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Abstract

This paper presents a method of Fault Detection, Identification
and Accommodation for inertial sensors in Unmanned Aerial
Vehicles. A nonlinear model of the aircraft’s dynamics replace
the traditional inertial navigation equations and is used in
conjunction with the Interacting Multiple Model and the
Unscented Kalman Filter for improving state estimation in
presence of inertial sensor faults. Performance comparisons
are made between filters using the inertial navigation equa-
tions and the dynamic model for the fault-free conditions.
It is shown that a matched UKF will result in adequate
state estimation regardless of the failure mode and that the
IMM-UKF algorithm is a step closer to achieving the same
performance. The IMM-UKF is shown capable of maintaining
stable state estimates in the presence of all single inertial
sensor faults.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) continue to lack the re-

liability and autonomy required for commercial viability in

their proposed applications [1]. In part this is due to the

UAVs inability to cope with sensor and actuator faults that

occur within the flight control loop [2]. Sensor faults introduce

modeling errors in the observation equations which can often

cause standard filtering methods to become unstable. This

paper investigates the application of the Interacting Multiple

Model (IMM) and Unscented Kalman Filter (UKF) algorithms

to state estimation in the presence of inertial sensor faults in

UAVS; and demonstrates the performance improvement over

other approaches.

Available literature on the IMM algorithm shows it to

be a successful method of sensor and actuator FDIA when

applied to linearized conditions of an aircraft’s dynamics [3],

[4]. However, when applied to the true nonlinear motion of

an aircraft, the IMM algorithm can yield insufficient state

estimation and fault detection performance. This is due to

the prediction errors between the nonlinear and linearised

equations and highlights the need for a nonlinear approach

such as the IMM-UKF which is presented in this paper.

An aerodynamic model enables predictions of the inertial

sensor measurements to be generated, allowing for modeling

of the inertial sensor faults as required by the multiple model

approach. In the past, aircraft dynamic models have been used

to aid navigation systems [5] and the IMM-UKF algorithm

has been used for target tracking applications [6] however, the

IMM-UKF is yet to appear in the literature with a nonlinear

aircraft dynamic model as a method for providing fault tolerant

state estimation.

The results presented in this paper were generated using a

simulation environment, simulating four different filter varia-

tions for the purpose of understanding; (a) the model-mismatch

errors caused by inertial sensor faults; (b) the performance im-

provements achieved by using an aerodynamic model instead

of the traditional inertial navigation equations and; (c) the fault

detection and state estimation performance of the IMM-UKF

algorithm. The results show that a dynamic model can be used

in place of the inertial navigation equations to improve the

standard UKF performance. It is shown that a UKF matched to

the faulty conditions can maintain state estimates with enough

accuracy for the controller to continue tracking the desired

flightpath, wheres a mismatched UKF often results in estimate

and control failures.

This paper shows that the IMM-UKF algorithm can resist

inertial sensor failures, resulting in better estimation accuracy

and a more stable controller. In the next section, the IMM-

UKF algorithm is presented in some detail. In section 3,

the simulation environment, including the formulation of the

aircraft dynamic equations are discussed. In section 4, the

results of a number of Monte Carlo simulations are presented

and finally section 5 concludes this paper.

2. IMM-UKF ALGORITHM

The Multiple Model approach assumes that the system obeys

a discrete set of r modes of operation, where each mode

is represented by a stochastic model. The true mode is un-

observed and mode detection is achieved by comparing the

behavior of the system to that of the different models. The

behavior of the system is assessed through the observation

errors resulting from a UKF matched to each mode. The

observations are mode-dependent, leading to a dual (state and

mode) estimation problem. In this application, each inertial

sensor fault represents a different system model and the goal is

to maintain an accurate state estimate in the presence of faults.

Additional information for the IMM and UKF algorithms can

be found in [9] and [10] respectively.

