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Abstract— The effectiveness of cluster-based distributed sensor
networks depends to a large extent on the coverage provided by
the sensor deployment. We propose a virtual force algorithm
(VFA) as a sensor deployment strategy to enhance the coverage
after an initial random placement of sensors. For a given
number of sensors, the VFA algorithm attempts to maximize
the sensor field coverage. A judicious combination of attractive
and repulsive forces is used to determine virtual motion paths
and the rate of movement for the randomly-placed sensors. Once
the effective sensor positions are identified, a one-time movement
with energy consideration incorporated is carried out, i.e., the
sensors are redeployed to these positions. We also propose a novel
probabilistic target localization algorithm that is executed by the
cluster head. The localization results are used by the cluster head
to query only a few sensors (out of those that report the presence
of a target) for more detailed information. Simulation results
are presented to demonstrate the effectiveness of the proposed
approach.

Index Terms— Sensor coverage, distributed sensor networks,
sensor placement, virtual force, localization.

I. INTRODUCTION

Distributed sensor networks (DSNs) are important for a
number of strategic applications such as coordinated target
detection, surveillance, and localization. The effectiveness of
DSNs is determined to a large extent by the coverage provided
by the sensor deployment. The positioning of sensors affects
coverage, communication cost, and resource management.
In this paper, we focus on sensor placement strategies that
maximize the coverage for a given number of sensors within
a cluster in cluster-based DSNs.

As an initial deployment step, a random placement of
sensors in the target area (sensor field) is often desirable,
especially if no a priori knowledge of the terrain is available.
Random deployment is also practical in military applications,
where DSNs are initially established by dropping or throwing
sensors into the sensor field. However, random deployment
does not always lead to effective coverage, especially if the
sensors are overly clustered and there is a small concentration
of sensors in certain parts of the sensor field. The key idea
of this paper is that the coverage provided by a random
deployment can be improved using a force-directed algorithm.
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We present the virtual force algorithm (VFA) as a sensor
deployment strategy to enhance the coverage after an initial
random placement of sensors. The VFA algorithm is inspired
by disk packing theory [11] and the virtual force field concept
from robotics [5]. For a given number of sensors, VFA
attempts to maximize the sensor field coverage using a combi-
nation of attractive and repulsive forces. During the execution
of the force-directed VFA algorithm, sensors do not physically
move but a sequence of virtual motion paths is determined
for the randomly-placed sensors. Once the effective sensor
positions are identified, a one-time movement is carried out
to redeploy the sensors at these positions. Energy constraints
are also included in the sensor repositioning algorithm.

We also propose a novel target localization approach based
on a two-step communication protocol between the cluster
head and the sensors within the cluster. In the first step,
sensors detecting a target report the event to the cluster head.
The amount of information transmitted to the cluster head is
limited; in order to save power and bandwidth, the sensor
only reports the presence of a target, and it does not transmit
detailed information such as signal strength, confidence level
in the detection, imagery or time series data. Based on the
information received from the sensor and the knowledge of
the sensor deployment within the cluster, the cluster head
executes a probabilistic scoring-based localization algorithm
to determine likely position of the target. The cluster head
subsequently queries a subset of sensors that are in the vicinity
of these likely target positions.

The sensor field is represented by a two-dimensional grid.
The dimensions of the grid provide a measure of the sensor
field. The granularity of the grid, i.e. distance between grid
points can be adjusted to trade off computation time of the
VFA algorithm with the effectiveness of the coverage measure.
The detection by each sensor is modeled as a circle on the
two-dimensional grid. The center of the circle denotes the
sensor while the radius denotes the detection range of the
sensor. We first consider a binary detection model in which
a target is detected (not detected) with complete certainty by
the sensor if a target is inside (outside) its circle. The binary
model facilitates the understanding of the VFA model. We
then investigate a realistic probabilistic model in which the
probability that the sensor detects a target depends on the
relative position of the target within the circle. The details
of the probabilistic model are presented in Section III.

The organization of the paper is as follows. In Section II, we
review prior research on topics related to sensor deployment
in DSNs. In Section III, we present details of the VFA
algorithm. In Section IV, we present the target localization
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algorithm that is executed by the cluster head. In Section
V, we present simulation results using the proposed sensor
deployment strategy for various situations. Section VI presents
conclusions and outlines directions for future work.

II. RELATED PRIOR WORK

Sensor deployment problems have been studied in a variety
of contexts [1], [2], [9]. In the area of adaptive beacon
placement and spatial localization, a number of techniques
have been proposed for both fine-grained and coarse-grained
localization [12].

Sensor deployment and sensor planning for military appli-
cations are described in [6], where a general sensor model
is used to detect elusive targets in the battlefield. However,
the proposed DSN framework in [6] requires a great deal of
a priori knowledge about possible targets. Hence it is not
applicable in scenarios where there is no information about
potential targets in the environment.

