.

Example 15. Considering the three BPAs which we de	ned in
Example 11. With the proposed similarity of BPAs SIBPA, the
following results are obtained:1 − SIBPA (�1, �2) = 0 < 1 − SIBPA (�1, �3)= 0.1707 (32)

which indicates that �1 and �2 completely agree with each
other, and the degree of con
ict between�1 and�2 is lower
than the degree of con
ict between �1 and �3. �e result is
consistent with intuitive analysis.

Table 2: SI
BPA

values of 	ve pairs of BPAs in Example 12.

Pair 1st 2nd 3rd 4th 5th

SI
BPA

0.5909 0.6648 0.7091 0.7386 0.7579

Example 16. Consider the 	ve pairs of BPAs in Example 12.
With the proposed similarity of BPAs SIBPA, the results are
listed in Table 2.

From Table 2, the value of SIBPA increases from 0.5909 to
0.7597 and the similarity is higher than others. �e result is
consistent with intuitive analysis.

Example 17. Consider the two BPAs which we de	ned in
Example 13. With the proposed similarity of BPAs, we obtain
SIBPA(�1, �2) = 0 for H = 1, . . . , 20. It indicates that �1 and�2 are completely di�erent. �at is to say, they are in total
con
ict which is consistent with the analysis in Example 13.

Example 18. Let Θ be a frame of discernment with 20
elements (or any number of elements that is prede	ned). For
convenience, we use 1, 2, and so forth to denote !1, !2, and
so forth in the frame.

�e 	rst BPA,�1, is de	ned as follows:�1 (2, 3, 4) = 0.05,�1 (5) = 0.05,�1 (Θ) = 0.1,�1 (�) = 0.8,
(33)

where � is a subset of Θ.
And the second BPA,�2, is de	ned as follows:�2 (1, 2, 3, 4, 5) = 1. (34)

�ere are 20 cases where subset � increases by one more
element at a time, starting from case 1 with � = {1} and
ending with case 20, where � = {Θ} as shown in Table 3. �e
comparison of the aforementioned con
ict measurements
between�1 and�2 for these 20 cases is detailed inTable 3 and
graphically illustrated in Figure 4.

In this example, the con
ict should be lower from case 1 to
case 5, since the supported hypothesis of�1 and�2 getsmore
and more similar. In case 5, � = {1, 2, 3, 4, 5} is identical to
hypothesis of�2; hence the degree of con
ict between�1 and�2 should obtain the minimum value. �e con
ict should
increase from case 5 to case 20, since �1 becomes more and
more uncertain.

From Figure 4, we know that con
ict measurement ��,0.5(� + ��) and ����	
� go up and down consistently when
the size of � changes. Although 0.5(� + ��) and �� present a
similar behavior, the value of 0.5(�+��) is always smaller than
the corresponding �� values. So, we get the conclusion that0.5(� + ��) is not better than �� to measure con
ict among
bodies of evidence. ����	
� < 0.25 from case 2 to case 20
and its values even decrease from case 6 to case 8 which is
abnormal. Furthermore, � = 0 indicates that�1 and�2 have
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Table 3: Comparison of di�erent con
ict measurements.

