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The effectiveness of cluster-based distributed sensor networks depends to a large extent on the cov-
erage provided by the sensor deployment. We propose a virtual force algorithm (VFA) as a sensor
deployment strategy to enhance the coverage after an initial random placement of sensors. For a
given number of sensors, the VFA algorithm attempts to maximize the sensor field coverage. A ju-
dicious combination of attractive and repulsive forces is used to determine the new sensor locations
that improve the coverage. Once the effective sensor positions are identified, a one-time movement
with energy consideration incorporated is carried out, that is, the sensors are redeployed, to these
positions. We also propose a novel probabilistic target localization algorithm that is executed by
the cluster head. The localization results are used by the cluster head to query only a few sensors
(out of those that report the presence of a target) for more detailed information. Simulation results
are presented to demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Distributed sensor networks (DSNs) are important for a number of strategic
applications such as coordinated target detection, surveillance, and localiza-
tion. The effectiveness of DSNs is determined to a large extent by the coverage
provided by the sensor deployment. The positioning of sensors affects cover-
age, communication cost, and resource management. In this paper, we focus on
sensor placement strategies that maximize the coverage for a given number of
sensors within a cluster in cluster-based DSNs.

As an initial deployment step, a random placement of sensors in the target
area (sensor field) is often desirable, especially if no a priori knowledge of the ter-
rain is available. Random deployment is also practical in military applications,
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where DSNs are initially established by dropping or throwing sensors into the
sensor field. However, random deployment does not always lead to effective
coverage, especially if the sensors are overly clustered and there is a small
concentration of sensors in certain parts of the sensor field. The key idea of
this paper is that the coverage provided by a random deployment can be im-
proved using a force-directed algorithm. We present the virtual force algorithm
(VFA) as a sensor deployment strategy to enhance the coverage after an initial
random placement of sensors. The VFA algorithm is based on disk packing the-
ory [Locateli and Raber 2002] and the virtual force field concept from robotics
[Howard et al. 2002]. For a given number of sensors, VFA attempts to maxi-
mize the sensor field coverage using a combination of attractive and repulsive
forces. During the execution of the force-directed VFA algorithm, sensors do
not physically move but a sequence of virtual motion paths is determined for
the randomly placed sensors. Once the effective sensor positions are identified,
a one-time movement is carried out to redeploy the sensors at these positions.
Energy constraints are also included in the sensor repositioning algorithm.

We also propose a novel target localization approach based on a two-step
communication protocol between the cluster head and the sensors within the
cluster. Since the energy consumption in DSNs increases significantly during
periods of activity, which may be triggered, for example, by a moving target
[Bhardwaj and Chandrakasan 2002], we propose an energy-conserving method
for target localization in cluster-based DSNs. In the first step, sensors detect-
ing a target report the event to the cluster head. The amount of information
transmitted to the cluster head is limited; in order to save power and band-
width, the sensor only reports the presence of a target, and it does not transmit
detailed information such as signal strength, confidence level in the detection,
imagery or time series data. Based on the information received from the sen-
sor and the knowledge of the sensor deployment within the cluster, the cluster
head executes a probabilistic scoring-based localization algorithm to determine
likely position of the target. The cluster head subsequently queries a subset of
sensors that are in the vicinity of these likely target positions.

The sensor field is represented by a two-dimensional grid. The dimensions
of the grid provide a measure of the sensor field. The granularity of the grid,
that is, distance between grid points can be adjusted to trade off computation
time of the VFA algorithm with the effectiveness of the coverage measure. The
detection by each sensor is modeled as a circle on the two-dimensional grid. The
center of the circle denotes the sensor, while the radius denotes the detection
range of the sensor. We first consider a binary detection model in which a target
is detected (not detected) with complete certainty by the sensor if a target is
inside (outside) its circle. The binary model facilitates the understanding of the
VFA model. We then investigate a realistic probabilistic model in which the
probability that the sensor detects a target depends on the relative position of
the target within the circle. The details of the probabilistic model are presented
in Section 1.

The organization of the paper is as follows. In Section 2, we review prior re-
search on topics related to sensor deployment in DSNs. In Section 3, we present
details of the VFA algorithm. In Section 4, we present the target localization
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algorithm that is executed by the cluster head. In Section 5, we present simu-
lation results using the proposed sensor deployment strategy for various situ-
ations. Section 6 presents conclusions and outlines directions for future work.

2. RELATED PRIOR WORK

Sensor deployment problems have been studied in a variety of contexts [Brooks
and lyengar 1997; lyengar et al. 1995; Qi et al. 2001; Varshney 1996]. In the
area of adaptive beacon placement and spatial localization, a number of tech-
niques have been proposed for both fine-grained and coarse-grained localization
[Bulusu et al. 2001; Heidemann and Bulusu 2001].

Sensor deployment and sensor planning for military applications are de-
scribed in Musman et al. [1997], where a general sensor model is used to detect
elusive targets in the battlefield. The sensor model is characterized by a win-
dow, which includes physical sensor model parameters, sensor location, terrain
characteristics, and the data collected in a certain period of time. The sensor
coverage analysis is based on a hypothesis of possible target movements and
sensor attributes. This analysis generates all possible routes of targets move-
ments. Bayesian networks are used to calculate the probability that a certain
targetis detected in a particular area during particular time intervals. However,
the proposed DSNs framework in Musman et al. [1997] requires a great deal of
a priori knowledge about possible targets. Hence, it is not applicable in scenar-
ios where there is no information about potential targets in the environment.

The deployment of sensors for coverage of the sensor field has been considered
for multi-robot exploration [Howard et al. 2002]. Each robot can be viewed as a
sensor node in such systems. An incremental deployment algorithm is used in
which sensor nodes are deployed one by one in an adaptive fashion. Each new
deployment of a sensor is based on the sensed information from sensors de-
ployed earlier. The first sensor is placed randomly. A drawback of this approach
is that it is computationally expensive. As the number of sensors increases,
each new deployment results in a relatively large amount of computation.

The problem of evaluating the coverage provided by a given placement of
sensors is discussed in Meguerdichian et al. [2001]. The major concern here is
the self-localization of sensor nodes; sensor nodes are considered to be highly
mobile and they move frequently. An optimal polynomial-time algorithm that
uses graph theory and computational geometry constructs is used to determine
the best-case and the worst-case coverage.