The deployment of sensors for coverage of the sensing field
has been considered for multi-robot exploration [5]. Each robot
can be viewed as a sensor node in such systems. An incre-
mental deployment algorithm is used in which sensor nodes
are deployed one by one in an adaptive fashion. A drawback
of this approach is that it is computationally expensive. As the
number of sensors increases, each new deployment results in
a relatively large amount of computation.

The problem of evaluating the coverage provided by a given
placement of sensors is discussed in [7]. The major concern
here is the self-localization of sensor nodes; sensor nodes are
considered to be highly mobile and they move frequently. An
optimal polynomial-time algorithm that uses graph theory and
computational geometry constructs is used to determine the
best-case and the worst-case coverage.

Radar and sonar coverage also present several related chal-
lenges [13]. Radar and sonar netting optimization are of great
importance for detection and tracking in a surveillance area.
Based on the measured radar cross-sections and the coverage
diagrams for the different radars, the authors in [13] propose a
method for optimally locating the radars to achieve satisfactory
surveillance with limited radar resources.

Sensor placement on two- and three-dimensional grids has
been formulated as a combinatorial optimization problem, and
solved using integer linear programming in [3], [4]. This
approach suffers from two main drawbacks. First, compu-
tational complexity makes the approach infeasible for large
problem instances. Second, the grid coverage approach relies
on “perfect” sensor detection, i.e. a sensor is expected to yield
a binary yes/no detection outcome in every case. However,
because of the inherent uncertainty associated with sensor
readings, sensor detection must be modeled probabilistically
[10].

A probabilistic optimization framework for minimizing the
number of sensors for a two-dimensional grid has been pro-
posed recently [10]. This algorithm attempts to maximize the
average coverage of the grid points. Finally, there exists a
close resemblance between the sensor placement problem and
the art gallery problem (AGP) addressed by the art gallery

theorem [14]. Other related work includes the placement of a
given number of sensors to reduce communication cost [15],
optimal sensor placement for a given target distribution [16].

Our proposed algorithm differs from prior methods in
several ways. First, we consider both the binary sensor de-
tection model and probabilistic detection model to handle
sensors with both high and low detection accuracy. Second,
the amount of computation is limited since we perform a
one-time computation and sensor locations are determined at
the same time for all the sensor nodes. Third, our approach
improves upon an initial random placement, which offers a
practical sensor deployment solution. Finally, we investigate
the relationship between sensor placement within a cluster and
target localization by the cluster head.

III. VIRTUAL FORCE ALGORITHM

In this section, we describe the underlying assumptions and
the virtual force algorithm (VFA).

A. Preliminaries

For a cluster-based sensor network architecture, we make
the following assumptions:

• After the initial random deployment, all sensor nodes are
able to communicate with the cluster head.

• The cluster head is responsible for executing the VFA al-
gorithm and managing the one-time movement of sensors
to the desired locations.

• In order to minimize the network traffic and conserve
energy, sensors only send a yes/no notification message
to the cluster head when a target is detected. The cluster
head intelligently queries a subset of sensors to gather
more detailed target information.

The VFA algorithm combines the ideas of potential field [5]
and disk packing [11]. In the sensor field, each sensor behaves
as a “source of force” for all other sensors. This force can
be either positive (attractive) or negative (repulsive). If two
sensors are placed too close to each other, the “closeness”
being measured by a pre-determined threshold, they exert
negative forces on each other. This ensures that the sensors are
not overly clustered, leading to poor coverage in other parts of
the sensor field. On the other hand, if a pair of sensors is too
far apart from each (once again a pre-determined threshold
is used here), they exert positive forces on each other. This
ensures that a globally uniform sensor placement is achieved.

Consider an n by m sensor field grid and assume that
there are k sensors deployed in the random deployment stage.
Each sensor has a detection range r. Assume sensor si is
deployed at point (xi, yi). For any point P at (x, y), we
denote the Euclidean distance between si and P as d(si, P ),
i.e. d(si, P ) =

√
(xi − x)2 + (yi − y)2. Equation (1) shows

the binary sensor model [3], [4] that expresses the coverage
cxy(si) of a grid point P by sensor si.

cxy(si) =
{

1, if d(si, P ) < r
0, otherwise.

(1)

The binary sensor model assumes that sensor readings have
no associated uncertainty. In reality, sensor detections are
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imprecise, hence the coverage cxy(si) needs to be expressed
in probabilistic terms. In this work, we assume the following,
motivated in part by [8]:

cxy(Si) =






0, if r + re ≤ d(si, P )
e−λaβ

, if r − re < d(si, P ) < r + re
1, if r − re ≥ d(si, P )

(2)

where re(re < r) is a measure of the uncertainty in sensor
detection, a = d(si, P )−(r−re), and α and β are parameters
that measure detection probability when a target is at distance
greater than re but within a distance from the sensor. This
model reflects the behavior of range sensing devices such as
infrared and ultrasound sensors. The probabilistic sensor detec-
tion model is shown in Fig. 1. Note that distances are measured
in units of grid points. Fig. 1 also illustrates the translation of
a distance response from a sensor to the confidence level as a
probability value about this sensor response. Different values
of the parameters α and β yield different translations reflected
by different detection probabilities, which can be viewed as
the characteristics of various types of physical sensors.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance  d(S
i
 , P) between sensor and grid point

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 λ=0.5, β=1

 λ=1, β=0.5

 λ=0.5, β=0.5

 λ=1, β=1

Fig. 1. Probabilistic sensor detection model.