2007 Information, Decision and Control

1-4244-0902-0/07/$20.00  2007 IEEE 1



A. State and Output Equations

The mode uncertainty in the state equations is ignored since

this application of the IMM-UKF algorithm specifically deals

with sensor faults. The system is represented by a nonlinear

and stochastic state-space model of the form;

x(k + 1) = f [x(k),u(k),v(k)] (1)

z(k + 1) = g [M(k + 1),x(k + 1),w(k + 1)] (2)

Where k denotes the time step; x ∈ �nx is the unknown state

vector; u ∈ �nu is the known control vector; and z ∈ �nz

is the known observation vector. v ∈ �nv and w ∈ �nw are

the assumed independent, zero-mean white Gaussian state and

observation noise vectors, with covariances Q(k) and R(k)
respectively. Furthermore, M(k) ∈ {Mi(k), i = 1, . . . , r} and

denotes the model in effect during the sampling period ending

at k. The state function f : �nx×�nu×�nv → �nx and mode

dependent output function g [M(k + 1)] : �nx ×�nw → �nz

are arrays of known nonlinear equations. It is assumed that

mode switching at k is a Markov process with known mode

transition probabilities, given by;

pij = P {M(k + 1) = Mj |M(k) = Mi} (3)

The subscripts i and j refer to the mode in effect at the

end of time steps k and k + 1 respectively. We seek the

unbiased, Minimum Mean Square Error (MMSE) estimate

x̂(k) of the state vector x(k). The probability that model

Mi(k) matches the true model M(k) is given by the mode

probability μi(k). The IMM-UKF algorithm runs a bank of

r filters, where each filter is matched to a specific mode,

resulting in a set of mode-matched state estimates x̂i(k|k)
and estimate covariances Pi

x̃x̃(k|k), defined by;

x̃i(k|k) = xi(k) − x̂i(k|k), i = 1, . . . , r (4)

Pi
x̃x̃(k|k) = E

[
x̃i(k|k)x̃i(k|k)′

]
, i = 1, . . . , r (5)

The mode-matched state estimate and estimate covariances are

initialized from the steady state values of the UKF matched

to the fault-free mode.

B. Mode Interaction and Mixing

The mode-matched state estimates and estimate covariances

reflect the output of the filters in the previous time step. There

is only one true mode and the observations of the filters that

are not matched to the true mode have additional errors. The

IMM attempts to minimize these errors by mixing the mode-

matched estimates based on the mode probabilities μ(k) and

the mode transition probabilities pij . The mixing probability

μi|j(k|k) represents the probability that model Mi(k) is in

effect at time k, given that model Mj(k+1) matches the true

model. μi|j(k|k) is calculated by;

μi|j(k|k) =
1
cj

pijμi(k), i, j = 1, . . . , r

cj =
r∑

i=1

pijμi(k), j = 1, . . . , r
(6)

The mixed initial condition (state estimate x̂0j(k|k) and

P0j
x̃x̃(k|k) covariance) for the filter matched to model Mj(k+

1) is then calculated by;

x̂0j(k|k) =
r∑

i=1

x̂i(k|k)μi|j(k|k), j = 1, . . . , r (7)

P0j
x̃x̃(k|k) =

r∑
i=1

μi|j(k|k)
{
Pi

x̃x̃ +
[
xi(k|k) − x0j(k|k)

]
[
xi(k|k) − x0j(k|k)

]′ }
, j = 1, . . . , r

(8)

These initial conditions are used as inputs to the filter matched

to model Mj(k+1) using z(k+1) to yield x̂j(k+1|k+1) and

Pj
x̃x̃(k +1|k +1). This is achieved using a filtering algorithm

which in this case is the UKF.

C. Mode-Matched Filtering

The UKF is a nonlinear extension of the Kalman Filter and

is based on the principle that it is easier to approximate a

probability distribution than an arbitrary nonlinear function

[7]. The UKF propagates a set of weighted sigma points

through the state and output equations. The sigma points are

then used to estimate the means and covariances of the states

and observations, which are in turn used to filter the predicted

states.

In this section the mode index i or j used for the IMM

algorithm are removed and an augmented state estimate and

state covariance matrix is constructed;

xa(k) =
[

x̂(k)′ v̄(k)′ w̄(k + 1)′
]′

(9)

Pãã(k) =

⎡
⎣ Px̃x̃(k|k) 0 0

0 Q(k) 0
0 0 R(k + 1)

⎤
⎦ (10)

The sigma points Xa(k) and their weightings Ga(k) are

calculated using the unscented transform (UT) [7] given by;

Xa(k) =

{
xa(k), i = 0
xa(k) ±

(√
(na + κ)Px̃x̃(k)

)
i
, i = 1, . . . , 2na

(11)

Ga(k) =
{

κ/ (na + κ) , i = 0
1/ (2 (na + κ)) , i = 1, . . . , 2na

(12)

Where i now refers to the sigma point index and corresponds

the the row or column values of the matrix that is indexed.