Case � ����	
� �� 7 0.5 ∗ (� + ��) SI
BPA� = {1} 0 0.6050 0.7856 0.3313 0.3928 0.3468� = {1, 2} 0 0.2270 0.6864 0.6422 0.3432 0.5074� = {1, 2, 3} 0 0.1783 0.5702 0.8579 0.2851 0.6348� = {1, . . . , 4} 0 0.1450 0.4232 0.9290 0.2116 0.7685� = {1, . . . , 5} 0 0.0350 0.1309 0.9308 0.0654 0.9219� = {1, . . . , 6} 0 0.1330 0.3879 0.8913 0.1940 0.8132� = {1, . . . , 7} 0 0.1143 0.5025 0.7014 0.2512 0.7101� = {1, . . . , 8} 0 0.1000 0.5702 0.6773 0.2851 0.6320� = {1, . . . , 9} 0 0.1060 0.6184 0.6436 0.3092 0.5702� = {1, . . . , 10} 0 0.1150 0.6551 0.6066 0.3276 0.5199� = {1, . . . , 11} 0 0.1223 0.6841 0.5698 0.3421 0.4780� = {1, . . . , 12} 0 0.1283 0.7079 0.5351 0.3539 0.4424� = {1, . . . , 13} 0 0.1335 0.7278 0.5031 0.3639 0.4119� = {1, . . . , 14} 0 0.1379 0.7449 0.4740 0.3725 0.3853� = {1, . . . , 15} 0 0.1417 0.7597 0.4477 0.3799 0.3620� = {1, . . . , 16} 0 0.1450 0.7727 0.4241 0.3864 0.3414� = {1, . . . , 17} 0 0.1479 0.7844 0.4027 0.3922 0.3230� = {1, . . . , 18} 0 0.1506 0.7949 0.3835 0.3975 0.3064� = {1, . . . , 19} 0 0.1529 0.8044 0.3661 0.4022 0.2915� = {1, . . . , 20} 0 0.1550 0.8131 0.3627 0.4066 0.2779
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Figure 4: Comparison of di�erent con
ict measurements between�1 and�2.
no con
ict which is opposite to our analysis. Because both �
and ����	
� are low, Liu’smethod ⟨�, ����	
�⟩ indicates that
there is little contradiction between �1 and �2 from case 2
to case 20. �erefore ⟨�, ����	
�⟩ cannot re
ect the con
ict
changes when the size of� changes. Whereas 7 and SIBPA are
used to measure the similarity among BPAs. �e bigger the

7 and SIBPA is, the lower the degree of con
ict will be. �e
curves of �BPA, 7, and SIBPA are consistent with the above
analysis; therefore we think that SIBPA can also be used to
characterize the degree of con
ict.

According to the above four examples, we get a conclusion
that the new similarity of BPAs SIBPA can e�ciently charac-
terize the degree of con
ict between BPAs.

6. A New Combination
Method and Application

In this section, we proposed a new combination method
based on the new similarity of BPAs. If there are H bodies of
evidence (BOEs) ��, � = 1, . . . , H, the calculation process is
listed as follows.

Step 1. Calculate the similarity between the bodies of evi-
dence; then construct a similarity measure matrix (SMM),
which gives us insight into the agreement between evidence,
where SIBPA(�̀ ) is the similarity between�� and��:
SMM

= ((((
(

SIBPA (11) ⋅ ⋅ ⋅ SIBPA (1�) ⋅ ⋅ ⋅ SIBPA (1H)... ... ... ... ...
SIBPA (�1) ⋅ ⋅ ⋅ SIBPA (��) ⋅ ⋅ ⋅ SIBPA (�H)... ... ... ... ...
SIBPA (H1) ⋅ ⋅ ⋅ SIBPA (H�) ⋅ ⋅ ⋅ SIBPA (HH)

))))
)

. (35)
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Step 2. �e credibility of body of evidence �� is de	ned as
follows:

Sup (��) = �∑
�=1
� ̸=�

SIBPA (�̀ ) , � = 1, . . . , H.
(36)

We know that the lower the distance between the bodies of
evidence is, the higher the similarity is.

Step 3. �e credibility degree Crd� of the body of evidence��
is de	ned as follows:

Crd� = Sup (��)∑��=1 Sup (��) . (37)

Step 4. �e weighted average evidence MAE is given by the
following formula:

MAE (�) = �∑
�=1

(Crd� × ��) . (38)

Step 5. When the number of original bodies of evidence isH, we should combine the MAE for (H − 1) times. �en the
result can be calculated. We can e�ectively deal with the
information fusion problems in high-con
ict evidence by this
method.

In general, if a body of evidence is supported by others
greatly, the evidence should be more important and has more
e�ect on the 	nal combination result [44]. �is method has
a faster convergence speed and improves the reliability and
rationality when the evidence is contradictory. An example
of target recognition is presented to show the validity of the
proposed method.