B. Virtual Forces

We now describe the virtual forces and virtual force calcu-
lation in the VFA algorithm. In the following discussion, we
use the notation introduced in the previous subsection. Let the
total force action on sensor si be denoted by �Fi. Note that �Fi

is a vector whose orientation is determined by the vector sum
of all the forces acting on si. Let the force exerted on si by
another sensor sj be denoted by �Fij .

In addition to the positive and negative forces due to other
sensors, a sensor si is also subjected to forces exerted by
obstacles and areas of preferential coverage in the grid. This
provides us with a convenient method to model obstacles and
the need for preferential coverage. Sensor deployment must
take into account the nature of the terrain, e.g., obstacles
such as building and trees in the line of sight for infrared
sensors, uneven surface and elevations for hilly terrain, etc.
In addition, based on relative measures of security needs and
tactical importance, certain areas of the grid need to be covered
with greater certainty.

In our virtual force model, we assume that obstacles exert
repulsive (negative) forces on a sensor. Likewise, areas of
preferential coverage exert attractive (positive) forces on a
sensor. Let �FiA be the total (attractive) force on si due to
preferential coverage areas, and let �FiR be the total (repulsive)
force on si due to obstacles. The total force �Fi on si can now
be expressed as

�Fi =
k∑

j=1, j �=i

�Fij + �FiR + �FiA (3)

We next express the force �Fij between si and sj in polar
coordinate notation. Note that �f = (r, θ) implies a magnitude
of r and orientation θ for vector �f .

�Fij =






(wA(dij − dth), αij) if dij > dth

0, if dij = dth

(wR
1

dij
, αij + π), if otherwise

(4)

where dij is the Euclidean distance between sensor si and
sj , dth is the threshold on the distance between si and sj ,
αij is the orientation (angle) of a line segment from si to sj ,
and wA(wR) is a measure of the attractive (repulsive) force.
The threshold distance dth controls how close sensors get to
each other. As an example, consider the four sensors s1, s2,
s3 and s4 in Fig. 2. The force �F1 on S1 is given by �F1 =
�F12 + �F13 + �F14. If we assume that d12 > dth, d13 < dth,
and d14 = dth, s2 exerts an attractive force on s1, s3 exerts
a repulsive force on s1 and s4 exerts no force on s1. This is
shown Fig. 2.

Fig. 2. An example of virtual forces with four sensors.

If re ≈ 0 and we use the binary sensor detection model
given by Equation (1), we attempt to make dij as close to
2r as possible. This ensures that the detection regions of two
sensors do not overlap, thereby minimizing “wasted overlap”
and allowing us to cover a large grid with a small number of
sensors. This is illustrated in Fig. 3(a). An obvious drawback
here is that a few grid points are not covered by any sensor.
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Note that an alternative strategy is to allow overlap, as shown
in Fig. 3(b). While this approach ensures that all grid points are
covered, it needs more sensors for grid coverage. Therefore,
we adopt the first strategy. Note that in both cases, the coverage
is effective only if the total area kπr2 that can be covered with
the k sensors exceeds the area of the grid.

Fig. 3. Non-overlapped and overlapped sensor coverage areas.

If re > 0, re is not negligible and the probabilistic sensor
model given by Equation (2) is used. Note that due to the
uncertainty in sensor detection responses, grid points are not
uniformly covered with the same probability. Some grid points
will have low coverage if they are covered only by only
one sensor and they are far from the sensor. In this case,
it is necessary to overlap sensor detection areas in order to
compensate for the low detection probability of grid points that
are far from a sensor. Consider a grid point with coordinate
(x, y) lying in the overlap region of sensors si and sj . Let
cxy(si, sj) be the probability that a target at this grid point is
reported as being detected by observing the outputs of these
two sensors. We assume that sensors within a cluster operate
independently in their sensing activities. Thus

cx,y(si, sj) = 1 − (1 − cx,y(si))(1 − cx,y(sj)) (5)

where cxy(si) and cxy(sj) were defined in Section 3.1. Since
the term (1− cx,y(si))(1− cx,y(sj)) expresses the probability
that neither si nor sj covers grid point at (x, y), the probability
that the grid point (x, y) is covered is given by Equation (5).
Let cth be the desired coverage threshold for all grid points.
This implies that

min
x,y

{cx,y(si, sj)} ≥ cth (6)

Note that Equation (5) can also be extended to a region which
is overlapped by a set of kov sensors, denoted as Sov , kov =
|Sov|, Sov ⊆ {s1, s2, · · · , sk}. The coverage in this case is
given by:

cx,y(Sov) = 1 −
∏

si∈Sov

(1 − cx,y(si)) (7)