The length of the augmented state estimate is na = (nx +
nv +nw) and κ is the unscented transform scaling factor [7].

The sigma points can be broken into the respective state and

noise components by;

Xa(k) =
[

X(k)′ V(k)′ W(k + 1)′
]′

(13)

The 2na + 1 sigma points are then propagated through the

state and output equations from (1) and (2);

Xi(k + 1|k) = f [Xi(k),u(k),Vi(k)] , i = 1, . . . , 2na (14)

Zi(k + 1|k) = g [Xi(k + 1),Wi(k + 1)] , i = 1, . . . , 2na

(15)
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The state and output means are calculated by;

x̂(k + 1|k) =
2na∑
i=0

Xi(k + 1|k)Gai
(k) (16)

ẑ(k + 1|k) =
2na∑
i=0

Zi(k + 1|k)Gai(k) (17)

The state and output covariances are calculated by;

Px̃x̃(k + 1|k) =
2na∑
i=0

{
[Xi(k + 1|k) − x̂(k + 1|k)]

[Xi(k + 1|k) − x̂(k + 1|k)]′
}
Gai

(k)

(18)

Px̃z̃(k + 1|k) =
2na∑
i=0

{
[Xi(k + 1|k) − x̂(k + 1|k)]

[Zi(k + 1|k) − ẑ(k + 1|k)]′
}
Gai

(k)

(19)

Pz̃z̃(k + 1|k) =
2na∑
i=0

{
[Zi(k + 1|k) − ẑ(k + 1|k)]

[Zi(k + 1|k) − ẑ(k + 1|k)]′
}
Gai

(k)

(20)

Where Pz̃z̃(k + 1|k) and Px̃z̃(k + 1|k) are the innovation

and the state-observation covariances. The filter innovation

(observation error) is defined by;

z̃(k + 1) = z(k + 1) − ẑ(k + 1|k) (21)

The updated/filtered state estimate and covariance is then;

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)z̃(k + 1) (22)

Px̃x̃(k + 1|k + 1) = Px̃x̃(k + 1|k) +
[
K(k + 1)

Pz̃z̃(k + 1|k)K(k + 1)′
] (23)

Where, K is the Kalman filter gain, calculated by;

K(k + 1) = Px̃z̃(k + 1|k)Pz̃z̃(k + 1|k)−1 (24)

Finally the likelihood function of the filter (based on the

innovation), under Gaussian assumptions is given by;

Λ(k + 1) = |2πPz̃z̃|−1/2
e1/2(z̃′P−1

z̃z̃ z̃) (25)

Equations (9) to (25) are calculated for each model Mj starting

with the mixed initial conditions for that model. This results

in r model matched state estimates and covariances with r
likelihoods (i.e. the UKF is run r times, once for each mode).

D. Mode Estimate Combination
Because model-mismatch introduces errors in the observa-

tions, the likelihood of the observation is reduced in the

mismatched filters and giving a relative measure of the error

in the observations between models. The resulting model

probability is given by;

μj(k + 1) =
1
c
Λj(k + 1)cj , j = 1, .., r

c =
r∑

j=1

Λj(k + 1)cj

(26)

The state estimates and covariances are updated using the

model probabilities to align the estimates with the observation

errors;

x(k + 1|k + 1) =
r∑

j=1

x̂j(k + 1|k + 1)μj(k + 1) (27)

Px̃x̃(k + 1|k + 1) =
r∑

j=1

μj(k + 1)
{
Pj

x̃x̃(k + 1|k + 1)

+
[
x̂i(k + 1|k + 1) − x̂0j(k + 1|k + 1)

]
[
x̂i(k + 1|k + 1) − x̂0j(k + 1|k + 1)

]′ }
(28)

A block diagram of the IMM-UKF algorithm is shown in Fig.

1. The IMM algorithm is decision free and the algorithms

undergo soft-switching1 according to the latest updated mode

probabilities.

Fig. 1: IMM-UKF Algorithm

3. SIMULATION ENVIRONMENT

Testing of fault tolerant algorithms in a practical environment

is a difficult task since it requires a system where the faults

have minimal consequence on the operation of the system but

where they can also be readily observed. This is obviously

not the case for UAVs as faults within the flight control loop

can have serious consequences. A simulation environment was

therefore used to investigate the effects of faults on the IMM-

UKF algorithm.