Radar and sonar coverage also present several related challenges [Priyantha
et al. 2000]. Radar and sonar netting optimization are of great importance for
detection and tracking in a surveillance area. Based on the measured radar
cross-sections and the coverage diagrams for the different radars, the authors
in Priyantha et al. [2000] propose a method for optimally locating the radars to
achieve satisfactory surveillance with limited radar resources.

Sensor placement on two- and three-dimensional grids has been formu-
lated as a combinatorial optimization problem, and solved using integer lin-
ear programming in Chakrabarty et al. [2001, 2002]. This approach suffers
from two main drawbacks. First, computational complexity makes the approach

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.



64 . Y. Zou and K. Chakrabarty

infeasible for large problem instances. Second, the grid coverage approach re-
lies on “perfect” sensor detection, that is, a sensor is expected to yield a binary
yes/no detection outcome in every case. However, because of the inherent un-
certainty associated with sensor readings, sensor detection must be modeled
probabilistically [Dhillon et al. 2002].

It is well known, however, that there is inherent uncertainty associated with
sensor readings; hence, sensor detections must be modeled probabilistically
[Dhillon et al. 2002]. A probabilistic optimization framework for minimizing
the number of sensors for a two-dimensional grid has been proposed recently
[Dhillon et al. 2002]. This algorithm attempts to maximize the average coverage
of the grid points. Finally, there exists a close resemblance between the sensor
placement problem and the art gallery problem (AGP) addressed by the art
gallery theorem [O’'Rourke 1987]. The AGP problem can be informally stated
as that of determining the minimum number of guards required to cover the
interior of an art gallery. (The interior of the art gallery is represented by a
polygon.) The AGP has been solved optimally in two dimension and shown to
be NP-hard in the three-dimensional case. Several variants of AGP have been
studied in the literature, including mobile guards, exterior visibility, and poly-
gons with holes. Other related work includes the placement of a given number
of sensors to reduce communication cost [Kasetkasem and Varshney 2001] and
optimal sensor placement for a given target distribution [Penny 1998].

Our proposed algorithm differs from prior methods in several ways. First,
we consider both the binary sensor detection model and probabilistic detection
model to handle sensors with both high and low detection accuracy. Second,
the amount of computation is limited since we perform a one-time computation
and sensor locations are determined at the same time for all the sensor nodes.
Third, our approach improves upon an initial random placement, which offers
a practical sensor deployment solution. Finally, we investigate the relationship
between sensor placement within a cluster and target localization by the cluster
head in an effort to conserve energy whenever there are activities in the DSN.

3. VIRTUAL FORCE ALGORITHM

In this section, we describe the underlying assumptions and the virtual force
algorithm (VFA).

3.1 Preliminaries

For a cluster-based sensor network architecture, we make the following as-
sumptions:

—After the initial random deployment, all sensor nodes are able to commu-
nicate with the cluster head. This communication is necessary only for the
transmission of the new locations to the nodes. This is done only once per
node and does not require large amount of data to be transferred; therefore,
the energy consumed for this purpose is ignored.

—The cluster head is responsible for executing the VFA algorithm and manag-
ing the one-time movement of sensors to the desired locations
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—In order to minimize the network traffic and conserve energy, sensors only
send a yes/no notification message to the cluster head when a target is de-
tected. The cluster head intelligently queries a subset of sensors to gather
more detailed target information.

The VFA algorithm combines the ideas of potential field [Howard et al. 2002]
and disk packing [Locateli and Raber 2002]. In the sensor field, each sensor
behaves as a “source of force” for all other sensors. This force can be either
positive (attractive) or negative (repulsive). If two sensors are placed too close
to each other, the “closeness” being measured by a predetermined threshold,
they exert negative forces on each other. This ensures that the sensors are not
overly clustered, leading to poor coverage in other parts of the sensor field. On
the other hand, if a pair of sensors is too far apart from each (once again a
predetermined threshold is used here), they exert positive forces on each other.
This ensures that a globally uniform sensor placement is achieved.

Consider an n by m sensor field grid and assume that there are k sen-
sors deployed in the random deployment stage. Each sensor has a detection
range r. Assume sensor s; is deployed at point (X, yj). For any point P at
(x, y), we denote the Euclidean distance between s; and P as d(s;, P), that is,
d(si, P) = /(xi — X)2 + (yi — y)2. Equation (1) shows the binary sensor model
[Chakrabarty et al. 2001, 2002] that expresses the coverage cyy(s;) of a grid

point P by sensor s;.
6 (S) = 1, ifd(s, P)<r )
Y10, otherwise.

The binary sensor model assumes that sensor readings have no associated
uncertainty. In reality, sensor detections are imprecise, hence the coverage
Cxy(Si) needs to be expressed in probabilistic terms. In this work, we assume
the sensor model given by Equation (2), which is motivated in part by Elfes
[1990]. Our approach can also be used with alternative sensor models that are
based on radio signal propagation models in which signal strength decays as a
power of the distance [Rappaport 1996]; the sensor placement and localization
algorithms are independent of the sensor models.

0, ifr +r, <d(si, P)
Cy(Si)=<e? ifr—ro<d(s, P)<r+re 2)
1, ifr —re > d(si, P)

where re(re < r) is a measure of the uncertainty in sensor detection, a =
d(si, P) — (r — re), and 1 and B are parameters that measure detection prob-
ability when a target is at distance greater than r, but within a distance from
the sensor. This model reflects the behavior of range sensing devices such as
infrared and ultrasound sensors. The probabilistic sensor detection model is
shown in Figure 1. Note that distances are measured in units of grid points.
Figure 1 also illustrates the translation of a distance response from a sensor to
the confidence level as a probability value about this sensor response. Differ-
ent values of the parameters « and g yield different translations reflected by
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Fig. 1. Probabilistic sensor detection model.

different detection probabilities, which can be viewed as the characteristics of
various types of physical sensors.

3.2 Virtual Forces

We now describe the virtual forces and virtual force calculation in the VFA
algorithm. In the following discussion, we use the notation introduced in the
previous subsection. Let the total force action on sensor s; be denoted by Ifi.
Note that Ifi is a vector whose orientation is determined by the vector sum of
all the forces acting on s;. Let the force exerted on s; by another sensor s; be
denoted by F;;.

In addition to the positive and negative forces due to other sensors, a sensor
si is also subjected to forces exerted by obstacles and areas of preferential
coverage in the grid. This provides us with a convenient method to model
obstacles and the need for preferential coverage. Sensor deployment must take
into account the nature of the terrain, for example, obstacles such as building
and trees in the line of sight for infrared sensors, uneven surface, elevations
for hilly terrain, and so on. In addition, based on relative measures of security
needs and tactical importance, certain areas of the grid need to be covered
with greater certainty.