As shown in Equation (4), the threshold distance dth is used
to control how close sensors get to each other. When sensor
detection areas overlap, the closer the sensors are to each other,
the higher is the coverage probability for grid points in the
overlapped areas. Note however that there is no increase in the
point coverage once one of the sensors gets close enough to

provide detection with a probability of one. Therefore, we need
to determine dth that maximizes the number of grid points
in the overlapped area that satisfies cxy(si) > cth. Let us
consider the three sensors s1, s2, and s3 in Fig. 3(a), where
no overlap exists. Assume the three sensors are on a 31 by
31 grid, r = 5 and re = 3 in units of grid points. Figures
4-6 show how the coverage is affected by dth and cth when
the threshold distance dth is changed from r + re to r − re.
The coverage for the entire grid is calculated as the fraction
of grid points that exceeds the threshold cth.We can use these
graphs to appropriately choose dth according to the required
cth.
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and s2.
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Fig. 5. Coverage vs. dth with cth = 0.7 and different λ and β.

In order to prolong battery life, the distances between the
initial and final position of the sensors are limited in the
repositioning phase to conserve energy. We investigated two
approaches for incorporating energy constraints in the VFA
algorithm. The first approach disables any virtual forces on
a sensor whenever the current distance reaches the distance
limit. The second method records all virtual locations that
sensors are moved into during the VFA algorithm. When the
VFA algorithm terminates, a search procedure is used to find
the locations with maximum coverage, except those locations
that are already beyond the distance limit.

Note that the VFA algorithm is designed to be executed on
the cluster head, which is expected to have more computational
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VFA Data Structures: Grid, {s1, s2, · · · , sk}

/* nP is the number of preferential area blocks (attractive
forces) and nO is the number of obstacle blocks (repulsive
forces). Sxy , kxy and p tablexy are used for localization. */
1 Grid structure:
2 Properties: width, height, k, cth, dth;
3 Preferential areas: PAi(x, y, wx,wy),

i = 1, 2, · · · , nP ;
4 Obstacles areas: OAi(x, y, wx,wy),

i = 1, 2, · · · , nO;
5 Grid points, Pxy:

cxy(s1, s2, · · · , sk), Sxy, kxy, p tablexy;
6 Sensor si structure: i, (x, y), r, re, α, β;

Fig. 7. Data structures used in the VFA algorithm.

capabilities than sensor nodes. The cluster head uses the VFA
algorithm to find appropriate sensor node locations based on
the coverage requirements. The new locations are then sent to
the sensor nodes, which perform a one-time movement to the
designated positions. No movements are performed during the
execution of the VFA algorithm.

We next describe the VFA algorithm in pseudo-code form.
Fig. 7 shows the data structure of the VFA algorithm and Fig.
8 shows the implementation details. For a n by m grid with a
total of k sensors deployed, the computational complexity of
the VFA algorithm is O(nmk).

IV. TARGET LOCALIZATION

In our two-step communication protocol, when a sensor
detects a target, it sends an event notification to the cluster
head. In order to conserve power and bandwidth, the message
from the sensor to the cluster head is kept very small; in fact,
the presence or absence of a target can be encoded in just
one bit. Detailed information such as detection strength level,
imagery and time series data are stored in the local memory
and provided to the cluster head upon subsequent queries.
Based on the information received from the sensors within the
cluster, the cluster head executes a probabilistic localization
algorithm to determine candidate target locations, and it then

Procedure Virtual Force Algorithm (Grid, {s1, s2, · · · , sk})

1 Set loops = 0;
2 Set MaxLoops =MAX LOOPS;
3 While (loops < MaxLoops)
4 /* coverage evaluation */
5 For P (x, y) in Grid, x ∈ [1, width], y ∈ [1, height]
6 For si ∈ {s1, s2, · · · , sk}
7 Calculate cxy(si, P ) from the sensor model

using (d(si, P ), cth, dth, α, β);
8 End
9 If coverage requirements are met
10 Break from While loop;
11 End
12 End
13 /* virtual forces among sensors */
14 For si ∈ {s1, s2, · · · , sk}
15 Calculate �Fij using d(si, sj), dth, wA, wR;
16 Calculate �FiA using d(si, PA1, · · · , PAnP ), dth;
17 Calculate �FiR using d(si, OA1, · · · , OAnO ), dth;
18 �Fi =

∑
�Fij + �FiR + �FiA, j ∈ [1, k], j �= i;

19 End
20 /* move sensors virtually */
21 For si ∈ {s1, s2, · · · , sk}
22 �Fi(si) virtually moves si to its next position;
23 End
24 Set loops = loops + 1;
25 End

Fig. 8. Pseudocode of the VFA algorithm.

queries the sensor(s) in the vicinity of the target. We assume
here that the sensor detection reports are time-labeled.