1The algorithm undergoes mixing dependent on probability instead of hard
switching between the estimates of the different filters
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The equations used to model the UAV’s behavior were

based on standard formulations of aircraft dynamics, similar

to those presented in [5]. The formulation of these dynamic

equations can be found in detail in texts on aircraft systems

[8]. Due to the inherently complex nature of the equations

governing aircraft motion, assumptions are made to reduce

their complexity. Errors are introduced whenever assumptions

are made, so to understand the dynamic model used in this

investigation, the assumptions worth noting are;

• The equations of motion were formulated for a rigid-body

and a oblate (WGS-84), non-rotating earth;

• The mass and moments of inertia of the aircraft were

assumed known and constant;

• A linear relationship was assumed between throttle and

the propulsive moments and forces;

• Aerodynamic forces and moments were calculated from

known aerodynamic coefficients;

• Wind effects such as gust and turbulence were not con-

sidered;

The state equations represent the differential relationships

of the states in continuous time. The states were integrated

numerically, resulting in a discrete simulation which was run

at 100Hz. The primary source of uncertainty in the aircraft

dynamic model is due to errors in the calculation of the forces

and moments acting on the aircraft. In the inertial navigation

equations the primary source of uncertainty results from noise

on the inertial sensors. For this investigation the uncertainty

in the aircraft dynamic model was assumed two orders of

magnitude greater than that experienced by the inertial sensors.

The reason for this was to give a level of uncertainty in the

state equations that represents the assumptions made.

The modeled sensor suite consisted of six inertial sensors

outputting accelerations and angular rates and a GPS receiver

outputting position and velocity. Inertial sensor failures were

modeled by zeroing the measurement associated with the

faulty sensor. Sensor noise was still included on the zeroed

measurement to add uncertainty to the fault models. A filter

matched to a specific sensor model excludes the fault sensor

measurement so it has no feedback in the state update of the

filter. The inertial sensors provided data at 100Hz and the GPS

receiver provided data at 1Hz. Uncertainty was added to the

outputs after sampling and was based on a typical sensor suite

of a UAV [11]. In order to fully understand the performance

of the proposed IMM-UKF algorithm, four filters variations

were simulated;

• UKF-1 used an aerodynamic model and is matched

to the true mode of the system. Simulated against all

combinations of inertial sensor failures.

• UKF-2 used an aerodynamic model and is matched to

the fault-free mode of the system (resulting in model

mismatch when faults occur). Simulated against all com-

binations of inertial sensor failures.

• UKF-3 used an inertial model (traditional INS equations),

matched to the fault-free mode of the system (resulting

in model mismatch when faults occur). Simulated against

all combinations of inertial sensor failures

• UKF-4 used an aerodynamic model, running the IMM-

UKF algorithm comprising of bank of 7 filters matched

to the failure modes of the accelerometers, rate gyros and

the fault free mode. Simulated against all single failure

modes of the inertial sensors (not including multiple

failure scenarios).

The UKF-IMM algorithm was not tested for multiple sensor

failures as it requires either an extremely large model set to be

run in the IMM algorithm or a model selection algorithm. A

number of selection algorithms can be found in the literature,

however the focus of this paper was the ability of the IMM-

UKF to detect and cope with single inertial failures.

4. RESULTS

The purpose of this investigation was to explore the application

of the IMM-UKF algorithm to sensor FDIA within the flight

control loop of a UAV. The challenge is maintaining accurate

state estimates in the presence of sensor faults. When the

estimated states diverge from their true values, the errors are

propagated through the flight control loop which can cause

the system to behave unpredictably. The level to which a

fault affects the UAVs flight performance is dependent on the

resulting state errors and how those errors are propagated to

the final controller output.

A. Modeling Method

The approach presented in this paper uses an aerodynamic

model to predict the UAVs states. When the system is oper-

ating under fault free conditions both the UKF-2 and UKF-3

are matched to the true mode of the system and any difference

in their estimation or control performance is a result from

the use of the aircraft dynamic model instead of the inertial

navigation equations. Table 1 gives the typical position and

attitude, estimate and controll errors of UKF-2 and UKF-3

when there are no inertial sensor failures.