Example 19. �ere is a target that is detected in combat air
domain and the target is identi	ed as enemy by military
Identi	cation Friend or Foe. Five di�erent sensors such as
airborne early warning radar (AEW radar) and electronic
warfare supportmeasure (EMS) detect the air targets, and the
frame of discernment is Θ = {�, �, �}. At a certain moment,
	ve bodies of evidence have been collected from these 	ve
di�erent sensors. �e BPAs �1, �2, �3, �4, �5 are given as
follows:�1: �1 (�) = 0.41,�1 (�) = 0.29,�1 (�) = 0.30; (39)

�2: �2 (�) = 0.00,�2 (�) = 0.90,�2 (�) = 0.10; (40)

�3: �3 (�) = 0.58,�3 (�) = 0.07,�3 (��) = 0.35; (41)

�4: �4 (�) = 0.55,�4 (�) = 0.10,�4 (��) = 0.35; (42)

�5: �5 (�) = 0.60,�5 (�) = 0.10,�5 (��) = 0.30. (43)

In this example, it is clear that �2 is in high con
ict with
others. �e results by di�erent combination rules are shown
in Table 4.

As can be seen from Table 4, Dempster’s rule produces
counterintuitive result, though more bodies of evidence
collected later support target �. Although Murphy’s method,
Deng’s method, and the proposed method can recognize the
true target, the performance of convergence of the proposed
method is better than others. �e main reason is that the
proposedmethod has better performance in con
ictmanage-
ment. By making use of the new similarity of BPAs among
bodies of evidence, the modi	ed average approach decreases
the weight of the “bad” evidence, so the “bad” evidence has
less e�ect on the 	nal results.

In conclusion, the weighted average method based on
the proposed similarity measure SIBPA can solve the problem
of combination with high-con
ict evidence. It illustrates the
e�ciency and the validity of the newmethod to deal with the
high-con
ict evidence.

7. Conclusion

In the actual battle 	eld, due to the harsh environment and
human interference, the high con
ict o�en exists among the
sensor reports. In order to solve the problem of con
icting
information fusion, the existing methods pay more attention
to the evidence combination algorithm while ignoring the
study of con
ict itself. Are there any other parameters or fac-
tors that can re
ect the con
ict between bodies of evidence?
Is there a better con
ict model that can comprehensively
describe the con
ict between bodies of evidence?�ese issues
are the basis for resolving the fusion of con
icting informa-
tion and are very worthy of research.

In this paper, a new similarity of BPAs is proposed to
measure the degree of con
ict, which is constituted by the
belief function and plausibility function in evidence theory.
By expressing the BPAs in the form of vectors on singleton
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Table 4: Results of di�erent combination rules of evidence with one bad evidence.

BPAs Method �(�) �(�) �(�) �(��) Results

�1, �2, �3 Dempster [7] 0 0.6350 0.3650 0 �
Murphy [37] 0.4939 0.4180 0.0792 0.0090 �
Yong et al. [44] 0.4974 0.4054 0.0888 0.0084 �

Proposed method 0.5761 0.3229 0.0921 0.0089 �
�1, �2, �3, �4 Dempster [7] 0 0.3321 0.6679 0 �

Murphy [37] 0.8362 0.1147 0.0410 0.0081 �
Yong et al. [44] 0.9089 0.0444 0.0379 0.0089 �

Proposed method 0.9186 0.0348 0.0379 0.0087 �
�1, �2, �3, �4, �5 Dempster [7] 0 0.1422 0.8578 0 �

Murphy [37] 0.9620 0.0210 0.0138 0.0032 �
Yong et al. [44] 0.9820 0.0039 0.0107 0.0034 �

Proposed method 0.9861 0.0010 0.0095 0.0034 �
subsets and calculating two similarities based on themodi	ed
cosine similarity, a reasonable measurement of similarity
(con
ict) among bodies of evidence can be achieved. �e
similarity canmeet the basic nature of requiring for similarity.
If two bodies of evidence are consistent, the two bodies of
evidence support the same hypothesis.

�erefore, the proposed similarity of BPAs should be
high; on the contrary, the degree of con
ict is low. If the
proposed similarity is low, we consider that the two bodies of
evidence are in high con
ict. �e lower the similarity is, the
higher the con
ict is. Hence, the proposed similarity can be
used to measure the degree of con
ict. �e example of target
recognition shows that the similarity of BPAs could be used
in sensor data fusion. In the later research, the similarity will
be applied as a constraint condition in decisionmaking based
on BPAs.
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