A. Detection Probability Table

After the VFA algorithm is used to determine the final
sensor locations, the cluster head generates a detection prob-
ability table for each grid point. The detection probability
table contains entries for all possible detection reports from
those sensors that can detect a target at this grid point. Let
us assume that a grid point P (x, y) is covered by a set of
kxy sensors, denoted as Sxy , |Sxy| = kxy , 0 ≤ kxy ≤ k,
and Sxy ⊆ {s1, s2, · · · , sk}. The probability table is built on
the power set of Sxy since there are 2kxy possibilities for kxy

sensors in reporting an event. These 2kxy cases include the
event that none of the sensors detect anything (represented by
the binary string as “00...0”) as well as the event that all of
the sensors (represented by the binary string as “11...1”). Thus
the probability table for grid point (x, y) then contains 2kxy

entries, defined as:

p tablexy(i) =
∏

sj∈Sxy

pxy(sj , i) (8)

where 0 ≤ i ≤ 2kxy , and pxy(sj , i) = cx,y(sj) if sj detects
a target at grid point P (x, y); otherwise pxy(sj , i) = 1 −
cx,y(sj). Table I gives an example of the probability tables on
a 5 by 5 grid with 3 sensors deployed.

Consider the grid point (2, 4) in Fig. 9 which is covered
by all three sensors s1, s2 and s3 with probabilities as 0.57, 1,
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Fig. 9. Example of grid point probability table.

and 0.57 respectively. For the three sensors s1, s2 and s3,
there are a total of 8 possibilities for their combined event
detection at grid point (2, 4). For example, the binary string
110 denotes the possibility that s1 and s2 report a target
but s3 does not report a target. For each such possibility
d1d2d3 (d1, d2, d3 ∈ {0, 1}) for a grid point, we calculate
the conditional probabilities that the cluster head receives
d1d2d3 given that a target is present at that grid point. For
our example, these conditional probabilities are listed in Table
I. Consider the binary string 110, the conditional probability
associated with this possibility is given by p table24(6) =
p24(s1, 6)p24(s2, 6)p24(s3, 6) = 0.57×1× (1−0.57) = 0.24.
Note that the number of entries in the detection probability
tables for different grid points will in general be different.

TABLE I

EXAMPLE PROBABILITY TABLE.

i d1d2d3 p tablexy(i) i d1d2d3 p tablexy(i)
0 000 0 1 001 0
2 010 0.18 3 011 0.24
4 100 0 5 101 0
6 110 0.24 7 111 0.33

B. Score-based Ranking

After the probability table is generated for all the grid
points, localization is done by the cluster head if a target
is detected by one or more sensors. We use an inference
method based on the established grid point probability table.
When at time instant t, the cluster head receives positive
event message from k(t) sensors, it uses the grid point
probability table to determine which of these sensors are
most suitable to be queried for more detailed information.
Detailed target reporting involves sending large amount of
data, which consumes more energy consumption and needs
more bandwidth. Therefore, the cluster head cannot afford to
query all the sensors for detailed reports. There is also an
inherent redundancy in sensor detection information so it is

not necessary to query all sensors. Our scoring approach is
able to select the most suitable sensors for this purpose.

Consider the 10 by 10 grid shown in Fig. 10. There are
five sensors deployed, k = 5, r = 2 and re = 1. The zigzag
shaped line is the target movement trace. The target starts to
move at t = tstart from the grid point marked as “Start” and
finishes at t = tend at the grid point marked as “End”. Fig.
11 gives the score report at the time instant tstart when the
target is present at “Start”.
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Fig. 10. Example sensor field with a moving target.
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Fig. 11. Scoring results for target in the example sensor field at tstart. s1
and s2 have reported.

Assume Srep(t) is the set of sensors that have reported the
detection of an object, Srep,xy(t) is the set of sensors that can
detect point P (x, y) and have also reported the detection of an
object. Obviously, Srep,xy(t) ⊆ Srep and Srep,xy(t) ⊆ Sxy .
We define the weight for the grid point P (x, y) at time instant
t as,

wxy(t) =
krep,xy(t)
krep(t)

(9)
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where krep(t) = |Srep(t)| and krep,xy(t) = |Srep,xy(t)|. The
score of the grid point P (x, y) at time instant t is calculated
as follows:

SCORExy(t) = p tablexy(i(t)) × wxy(t) (10)

where i(t) is the index of the p tablexy at time t. The param-
eter i(t) is calculated from Sxy and Srep,xy . The parameter
p tablexy(i(t)) corresponds to the conditional probability that
the cluster head receives this event information given that
there was a target at P (x, y). For example, consider grid point
(1, 8) in Fig. 11, at time instant tstart, p table18(i(tstart)) =
0.7248, w18(tstart) = 0.5, therefore SCORE18(tstart) =
0.5 × 0.7248 = 0.3624.