The knowledge of obstacles and preferential areas implies a certain degree
of a priori knowledge of the terrain. In practice, the knowledge of obstacles and
preferential areas can be used to direct the initial random deployment of sen-
sors, which in turn can potentially increase the efficiency of the VFA algorithm.
In our virtual force model, we assume that obstacles exert repulsive (negative)
forces on a sensor. Likewise, areas of preferential coverage exert attractive (pos-
itive) forces on a sensor. If more detailed information about the obstacles and
preferential coverage areas is available, the parameters governing the magni-
tude and direction (i.e., attractive or repulsive) of these forces can be chosen
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Fig. 2. An example of virtual forces with four sensors.

appropriately. In this work, we let Fia be the total (attractive) force on s; due
to preferential coverage areas, and let Fir be the total (repulsive) force on s;
due to obstacles. The total force F; on s; can now be expressed as,

K
Z Fij + Fir + Fia. 3
j=1, j#i

We next express the force Ifi,- between s; and s; in polar coordinate notation.
Note that f = (r, ) implies a magnitude of r and orientation 6 for vector f.

(Wa(dij — din), ij)  if dij > din
Ifij = Ol if dlj = dth (4)
(Wr d—lu aij+ ),  if otherwise

where dj; is the Euclidean distance between sensor s; and sj, dyp, is the threshold
on the distance between s; and sj, «;j is the orientation (angle) of a line seg-
ment from s; to sj, and wa(wg) is a measure of the attractive (repulsive) force.
The threshold distance dy, controls how close sensors get to each other. As an
example, con5|der the four Sensors sy, Sz, Ss, and s, in Figure 2. The force Fl on
s is given by Fl = F12+ F13+ F14 If we assume that dq> > din, d13 < d¢n, and
di4 = d¢n, S2 exerts an attractive force on sp, s3 exerts a repulsive force on s;, and
s4 exerts no force on s;. This is shown in Figure 2. Note that dy, is a predeter-
mined parameter that is supplied by the user, who can choose an appropriate
value of d¢, to achieve a desired coverage level over the sensor field.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.



68 . Y. Zou and K. Chakrabarty

e AV

(a) (h)

Fig. 3. Nonoverlapped and overlapped sensor coverage areas.

If r &~ 0 and we use the binary sensor detection model given by Equation (1),
we attempt to make d;; as close to 2r as possible. This ensures that the detection
regions of two sensors do not overlap, thereby minimizing “wasted overlap”
and allowing us to cover a large grid with a small number of sensors. This is
illustrated in Figure 3(a). An obvious drawback here is that a few grid points are
not covered by any sensor. Note that an alternative strategy is to allow overlap,
as shown in Figure 3(b). While this approach ensures that all grid points are
covered, it needs more sensors for grid coverage. Therefore, we adopt the first
strategy. Note that in both cases, the coverage is effective only if the total area
kmr? that can be covered with the k sensors exceeds the area of the grid.

If re > 0, re is not negligible and the probabilistic sensor model given by
Equation (2) is used. Note that due to the uncertainty in sensor detection re-
sponses, grid points are not uniformly covered with the same probability. Some
grid points will have low coverage if they are covered only by only one sensor
and they are far from the sensor. In this case, it is necessary to overlap sensor
detection areas in order to compensate for the low-detection probability of grid
points that are far from a sensor. Consider a grid point with coordinate (x, y)
lying in the overlap region of sensors s; and s;. Let ¢,y (sj, sj) be the probability
that a target at this grid point is reported as being detected by observing the
outputs of these two sensors. We assume that sensors within a cluster operate
independently in their sensing activities. Thus

Cx,y(Sir Sj) =1 — (1 — Cx,y (Si(L — Cx,y(Sj)) (5)

where Cyy(Si) and cyy(sj) were defined in Section 3.1. Since the term (1 —
Cx,y(Si))(1 — ¢y, y(sj)) expresses the probability that neither s; nor s; covers grid
point at (X, y), the probability that the grid point (X, y) is covered is given by
Equation (5). Let ¢y, be the desired coverage threshold for all grid points. This
implies that

ngiyn{cx,y(si, Sj)} > Cth- (6)

Note that Equation (5) can also be extended to a region which is overlapped by
a set of ko, sensors, denoted as Soy, Kov = |Sovl, Sov<{S1, S2, - . -, Sk}- The coverage
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Fig. 4. Coverage versus d, of a sample point inside the overlapped area of s; and s;.

in this case is given by

Cx,y(Sov) =1 — [ (1 —cxy(s). 7

Si€Soy

As shown in Equation (4), the threshold distance dy, is used to control how close
sensors get to each other. When sensor detection areas overlap, the closer the
sensors are to each other, the higher is the coverage probability for grid points
in the overlapped areas. Note, however, that there is no increase in the point
coverage once one of the sensors gets close enough to provide detection with
a probability of one. Therefore, we need to determine dy, that maximizes the
number of grid points in the overlapped area that satisfies cyy(sj) > Cin. Let us
consider the three sensors s;, sp, and sz in Figure 3(a), where no overlap exists.
Assume the three sensors are on a 31 by 31 grid, r = 5 and r, = 3 in units
of grid points. Figures 4-6 show how the coverage is affected by dy, and cy,
when the threshold distance dy, is changed from r +r, to r — r.. The coverage
for the entire grid is calculated as the fraction of grid points that exceeds the
threshold cy,. We can use these graphs to appropriately choose dy, according to
the required cyh.