TABLE 1: TYPICAL ERRORS FOR THE UKF-2 AND UKF-3

Result
Position Error (m) Attitude Error (deg)
UKF-2 UKF-3 UKF-2 UKF-3

Est. Max 3.0833 2.5296 0.4788 1.010
Error MSE 43.8296 43.2306 2.5553 13.6482
Ctr. Max 0.2058 3.5180 2.8067 23.99

Error MSE 19.3762 52.0945 21.9621 369.8632

In Table 1 “Max” refers to the maximum error experienced

at an point in time and MSE refers to the Mean Squared

Error over the duration of the simulation. The position error

is calculated from the latitude, longitude and altitude statistics

and the attitude error is calculated from the roll, pitch and

yaw statistics. The results show that UKF-2 performs slightly

better than UKF-3 as it results in a smaller MSE in both

estimation and control. This is to be expected as the aircraft

dynamic model provides additional information about the rates

and accelerations of the aircraft. However, this is only true

when the system is operating under fault free conditions.
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B. Model Mismatch

When investigating the possible failure scenarios of the six

inertial sensors, there are a total of 64 combinations of

different faults. The results shown in Table 2 summarize how

modeling errors caused by the inertial sensor faults affect

the performance of the UAV when using the different filter

variations

TABLE 2: UKF STABILITY IN VARYING FAULT CONDITIONS

Fault Condition Filter
N I C UKF-1 UKF-2 UKF-3 UKF-4

0x
1 None

√ √ √ √
All filters are stable when there are no faults

1x

2-4 -
√ √ √ √

5 4
√ × × √

6 5
√ √ √ √

7 6
√ × × √

UKF-1/4 stable for all. UKF-2/3 unstable for 2/6

2x

8-9 -
√ × × n/a

10 1,4
√ √ √

n/a
11 1,5

√ × × n/a
12 1,6

√ √ √
n/a

13-17 -
√ × × n/a

18 3,5
√ √ √

n/a
19-22 -

√ × × n/a
UKF-1 stable for all. UKF-2/3 unstable for 12/15

3x

23 1-3
√ × × n/a

24 1-2,4
√ √ √

n/a
25 1-2,5

√ × × n/a
26-27 -

√ √ √
n/a

28 1,3,5
√ × × n/a

29-33 -
√ × × n/a

34 2-3,5
√ √ √

n/a
35-42 -

√ × × n/a
UKF-1 stable for all. UKF-2/3 unstable for 17/20

4-6x
43-64 -

√ × × n/a
UKF-1 stable for all. UKF-2/3 unstable for 22/22

In Table 2 the heading “N” refers to the number of simulta-

neous faults, “I” refers to the fault index and “C” refers to the

fault combination of the 6 (x,y,z,p,q,r) inertial sensors. A “
√

”

indicates the ability of the UAV to maintain flight under the

specified fault condition and a “×” indicates a critical failure.

For example, a dual failure of the x accelerometer and the q

rate gyro (N = 2, I = 11, C = 1,5) results in failure of the

system using UKF-2 and UKF-3.

It would be expected that UKF-2 and UKF-3 fail for every

inertial sensor fault. This is not the case due to the fact

that in some fault scenarios, the behavior of the UAV can

still be captured within the uncertainty of the observations.

Different sensor faults such as drift, bias or ramp faults would

most likely cause filter instability, as would high dynamic

maneuvers. The results obtained from simulation of the various

faults for are summarized by the following points;

• UKF-1 preforms best in all fault combinations and was

still able to track the true state regardless of any single

or multiple inertial sensor fault. UKF-4 performed nearly

as well as UKF-1 and was able to track the true state

regardless of any single inertial sensor fault.

• UKF-1 and UKF-4 have greater estimation and control

error under faulty conditions due to the loss of informa-

tion from the failed sensors.

• All filters perform worse under rate gyro failures due

there being no correcting sensors for the attitude states.

This is also due to feedback of the increased attitude

errors within the flight control loop.

• When operating under the fault free conditions, UKF-2

performs slightly better than UKF-3 due to the additional

information provided by the aerodynamic model. The

performance improvement is limited by the uncertainty

in the force and moment predictions for the aircraft.

• When operating in faulty conditions, UKF-2 and UKF-3

will both become unstable unless the dynamics can be

captured by the uncertainty in the state equations.