C. Selection of Sensors to Query

Assume that the maximum number of sensors that are
allowed to report an event is kmax, and the set of the sensors
selected by the cluster head for querying at time t is Sq(t),
Sq(t) ⊆ Srep(t) ⊆ {s1, s2, · · · , sk}. To select the sensor
to query based on the event reports and the localization
procedure, we first note that for time instant t, if kmax ≥
krep(t), then all reported sensors can be queried. Otherwise,
we select sensors based on a score-based ranking. The sensors
selected correspond to the ones that have the shortest distance
to those grid points with the highest scores. This selection rule
is defined as:

Sq(t) : d(Sq(t), PMS) = min{d(si, PMS)} (11)

where si ∈ Srep(t), and PMS denotes the set of grid points
with the highest scores. For the example of Fig. 10, Table
II shows the selected sensor when the target is moving from
“Start” to “End”. We assume here that a maximum of one
sensor can be selected, and the target is moving at a constant
speed. There are total of 24 locations for the target. We also
assume the time instants are discrete, beginning with t = 1.

TABLE II

SELECTED SENSORS FOR THE EXAMPLE IN FIG. 10.

t Srep(t) Sq(t) t Srep(t) Sq(t)
1 s1, s2 s2 17 s4, s5 s5

2 s1, s2 s2 18 s2, s3, s5 s2

3 s1, s2 s2 19 s2, s5 s5

4 s2 s2 20 s1, s2, s5 s2

5 s2, s3 s2 21 s5 s5

... ... ... ... ... ...

D. Evaluation of Energy Savings

We next evaluate the energy saved by the proposed prob-
abilistic localization approach. Assume the sensor node has
three basic energy consumption types—sensing, transmitting
and receiving, and these power values (energy per unit time)
are Es, Et and Er, respectively. If we select all sensors that
reported the target for querying, the total energy consumed for

the event happening at time instant t can be evaluated using
the following equation:

E1(t) = krep(t)(Et + Er)T1 (12)

E2(t) = (krep(t)Er + Et)T2 (13)

E3(t) = krep(t)(Et + Er)T3 (14)

E4(t) = EsTs (15)

E(t) = E1(t) + E2(t) + E3(t) + E4(t) (16)

E =
tend∑

t=tstart

E(t) (17)

where E1 is the energy required for reporting the detection of
an object, E2 is the energy required for transmitting query
information from the cluster head by broadcasting and for
receiving this information at the sensor nodes, and E3 is the
energy required by sensor nodes being queried to send detailed
information to the cluster head. The parameters T1, T2 and T3
denote the lengths of time involved in the transmission and
reception, which are directly proportional to the sizes of data
for yes/no messages, control messages to query sensors, and
the detailed sensor data transmitted to the cluster head. The
parameter Ts is the time of sensing activity of sensors. The
parameters E denotes the total energy in this case for target
localization from tstart to tend. Similarly, for the proposed
probabilistic localization approach, we have:

E∗
1 (t) = krep(t)(Et + Er)T1 (18)

E∗
2 (t) = (kq(t)Er + Et)T2 (19)

E∗
3 (t) = kq(t)(Et + Er)T3 (20)

E∗
4 (t) = EsTs (21)

E(t)∗ = E1(t)∗ + E2(t)∗ + E3(t)∗ + E4(t)∗ (22)

E∗ =
tend∑

t=tstart

E(t)∗ (23)

where E1(t)∗ = E1(t), E∗
4 (t) = E4(t), and the total energy

consumed is denoted by E∗. Therefore, the energy savings via
the use of the probabilistic target localization algorithm is:

∆E = E − E∗ = C

tend∑

t=tstart

(krep(t) − kq(t)) (24)

where C = ErT2 + (Et +Er)T3 is a constant. Since kq(t) is
always less than or equal to krep(t), we have ∆E ≥ 0.

Fig. 12 shows the pseudocode of the procedure to generate
the probability table for each grid point. Fig. 13 shows the
pseudocode for the simulation of the probabilistic localiza-
tion algorithm. For an n by m grid with k sensors, the
computational complexity involved in generating the prob-
ability table is O(nm2k) since the maximum number of
sensors that can detect a grid point is k for the worst
case. The computational complexity of the localization pro-
cedure is O(nmkmax), kmax ≤ k. Therefore, the computa-
tional complexity of the probabilistic localization algorithm is
max{O(nmkmax), O(nm2k)} = O(nm2k).
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Procedure
Generate Probability Table (P(x, y), {s1, s2, · · · , sk})

1 /* find Sxy , the set of sensors that can detect P (x, y) */
2 For si ∈ {s1, s2, · · · , sk}
3 If d(si, P (x, y)) ≤ r + re

4 Sxy = Sxy ∪ {si};
5 End
6 End
7 /* fill up the probability table */
8 For i, 0 ≤ i ≤ kxy , kxy = |Sxy|;
9 If sj detects P (x, y)
10 Set pxy(sj , i) = cx,y(sj);
11 Else
12 Set pxy(sj , i) = 1 − cx,y(sj);
13 End
14 Set p tablexy(i) =

∏
sj∈Sxy

pxy(sj , i);
15 End

Fig. 12. Pseudocodes for generating the probability table.