3.3 Energy Constraint on the VFA Algorithm

In order to prolong the battery life, the distances between the initial and final
position of the sensors are limited in the repositioning phase to conserve energy.
We use dmax(Si) to denote the maximum distance that sensor s; can move in the
repositioning phase. To simplify the discussion without loss of generality, we
assume dmax(Si) = dmax(Sj) = dmax, i, j = 1,2,..., k. During the execution of
the VFA algorithm, for each sensor, whenever the distance from the current
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virtual position to the initial position reaches the distance limit dax, any vir-
tual forces on this sensor are disabled. For sensor s;, let (X, ¥)rang b€ the initial
location obtained from the random deployment, and (X, ¥)virtwal b€ the location
generated by the VFA algorithm. The energy constraint can be described as:

IE'_ . O, if d((X, y)randr (X, Y)virtual) > dmax (8)
"7 1 F;, otherwise (i.e., the force is unchanged).
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VFA Data Structures: Grid, {s1, s2, ..., Sk}

/* np is the number of preferential area blocks (attractive forces) and ng is the number
of obstacle blocks (repulsive forces). Sxy, kxy and p_tablexy are used for localization.
(X, Y)vEa is the final position found by the VFA algorithm. dmay is the energy constraint
on the sensor repositioning phase in the VFA algorithm. */
1 Grid structure:
2 Properties: width, height, k, c,, d¢n, c(loops), ¢, Ac;
3 Preferential areas: P Aj(x, y,wx,wy),i=1,2,...,np;
4  Obstacles areas: O Aj(x, y,wx,wy),i=1,2,...,np;
5  Grid points, Pxy: cxy({s1, S, -, sk}), Sxy, Kxy, p-tablexy;
6 Sensor s;j structure:
(X, Y)rand: X, Yvirtuals (%, YIvEa, 1,1, Fe, @, B, dmax;

Fig. 7. Data structures used in the VFA algorithm.

Therefore, the virtual force F; given by Equation (3) on sensor s; is ignored
whenever the move violates the energy constraint expressed by dmax. Note
that due to the energy constraint on the one-time repositioning given by Equa-
tion (8), it might be necessary to trade off the coverage with the energy
consumed in repositioning if dnax is Not large enough.

Note that the VFA algorithm is designed to be executed on the cluster head,
which is expected to have more computational capabilities than sensor nodes.
The cluster head uses the VFA algorithm to find appropriate sensor node loca-
tions based on the coverage requirements. The new locations are then sent to
the sensor nodes, which perform a one-time movement to the designated posi-
tions. No movements are performed during the execution of the VFA algorithm.

3.4 Procedural Description of the VFA Algorithm

Figure 7 shows the data structure of the VFA algorithm, and Figure 8 shows
the implementation details in pseudocode form. For an n by m grid with a total
of k sensors deployed, the computational complexity of the VFA algorithm is
O(nmk). Due to the granularity of the grid and the fact that the actual coverage
is evaluated by the number of grid points that have been adequately covered, the
convergence of the VFA algorithm is controlled by a threshold value, denoted
by Ac. Let us use c(loops) to denote the current grid coverage of the number
loops iteration in the VFA algorithm. For the binary sensor detection model
without the energy constraint, the upper bound value denoted as ¢ is krr?; for
the probabilistic sensor detection model or binary sensor detection model with
the energy constraint, c(loops) is checked for saturation by defining ¢ as the
average of the coverage ratios of the near 5 (or 10) iterations. Therefore, the
VFA algorithm continues to iterate until |c(loops) —c| < Ac. In our experiments,
Ac is set to 0.001.

Note that there exists the possibility of certain pathological scenarios in
which the VFA algorithm is rendered ineffective, for example, if the sensors are
initially placed along the circumference of a circle such that all virtual forces
are balanced. Since these specific scenarios are extremely unlikely for random
deployment, they are not considered in this paper. We will extend the VFA
algorithm to handle such boundary cases in future work.
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Procedure Virtual _Force_Algorithm (Grid, {s1, s2, ..., sx})

1 Set loops = 0;
2 Set MaxLoops = MAX_LOOPS;
3 While (loops < MaxLoops)

4 /* coverage evaluation */

5 For P(x, y) in Grid, x € [1, width], y € [1, height]

6 For si € {s1,S2, ..., Sk}

7 Calculate cxy(si, P) from the sensor model using (d(si, P), Ctn, din, o, B);
8 End

9 End

10 If coverage requirements are met: |c(loops) — €| < Ac
11 Break from While loop;

12 End

13  /*virtual forces among sensors */

14 For s; € {S1,%,...,5/}

15 Calculate Ifij using d(sj, Sj), dip, Wa, WR;

16 Calculate Fip using d(si, PAy, ..., PAn,), dip;
17 Calculate Fig using d(si, OAy, ..., OAng), dip;
18 Fi=) Fij+Fir+Fia i €Lkl j#i;

19 End

20 /*move sensors virtually */

21 Forsi €{sy,Sp,...,Sk}

22 /* energy constraint on the sensor movement */

23 If d((xq, Y)rand: (X; ¥)virtual) = dmax

24 Set Fi =0;

25 End

26 Fi virtually moves s; to its next position;

27 End

28 Set loops = loops + 1; /* continue to next iteration */
29 End

Fig. 8. Pseudocode of the VFA algorithm.

4. TARGET LOCALIZATION

In our two-step communication protocol, when a sensor detects a target, it
sends an event notification to the cluster head. In order to conserve power
and bandwidth, the message from the sensor to the cluster head is kept very
small; in fact, the presence or absence of a target can be encoded in just one
bit. Detailed information such as detection strength level, imagery, and time
series data are stored in the local memory and provided to the cluster head upon
subsequent queries. Based on the information received from the sensors within
the cluster, the cluster head executes a probabilistic localization algorithm to
determine candidate target locations, and it then queries the sensor(s) in the
vicinity of the target.

4.1 Detection Probability Table

After the VFA algorithm is used to determine the final sensor locations, the
cluster head generates a detection probability table for each grid point. The
detection probability table contains entries for all possible detection reports
from those sensors that can detect a target at this grid point. Let us assume that
agrid point P(x, y) is covered by a set of kyy, sensors, denoted as Sy, |Syy| = Kyy,
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Table I. Example Probability Table

‘ i H did,ds ‘ p_tablexy(i), 0<i <2, kyy =3
0 000 (1—0.5736) x (1 — 1) x (1 —0.5736) = 0.0
1 001 (1 —0.5736) x (1 — 1) x 0.5736 = 0.0
2 010 (1—0.5736) x 1 x (1 — 0.5736) = 0.1819
3 011 (1 —0.5736) x 1 x 0.5736 = 0.2446
4 100 0.5736 x (1 —1) x (1 — 0.5736) = 0.0
5 101 (1-0.5736) x (1 —1) x 0.5736 = 0.0
6 110 0.5736 x 1 x (1 — 0.5736) = 0.2446
7 111 0.5736 x 1 x 0.5736 = 0.3290

0 <kyy <k,and Syy C {s1, S, ..., s¢}. The probability table is built on the power

set of S,y since there are 2% possibilities for ky, sensors in reporting an event.
These 2% cases include the event that none of the sensors detect anything
(represented by the binary string as “00...0”) as well as the event that all of
the sensors (represented by the binary string as “11...1"). Thus the probability
table for grid point (x, y) then contains 2 entries, defined as,

p-tabley() = [] polsi, i) ©

SjESxy

where 0 < i < 2%, and Pxy(Sj. 1) = Cyx, y(Sj) if sj detects a target at grid point
P(x, y); otherwise py(sj,i) = 1 — cx y(sj). Table I gives an example of the
probability tables on a 5 by 5 grid with three sensors deployed.