It is important to note that performance of the UAV using

UKF-2 and UKF-3 is not guaranteed for any of the given fault

scenarios. Due to the fact that UKF-1 performed well under all

failures, the potential for providing an accurate state estimate

under all of the simulated fault conditions exists however, this

requires knowledge of the true mode of the system.

C. IMM-UKF Performance

The IMM-UKF algorithm attempts to estimate the true mode

of the system and provide accurate state estimates based on

the mode probabilities. The mode probabilities can then be

tested to give an estimate of the true mode of the system.

Investigation of the IMM-UKF was limited to single failures

only, giving a total of seven modes that were simulated. The

results shown in Table 3 give the estimation and control

performance of the IMM-UKF algorithm as compared to the

UKF-1 for single failure modes of the inertial sensors. The

results are presented in a similar manner as in Table 1.

TABLE 3: TYPICAL ERRORS FOR THE UKF-1 AND IMM-UKF (UKF-4)

Fault Result
Position Error (m) Attitude Error (deg)
UKF-1 UKF-4 UKF-1 UKF-4

None

Est. Max 3.0833 1.6346 0.4788 0.4516
Error MSE 43.8296 24.9701 2.5802 1.4096
Ctr Max 0.2058 . 0.1332 8.8151 0.7908

Error MSE 19.3762 7.0894 31.3765 4.8834

x

Est. Max 3.3089 1.3433 0.4655 0.5169
Error MSE 45.4478 26.802 2.7127 1.6441
Ctr. Max 0.241 0.3086 9.2025 6.4197

Error MSE 21.7151 16.2226 39.2664 18.3564

y

Est. Max 3.5244 2.3458 0.4467 0.9275
Error MSE 42.8911 33.2663 2.5943 4.8439
Ctr. Max 0.2362 0.2326 4.5117 4.5282

Error MSE 19.7247 12.9333 16.1419 19.0328

z

Est. Max 1.505 3.0211 0.47 1.4849
Error MSE 42.6041 27.0744 2.6119 7.5012
Ctr. Max 0.1758 0.5274 2.6774 16.7799

Error MSE 14.801 19.2425 18.2685 86.6483

p

Est. Max 7.6712 1.2803 0.5794 0.4855
Error MSE 42.5428 25.4049 7.7757 4.3161
Ctr. Max 0.1891 0.4688 6.2736 3.6953

Error MSE 17.5409 15.894 34.3969 17.73

q

Est. Max 2.972 1.7612 0.5787 0.717
Error MSE 43.8074 26.3737 4.3261 6.0947
Ctr. Max 0.2695 0.452 8.0441 8.5438

Error MSE 17.2756 15.7394 33.6483 47.8768

r

Est. Max 3.5209 4.9861 0.4931 0.5423
Error MSE 46.7518 72.3318 2.676 5.0983
Ctr. Max 0.2944 1.5287 3.6936 13.246

Error MSE 18.2789 55.2584 18.9034 58.0876

5



The results presented in Table 3 show that the IMM-

UKF algorithm can be used as a fault tolerant approach to

state estimation in UAVs as the system maintains adequate

estimation and control performance in all single inertal sensor

failures. However, the results do not indicate the accuracy

of the mode estimation. The simulations of the IMM-UKF

algorithm performed in this investigation dealt with single

inertial sensor faults and as such model switching was not

required to asses the approaches performance. The model

estimation performance of the IMM-UKF algorithm is linked

to the mode transition probabilities and other IMM parameters.

Figure 2 shows the model probabilities as generated by the

IMM-UKF algorithm when simulating a q rate gyro failure.

The figure shows that with an appropriate threshold, fault

detection can be achieved.
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Fig. 2: Model Probabilities for failure mode 5

5. CONCLUSION

This paper presented results from an investigation of the IMM-

UKF algorithm and its application to estimation in UAVs. The

investigation focused on inertial sensor faults and their effect

on the control and estimation performance of the UAV system.

Four filter variations were considered demonstrating that errors

resulting form inertial sensor faults can cause failures within

the flight control loop and that the IMM-UKF can be used to

avoid this problem. Future works includes improving the ro-

bustness of the IMM-UKF algorithm by focusing on reducing

the mode probability ambiguities and implementing a model

selection algorithm to reduce mode-mismatch errors, allowing

the algorithm to be applied to multiple failure scenarios.
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