Procedure
Localization (Grid, {s1, s2, · · · , sk}, TargetTrace)

/* kmax is the maximum number of sensors that are allowed for
querying, prep is the threshold level for a sensor to report to the
cluster head of an event. TargetTrace starts from tstart and it
ends at tend. The simulation time unit is 1. */
1 Set t = tstart;
2 While (t ≤ tend)
3 /* current target location */
4 Set Target = TargetTrace(t);
5 /* calculate the scores */
6 Calculate Srep(t) from {s1, s2, · · · , sk}, Target(t), prep;
7 Set krep(t) = |Srep(t)|;
8 For P (x, y) in Grid, x ∈ [1, width], y ∈ [1, height]
9 Calculate Srep,xy(t) from Srep(t) and P (x, y);
10 Calculate the index i(t) of p tablexy

from Srep(t) and Srep,xy(t);
11 Set krep,xy(t) = |Srep,xy(t)|;
12 Set wxy(t) = krep,xy(t)

kxy(t) ;
13 Set SCORExy(t) = p tablexy(i(t)) × wxy(t);
14 End
15 /* select sensors for querying */
16 Calculate Sq(t) from SCORExy(t) and kmax,

x ∈ [1, width], y ∈ [1, height];
17 /* next time instant */
18 Set t = t + 1;
19 End

Fig. 13. Pseudocode of the localization algorithm.

V. SIMULATION RESULTS

In this section, we first present simulation results obtained
using the VFA algorithm. Then the simulation results of the
probabilistic localization algorithm are presented using the
sensor location data from the VFA algorithm as inputs. The
deployment requirements include the maximum improvement
of coverage over random deployment, the coverage for prefer-
ential areas and the avoidance of obstacles. For all simulation
results presented in this section, distances are measured in

units of grid points. A total of 20 sensors are placed in the
sensor field in the random placement stage. Each sensor has a
detection radius as 5 units (r = 5), and range detection error
as 3 units (re = 3) for the probabilistic detection model. The
sensor field is 50 by 50 in dimension. The simulation is done
on a Pentium III 1.0GHz PC using MATLAB.

A. Case Study 1: Binary Sensor Detection Model

Figures 14-16 present simulation results based on the binary
sensor detection model. The initial locations of the sensors are
shown in Fig. 14. Fig. 15 shows the final sensor positions
determined by the VFA algorithm. For the binary sensor
detection model, an upper bound on the coverage is given
by the ratio of the sum of the circle areas (corresponding
to sensors) to the total area of the sensor field. For our
example, this upper bound evaluates to 0.628 and it is achieved
after 28 iterations of the VFA algorithm. Fig. 16 shows the
improvement in coverage during the execution of the VFA
algorithm.
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Fig. 14. Initial sensor positions after random placement (binary sensor
detection model).

B. Case Study 2: Probabilistic Sensor Detection Model

Figures 17-19 present simulation results for the probabilistic
sensor model. The probabilistic sensor detection model param-
eters are set as λ = 0.5, β = 0.5, and cth = 0.7. The initial
sensor placements are shown in Fig. 17. Fig. 18 shows the
final sensor positions determined by the VFA algorithm. Fig.
19 shows the virtual movement traces of all sensors during
the execution of the VFA algorithm. We can see overlap areas
are used to increase the number of grid points whose coverage
exceeds the required threshold cth.

C. Case Study 3: Sensor Field with a Preferential Area and
an Obstacle

As discussed in Section III, VFA is also applicable with sen-
sor field containing obstacles and preferential areas. Obstacles
should be avoided, therefore they are modeled as repulsive
force sources in the VFA algorithm. Preferential areas should
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Fig. 15. Sensor positions after the execution of the VFA algorithm (binary
sensor detection model).
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Fig. 16. Sensor field coverage improvement by the VFA algorithm (binary
sensor detection model).
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Fig. 17. Initial sensor positions after random placement (probabilistic sensor
detection model).

be covered first, therefore they are modeled as attractive force
sources in the VFA algorithm. Fig. 20-22 present simulation
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Fig. 18. Sensor positions after the execution of the VFA algorithm
(probabilistic sensor detection model).
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Fig. 19. A trace of virtual moves made by the sensors (probabilistic sensor
detection model).

results for a 50 by 50 sensor field that contains an obstacle and
a preferential area. The initial sensor placements are shown in
Fig. 20. Fig. 21 shows the final sensor positions determined
by the VFA algorithm. Fig. 22 shows the improvement of
coverage during the execution of the VFA algorithm.

D. Case Study 4: Probability-based Target Localization

We evaluate the localization algorithm using the results
produced by the VFA algorithm in the sensor deployment
stage. At this stage, sensors are already moved to proper
locations by the VFA algorithm. Fig. 23 shows the sensor
locations. There are total of 20 sensors deployed on a 50 by
50 sensor field grid, r = 5 grid units, re = 3 grid units,
cth = 0.7, α = 0.5, and β = 0.5. To simulate the target
movement, we consider a target movement trace in the sensor
grid as shown in Fig. 23. tstart is the time instant that target
starts to move from its initial location marked as “Start” in
Fig. 23.