Consider the grid point (2, 4) in Figure 9 which is covered by all three sen-
sors sp, S, and sz with probabilities as 0.57, 1 and 0.57, respectively. For the
three sensors s;, Sp, and sz, there are a total of eight possibilities for their
combined event detection at grid point (2, 4). For example, the binary string
110 denotes the possibility that s; and s, report a target but s; does not re-
port a target. For each such possibility d;d.ds; (d1, d,,ds € {0, 1}) for a grid
point, we calculate the conditional probabilities that the cluster head receives
d;d,ds given that a target is present at that grid point. For our example,
these conditional probabilities are listed in Table I. Consider the binary string
110, the conditional probability associated with this possibility is given by
p_tablez4(6) = p24(S1, 6) P24(S2, 6) P24(S3, 6) = 0.57 x 1 x (1 — 0.57) = 0.24. Note
that the probability table generation is only a one-time cost. Once the proba-
bility table is generated, there is no need to refresh it unless sensor locations
are changed.

4.2 Score-Based Ranking

After the probability table is generated for all the grid points, localization is
done by the cluster head if a target is detected by one or more sensors. We use
an inference method based on the established probability table. When at time
instant t, the cluster head receives positive event message from Kk(t) sensors,
it uses the grid point probability table to determine which of these sensors
are most suitable to be queried for more detailed information. Detailed target
reporting consumes more energy consumption and it needs more bandwidth.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.



74 . Y. Zou and K. Chakrabarty

7
¢} : Grid point
® : Sensor Deployed
Line 1 : 1/2 Sensors that covers this point
8 Line 2:0.51/0.72: Coverage probability of the sensors
2/ 112/ 112131 1 1
5k O 1.00/ Q 0.51/0.72/ O 0.57/0.57/0.49/ O 061/ O 057/
% SZ 273t 172131 112131 11213/ 173/
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2134 113/ 173/ 113/ 1137
1 O 0.49/0.57/ O 0.51/0.72/ O 0.57/1.00/ O 0.61/0.72/ O 0.57/0.57/
0 1 1 1 1 1 ]
0 1 2 3 4 5 6

X-coordinate

Fig. 9. Example of grid point probability table.

Therefore, the cluster head cannot afford to query all the sensors for detailed
reports. There is also an inherent redundancy in sensor detection information
so it is not necessary to query all sensors. Our scoring approach is able to select
the most suitable sensors for this purpose.

Consider the 10 by 10 grid shown in Figure 10. There are five sensors de-
ployed, k =5,r = 2, and r, = 1. The zigzag-shaped line is the target movement
trace. The target starts to move at t = ts ¢ from the grid point marked as
“Start” and finishes at t = t,nq at the grid point marked as “End.” Figure 11
gives the score report at the time instant ty, When the target is present at
“Start.”

Assume Sy (t) is the set of sensors that have reported the detection of an
object at time t, Srepxy(t) is the set of sensors that can detect a target at point
P(x, y) and have also reported the detection of an object at time t. Obviously,
Srepxy(t) € Srep(t) @and Srepxy(t) S Syy SINCE Srepxy(t) = Srep(t) N Syy. The score of
the grid point P(x, y) at time instant t is calculated as follows:

SCORE,y(t) = p_table,y(i(t)) x Wyy(t) (10)

where i(t) is the index of the p_table,, at time t. The parameter i(t) is calculated
from S,y and Sy, xy. The parameter p_table,y(i(t)) corresponds to the conditional
probability that the cluster head receives this event information given that
there was a target at P(x, y). The weight wyy(t) reflects the confidence level in
this reporting event for this particular grid point. In our previous work [Zou
and Chakrabarty 2003], we have used the weight factor wyy(t) = k[fi:(yt()t); this is
sufficient for selecting sensors in order to conserve energy. However, in order to
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Fig. 11. Scoring results for target in the example sensor field at tstart. S; @and s, have reported.
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Table 11. Scoring Calculation Example for t at tstart

(%, y) Sxy Srepxy(t) | Wxy(t) | p-tablexy(i(t)) | SCORExy(t)
(1, 6) S1 S1 0.25 0.7248 0.0453
(2, 6) S1, S2 S1, S2 1.00 0.5736 0.5736
3,6) 51, S 51, S, 1.00 0.5254 0.5254
@ 6) S5 S S5 S 1.00 05736 05736
. 6) S = 0.25 0.3562 0.0890
6,6) || s2, S3, S 5 025 0.1240 0.0077

refine the grid point scores to narrow down grid points that are most probably
close to the current target location, we have redefined w,y(t) here to improve
the accuracy for target location. The weight for the grid point P(x, y) at time
instant t is defined as,

0 if Srep,xy(t) = {¢}
Wy (1) = {4Akrep,w(t) otherwise

where Akyepxy(t) measures the degree of difference in the set of sensors that
reported and those sensors that can detect point P(x, y) at time instant t. The
parameter AKrepxy(t) is defined as

Akrep, xy(t) = |krep(t) - krep,xy(t)| + |krep(t) - kxy| (12)

where Kyy = |Syyl, Krep(t) = |Srep(t)], and Kyep, xy(t) = |Srepxy(t)|. The parameter
Wyy is therefore a decaying factor that is 1 only if Syep(t) = Syy. The number 4
in the formula for w,y(t) was chosen empirically after it was found to provide
accurate simulation results. We are using wyy(t) to filter out grid points that
are not likely to be close to the actual target location. The score is based on both
the probability value from the probability table and the current relationship
between Syep(t), Srepxt(t) and Syy. Table 11 gives some score calculation examples
for the grid points in Figure 11 at the time instant tgt.

(11)

4.3 Selection of Sensors to Query

Assume that the maximum number of sensors that are allowed to report an
event is Kmax, and the set of the sensors selected by the cluster head for query-
ing at time t is Sq(t), Sq(t) S Srep(t) C {s1,S2,...,«}. To select the sensor to
query based on the event reports and the localization procedure, we first note
that for time instantt, if Kmax > Krep(t), then all reported sensors can be queried.
Otherwise, we select sensors based on a score-based ranking. The sensors se-
lected correspond to the ones that have the shortest distance to those grid points

with the highest scores. This selection rule is defined as
Sq(t) : d(Sq(t), Pms) = min{d(si, Pus)} (13)

where sieSyep(t), and Pys denotes the set of grid points with the highest scores.
Note it is possible that there are multiple grid points that have the maximum
score. When this happens, we calculate the score concentration by averaging
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Table I11. Selected Sensors for the Example in Figure 10
t | Srep(t) | Sq(t) | Sq(t) || t | Srep(t) | Sq(t) | Sq(t)
3 S1,S S1 Sp 4 S S S
5 $2, S3 S3 S2 6 $,S3 S3 S2
7 S2,S3 S3 S3 8 S3 S3 S3
16 S4, S5 S4 S4 17 S4, S5 Sy4 S5
18 S, S3, S5 Sp Sp 19 S, S5 S5 Sy
20 | s1,5,S5 Sp Sp 21 S S Sg

the scores of the current grid point and its eight neighboring grid points. The
grid point with the highest score (or the score concentration) is the most likely
current target location. Therefore, selecting sensors that are closest to this point
guarantee that the selected sensors can provide the most detailed and accurate
data in response to the subsequent queries. Note target identification is not pos-
sible as at this stage since the cluster head has no additional information other
than Syp(t). However, the selected sensors provide enough information in the
subsequent stage to facilitate target identification. We evaluate the accuracy of
this target localization procedure by calculating the distance between the grid
point with the highest score and the actual target location. For the example of
Figure 10, Table 111 gives some results for the selected sensor when the target
is moving from “Start” (t = 1) to “End.” We assume kmax = 1, and the target
is moving at a constant speed. Sq(t) is the set of sensors that are closest to the
actual location of the target at time t. The results show that Sy(t) matches Sq(t)
in many cases. The example does not illustrate the advantages of our proposed
strategy since not many sensors are actually involved at the same time for tar-
get detection. However, we show later in Section 5 that the proposed algorithm
performs very well when many sensors are involved in the target detection and
reporting process.

4.4 Evaluation of Energy Savings

We next evaluate the energy saved by the proposed probabilistic localization
approach. Suppose the sensor node has three basic energy consumption types—
sensing, transmitting, and receiving, and these power values (energy per unit
time) are Es, E¢, and E,, respectively. If we select all sensors that reported the
target for querying, the total energy consumed for the event happening at time
instant t can be evaluated using the following set of equations:

E1(t) = Krep(t)(Et + Er)Ta (14)
Ez(t) = (krep(t)Er + Et)TZ (15)
Es(t) = Krep(t)(Et + Er) T3 (16)
Ea(t) = EsTs 7
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E(t) = Ei(t) + E2(t) + Es(t) + Ea(t) (18)
tend
E= ) E@ (19)

t=tstart

where E; is the energy required for reporting the detection of an object, E; is
the energy required for transmitting query information from the cluster head
by broadcasting and for receiving this information at the sensor nodes, and E3 is
the energy required by sensor nodes being queried to send detailed information
to the cluster head. The parameters Ti, T,, and Tz denote the lengths of time
involved in the transmission and reception, which are directly proportional to
the sizes of data for yes/no messages, control messages to query sensors, and
the detailed sensor data transmitted to the cluster head. The parameter Ts
is the time of sensing activity of sensors. The parameters E denotes the total
energy in this case for target localization from tg t0 teng. For the proposed
probabilistic localization approach, we calculate the total energy consumption
E* as follows:

Ef(t) = krep(t)(Et + Er)Tl (20)

Ex(t) = (kg(DEr + E)T2 (21)

E3(t) = Kq()(E¢ + EN)Ts (22)

Ei(t) = EsTs (23)

E*(t) = EI(t) + Ex(t) + E3(t) + E4(1) (24)
Tend

E*= Y E*@1) (25)

t=tstart

where E1(t)* = E1(t), E}(t) = E4(t), and the total energy consumed is denoted
by E*. Therefore, the energy savings via the use of the probabilistic target
localization algorithm is

tend
AE=E-E*=C > (Krep(t) — kq(1)) (26)
t=tstart
where C = E, T, + (Et + E)Ts is a constant. Since Kq(t) is always less than
or equal to Keep(t), we have AE > 0. Also, AE is monotonically nondecreasing
with time. Figure 12 shows the energy saved for the target trace in Figure 10.

4.5 Procedural Description for Target Localization

Figure 13 shows the pseudocode of the procedure to generate the probability
table for each grid point. Figure 14 shows the pseudocode for the simulation
of the probabilistic localization algorithm. For an n by m grid with k sensors,
the computational complexity involved in generating the probability table is
O(nm2X) since the maximum number of sensors that can detect a grid point is
k for the worst case. The computational complexity of the localization procedure
is O(NMKmax), Kmax < k. Therefore, the computational complexity of the proba-
bilistic localization algorithm is max{O(NMKmax), O(NM2X)} = O(nm2X). Even
though the worst-case complexity of the localization procedure is exponential
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Fig. 12. Energy saved for the example in Figure 10.

Procedure Generate_Probability_Table (P(x, y), {s1, s2, ..., sk})
1 /* find Sxy, the set of sensors that can detect P(x, y) */

2 Fors; € {s1,S2,...,5Sk}

3 Ifd(si, P(X, y) <r+re

4 Sxy = Sxy U {si};

5 End

6 End

7 I* fill up the probability table */
8 Fori,0 < i < kxy, kxy = |Sxy|,
9 Ifs; detects P(x, y)

10 Set pxy(Sj, i) = Cx,y(Sj);

11 Else

12 Set pxy(Sj, i) =1 — Cx,y(Sj);

13 End

14 Set p_tablexy(i) = Hs,-esxy Pxy(sj, i);
15 End

Fig. 13. Pseudocodes for generating the probability table.

in k, in practice, the localization procedure can execute in less time since the
number of sensors that can effectively detect a target at a given grid point is
quite small.