Table III shows the results of the localization algorithm. We
assume that a maximum of two sensors can be selected for
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Fig. 20. Initial sensor positions after random placement with obstacles and
preferred areas.
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Fig. 21. Sensor positions after the execution of the VFA algorithm with
obstacles and preferred areas.

querying by the cluster head. The target is assumed to move
only 1 grid unit in one unit of time. There are total of 82 such
moves in the simulated target movement trace. Due to limited
space, we only present the results for moves numbered 1-4,
41-44 and 79-82. The set Srep(t) indicates sensors that have
reported the detection at time instant t. The set Sq(t) includes
sensors that are selected for querying by the cluster head at
time t. The parameter ∆E(t) shows the energy saved by the
localization algorithm for the detection event at time instant t
in units of the constant C, defined in Section IV; see Equation
(24).

E. Discussion

From the simulation results, we see that the VFA algorithm
improves the sensor field coverage considerably compared
to random sensor placement, and it does not require much
computation time. For Case Study 1, the VFA algorithm took
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Fig. 22. Sensor field coverage achieved using the VFA algorithm with
obstacles and preferred areas.
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Fig. 23. Sensor field with sensors deployed by the VFA algorithm and target
movement trace.

only 25 seconds for 30 iterations. For Case Study 2, the
VFA algorithm took only 3 minutes to complete 50 iterations.
Finally for Case Study in Section 3, the VFA algorithm
took only 48 seconds to complete 50 iterations. Note that
these computation time include the time needed for displaying
the simulation results on the screen. CPU time is important
because sensors must be redeployed in real-time in the field.
The efficiency of the VFA algorithm depends on the values of
the force parameters wA and wR. We found that the algorithm
converged more rapidly for our case studies if wR � wA.
This need not always be true, so we are examining ways to
choose appropriate values for wR and wA base on the initial
configuration.

The virtual force in the VFA algorithm is calculated with
a grid point being the location indicator and the distance
between two grid points being a measure of distance. Fur-
thermore, in our simulations, the preferential areas and the
obstacles are both modeled as proper rectangles. The VFA
algorithm however is also applicable for alternative location
indicators, distance measures, and models of preferential ar-
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TABLE III

SENSORS SELECTED FOR QUERYING BY THE CLUSTER HEAD.

t Srep(t) Sq(t) ∆E(t)
01 s2, s6, s15 s2, s15 C
02 s2, s6, s12, s15, s16 s2, s12 3C
03 s2, s6, s12, s15, s16 s2, s12 3C
04 s2, s6, s12, s15, s16 s2, s12 3C
... ... ... ...
41 s3, s8, s9, s13 s9, s3 2C
42 s3, s7, s8, s9, s11, s13 s9, s3 4C
43 s3, s7, s8, s9, s11, s13, s20 s9, s3 5C
44 s3, s7, s8, s9, s11, s13, s20 s9, s3 5C
... ... ... ...
79 s4, s7, s10, s11, s14, s18, s19 s7, s11 5C
80 s4, s7, s10, s11, s14, s18, s19 s7, s11 5C
81 s4, s11, s14, s18, s19 s11, s18 3C
82 s4, s14, s18, s19 s18, s14 2C

eas and obstacles. Hence the VFA algorithm can be easily
extended to heterogeneous sensors, where sensors may differ
from each other in their detection modalities and parameters.

VI. CONCLUSION

In this paper, we have proposed the virtual force algorithm
(VFA) as a practical approach for sensor deployment. The
VFA algorithm uses a force-directed approach to improve
the coverage provided by an initial random placement. The
VFA algorithm offers a number of important advantages.
These include negligible computation time and a one-time
repositioning of the sensors. Moreover, the desired sensor
field coverage and model parameters can be provided as
inputs to the VFA algorithm, thereby ensuring flexibility. We
have shown how a probabilistic localization algorithm can be
used in combination with force-directed sensor placement. We
have also shown that the proposed probabilistic localization
algorithm can significantly reduce the energy consumption for
target detection and location.

Our future work will be focused on overcoming the current
limitations of the VFA algorithm. The VFA algorithm can
be made more efficient if it is provided with the theoreti-
cal bounds on the number of sensors needed to achieve a
given coverage threshold. Also, there is no route plan for
repositioning the sensors in the VFA algorithm, where sensor
collision can happen during the repositioning. Since the current
target localization algorithm considers only one target in the
sensor field, it is necessary to extend the proposed approach to
facilitate the localization of multiple objects. Another exten-
sion lies in distributed localization and querying. Extensions
to non-mobile sensor nodes, and situations of sensor node
failures will also be considered in future work. Finally, we will
examine continuous coordination systems instead of discrete
coordination systems in this work.
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