5. SIMULATION RESULTS

In this section, we first present simulation results obtained using the VFA
algorithm. The simulation results for the probabilistic localization algorithm
are then presented using the sensor locations from the VFA algorithm as inputs.
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Procedure Localization (Grid, {s1, sa, ..., sk}, TargetTrace)

I* Kmax is the maximum number of sensors that are allowed for querying, prep is the threshold
level for a sensor to report to the cluster head of an event. TargetTrace starts from tstart and ends
at tyg, with time unit as 1. */

1 Sett = tstart;

2 While (t < tgng)

/* current target location */

4 Set Target = TargetTrace(t);

5 /* calculate the scores */

6 Calculate Srep(t) from {s1, sp, ..., sk}, Target(t), prep;

7

8

9

w

Set Krep(t) = |Srep(t)l;
For P(x, y) in Grid, x € [1,width], y € [1, height]

Set kxy = |Sxyl;
10 Calculate Syep, xy(t) from Srep(t) and P(x, y);
11 Calculate the index i(t) of p_tablexy from Srep(t) and Srep, xy(t);
12 Set Krep, xy(t) = |Srep, xy()I;
13 If Srepxy(t)=({4}
15 Else
16 Set Akrep,xy(t) = [Krep(t) — Krep,xy(t)] + [Krep(t) — Kxyl;
17 Wyy(t) = 4-AKrepxy(®);
18 End
19 Set SCORExy(t) = p_tablexy(l(t)) X ny(t),
20 End

21  /* select sensors for querying */

22 Calculate Sq(t) from SCORExy(t) and kmax, x € [1, width], y € [1, height];
23 /* next time instant */

24 Sett=t+1;

25 End

Fig. 14. Pseudocode of the localization algorithm.

The deployment requirements include the maximum improvement of coverage
over random deployment, the coverage for preferential areas, and the avoidance
of obstacles. For all simulation results presented in this section, distances are
measured in units of grid points. A total of 20 sensors are placed in the sensor
field in the random placement stage. Each sensor has a detection radius of 5
units (r = 5), and range detection error of 3 units (r, = 3) for the probabilistic
detection model. The sensor field is 50 by 50 in dimension. The simulation is
done on a Pentium 111 1.0 GHz PC using Matlab.

5.1 Case Study 1: Binary Sensor Detection Model

Figures 15-18 present simulation results based on the binary sensor detection
model. The initial locations of the sensors are shown in Figure 15. Figure 16
shows the final sensor positions determined by the VFA algorithm. For the
binary sensor detection model, an upper bound on the coverage is given by the
ratio of the sum of the circle areas (corresponding to sensors) to the total area of
the sensor field. For our example, this upper bound evaluates to 0.628 and it is
achieved after 28 iterations of the VFA algorithm. Figure 17 shows the virtual
movement traces of all sensors during the execution of the VFA algorithm.
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Fig. 16. Sensor positions after the execution of the VFA algorithm (binary sensor detection model).

Figure 18 shows the improvement in coverage during the execution of the VFA
algorithm.

5.2 Case Study 2: Probabilistic Sensor Detection Model

Figures 19-21 present simulation results for the probabilistic sensor model.
The probabilistic sensor detection model parameters aresetas A = 0.5, 8 = 0.5,
and ¢y, = 0.7. The initial sensor placements are shown in Figure 19. Figure 20
shows the final sensor positions determined by the VFA algorithm. Figure 21
shows the virtual movement traces of all sensors during the execution of the
VFA algorithm. We can see that overlap areas are used to increase the number
of grid points whose coverage exceeds the required threshold cy,. Figure 22
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shows the improvement of coverage during the execution of the VFA algorithm.
Note that the upper bound for the coverage for the probabilistic sensor detection
model in Figure 22 (roughly 0.38) is lower than the upper bound for the case of
binary sensor detection model in Figure 18 (roughly 0.63). This due to the fact
that for the simulation results shown here, the coverage for the binary sensor
detection model is the fraction of the sensor field covered by the circles. For the
probabilistic sensor detection model, even though there are a large number of
grid points that are covered, the overall number of grid points with coverage
probability greater than the required level is fewer.
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5.3 Case Study 3: Sensor Field with a Preferential Area and an Obstacle

As discussed in Section 3, the VFA is also applicable to a sensor field containing
obstacles and preferential areas. If obstacles are to be avoided, they can be
modeled as repulsive force sources in the VFA algorithm. Preferential areas
should be covered first, therefore they are modeled as attractive force sources
in the VFA algorithm. Figure 23-26 present simulation results for a 50 by 50
sensor field that contains an obstacle and a preferential area. The initial sensor
placements are shown in Figure 23. Figure 24 shows the final sensor positions
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Fig. 22. Sensor field coverage achieved using the VFA algorithm (probabilistic sensor detection
model).

determined by the VFA algorithm. Figure 25 shows the virtual movement traces
of all sensors during the execution of the VFA algorithm. Figure 26 shows the
improvement of coverage during the execution of the VFA algorithm.

The VFA algorithm does not require much computation time. For case
study 1, the VFA algorithm took only 25 s for 30 iterations. For case study 2,
the VFA algorithm took only 3 min to complete 50 iterations. Finally for case
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study in Section 3, the VFA algorithm took only 48 s to complete 50 iterations.
Note that these computation times include the time needed for displaying the
simulation results on the screen. CPU time is important because sensor rede-
ployment should not take excessive time.

In order to examine how the VFA algorithm scales for larger problem in-
stances, we considered up to 90 sensor nodes in a cluster for a 50 by 50 grid,
withr =3, r. =2, A = 0.5, and g = 0.5 for all cases. For a given number of
sensor nodes, we run the VFA algorithm over ten sets of random deployment
results and take the average of the computation time. The results, listed in
Table 1V, show that the CPU time grows slowly with the number of sensors k.
For a total of 90 sensors, the CPU time is only 4 min on a Pentium Ill PC.
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Table IV. The Computation Time for the VFA Algorithm for Larger Problem Instances
[ k [ Binary Model (s) | Probability Model (min) [| k | Binary Model (s) | Probability Model (min) |

40 21 18 70 46 3.6
50 32 2.2 80 59 3.7
60 38 3.1 90 64 4.0
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Fig. 27. Sensor field with sensors deployed by the VFA algorithm and target movement trace.

In practice, a cluster head usually has less computational power than a
Pentium 111 PC; however, our results indicate that even if the cluster head
has less memory and an on-board processor that runs 10 times slower, the CPU
time for the VFA algorithm is reasonable.

5.4 Case Study 4: Probability-Based Target Localization

We evaluate the localization algorithm using the results produced by the VFA
algorithm in the sensor deployment stage. At this point, sensors are already
moved to proper locations by the VFA algorithm. Figure 27 shows the sensor
locations. There are total of 20 sensors deployed on a 50 by 50 sensor field
grid, r = 5 grid units, r = 3 grid units, ¢, = 0.7, » = 0.5, and 8 = 0.5.
To simulate target movement, we consider a target movement trace in the
sensor grid as shown in Figure 27. The parameter tg,rt iS the time instant
that the target starts to move from its initial location marked as “Start” in
Figure 27. Table V shows the results of the localization algorithm. We assume
that a maximum of two sensors can be selected for querying by the cluster head.
The target is assumed to move only 1 grid unit in one unit of time. There are
total of 82 such moves in the simulated target movement trace. In the interest
of conciseness, we only present the results for moves numbered 1-5, 41-45,
and 78-82. The set Srp(t) indicates sensors that have reported the detection
at time instant t. The set Sy(t) includes sensors that are selected for querying
by the cluster head at time t. The parameter A E(t) shows the energy saved by
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Table V. Sensors Selected for Querying by the Cluster Head
t Srep(t) Sq(t) | Sq(t) Pms Target | AE(t)
01 S2, S6, S15 S, 515 | S2.815 | (21,15) | (20, 15) C
02 S2, S6, S12, S15, S16 S2,812 | S2.815 | (21,15) | (20,15) 3C
03 S2, S6, S12, S15, S16 S2, S12 Sp, S15 (21, 15) (20, 15) 3C
04 S2, S6, S12, S15, S16 S2,812 | S2.815 | (21, 15) | (20, 15) 3C
05 S2, S6. S12, S15, S16 S2,812 | S2.815 | (21,15) | (20,15) 3C
41 S3, S8, S9, S13 S8, So | S8 So | (31,34) | (31,34) 2C
42 $3, S7, S8, S9, S11, S13 Sg,S13 | S8.S0 | (28,34) | (30,34) 4C
43 S3, S7, S8, S0, 511,513,520 | S13,88 | S8, Se | (27,34) | (30, 33) 5C
44 3,57, 58, 89, 511,813,520 | S13,88 | S8, Sz | (27,34) | (30, 32) 5C
45 S3, S7, S8, S9, S11, 813,520 | S13,88 | S8, S3 | (27,34) | (30,32) 5C
78 || S4,57, 510, S11, 514, 18, S19 | S18,S7 | S18:S4 | (27,34) | (30,32) 5C
79 || s4,57, 510, S11, 514, S18, S19 | S18:S7 | S18,84 | (27,34) | (30,32) 5C
80 || S4,57,S10, S11, 514, S18,S19 | S18,S7 | Sa,S18 | (27,34) | (30,32) 5C
81 S4, S11, S14, S18: S19 4,818 | S4.S18 | (27,34) | (30,32) 3C
82 S4, S14, S18, S19 S4, S19 S4, S19 (27. 34) (30, 32) 2C
E @ '
20
BE L]
5 2
5 s
£ & \
Bz | “‘“Iq' o e
= 8
ES q i i i i i i .
w o I n - ] a7 i ]
e Tims
L}
S5 mn
E % 0}
=
5 ™
EE
h m I
58 wl
-
E
g h NiF
L % II|.l ik X L L] [~} 1] 1 1] 1]
i Tiive

the localization algorithm for the detection event at time instant t. Figure 29
shows the estimated target location based on the grid point with the highest
score. Figure 28 shows the energy saved during the target tracking process.
Energy saved is evaluated in units of the constant C, given by Equation (26)
in Section 4. The total computation time for generating the probability table is
only 11 s. The total computation time for target localization for the total of 82

Fig. 28. Energy saving for target localization.

locations is only 16 s, with an average of 0.2 s per time instant.
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Fig. 29. Target localization by the grid point with the highest score.

5.5 Discussion

From the simulation results, we see that the VFA algorithm improves the sensor
field coverage considerably compared to random sensor placement. The results
of the proposed energy-conserving target localization method also show that
considerable energy is saved in localizing a target. The efficiency of the VFA
algorithm depends on the values of the force parameters wp and wg. We found
that the algorithm converged more rapidly for our case studies if wg > wa.
This need not always be true, so we are examining ways to choose appropriate
values for wg and wa base on the initial configuration. The sensor placement
strategy is centralized at the cluster level since every cluster head makes rede-
ployment decisions for the nodes in its cluster. Nevertheless, the clusters make
deployment decisions independently, hence there is a considerable degree of
decentralization in the overall sensor deployment for the DSN.

The virtual force in the VFA algorithm is calculated with a grid point be-
ing the location indicator and the distance between two grid points being a
measure of distance. Furthermore, in our simulations, the preferential areas
and the obstacles are both modeled as rectangles. The VFA algorithm however
is also applicable for alternative location indicators, distance measures, and
models of preferential areas and obstacles. Hence, the VFA algorithm can be
easily extended to heterogeneous sensors, where sensors may differ from each
other in their detection modalities and parameters. Finally, the proposed tar-
get localization algorithm can also be used for a deterministic sensor placement
based on the precomputation of sensor locations.

6. CONCLUSION

In this paper, we have proposed the virtual force algorithm (VFA) as a practical
approach for sensor deployment. The VFA algorithm uses a force-directed ap-
proach to improve the coverage provided by an initial random placement. The
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VFA algorithm offers a number of important advantages. These include negligi-
ble computation time and a one-time repositioning of the sensors. Moreover, the
desired sensor field coverage and model parameters can be provided as inputs
to the VFA algorithm, thereby ensuring flexibility. We have shown how a prob-
abilistic localization algorithm can be used in combination with force-directed
sensor placement. We have also shown that the proposed probabilistic local-
ization algorithm can significantly reduce the energy consumption for target
detection and location.

Our future work will be focused on overcoming the current limitations of the
VFA algorithm. The VFA algorithm can be made more efficient if it is provided
with the theoretical bounds on the number of sensors needed to achieve a given
coverage threshold. Also, there is no route plan for repositioning the sensors in
the VFA algorithm, where sensor collision can happen during the repositioning.
The VFA algorithm also requires accurate location information from the sensor
nodes, it is better to consider a relaxed model with little requirements for the
knowledge of all sensor nodes locations. Since the current target localization
algorithm considers only one target in the sensor field, it is necessary to extend
the proposed approach to facilitate scenarios for multiple objects localization.
Extensions to nonmobile sensor nodes and situations of sensor node failures
will also be considered in future work. Finally, we will examine continuous
coordination systems instead of discrete coordination systems in this work.
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