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Abstract

This tutorial investigates the problem of the occurrence of multiple

faults in the sensors used to monitor and control a network of cyber-

physical systems. The goal is to formulate a general methodology, which

will be used for designing sensor fault diagnosis schemes with emphasis

on the isolation of multiple sensor faults, and for analyzing the per-

formance of these schemes with respect to the design parameters and

system characteristics. The backbone of the proposed methodology is

the design of several monitoring and aggregation cyber agents (mod-

ules) with specific properties and tasks. The monitoring agents check

the healthy operation of sets of sensors and infer the occurrence of

faults in these sensor sets based on structured robustness and sensi-

tivity properties. These properties are obtained by deriving analytical

redundancy relations of observer-based residuals sensitive to specific

subsets of sensor faults, and adaptive thresholds that bound the resid-

uals under healthy conditions, assuming bounded modeling uncertainty

and measurement noise. The aggregation agents are employed to col-

lect and process the decisions of the agents, while they apply diagnostic

reasoning to isolate combinations of sensor faults that have possibly oc-

curred. The design and performance analysis methodology is presented

in the context of three different architectures: for cyber-physical sys-

tems that consist of a set of interconnected systems, a distributed archi-

tecture and a decentralized architecture, and for cyber-physical systems

that are treated as monolithic, a centralized architecture. For all three

architectures, the decomposition of the sensor set into subsets of sen-

sors plays a key role in their ability to isolate multiple sensor faults.

A discussion of the challenges and benefits of the three architectures

is provided, based on the system scale, the type of system nonlineari-

ties, the number of sensors and the communication needs. Lastly, this

tutorial concludes with a discussion of open problems in fault diagnosis.

V. Reppa, M. M. Polycarpou and C. G. Panayiotou. Sensor Fault Diagnosis.
Foundations and Trends R© in Systems and Control, vol. 3, no. 1-2, pp. 1–248, 2016.

DOI: 10.1561/2600000007.
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1

Introduction to Sensor Fault Diagnosis

Recent advances in information and communication technologies, em-

bedded systems and sensor networks have generated significant research

activity in the development of so-called cyber-physical systems. These

systems consist of two components: (i) physical, biological or engineered

systems and (ii) a cyber core, comprised of communication networks

and computational availability that monitors, coordinates and controls

the physical part [Antsaklis et al. (2013)]. In this tutorial, we will con-

sider a network of interconnected cyber-physical systems, where each

subsystem may be characterized by simple dynamics, but the overall

dynamics can be large-scale and complex. The focus of research on

cyber-physical systems is to improve the collaborative link between

physical and computational (cyber) elements for increased adaptabil-

ity, efficiency and autonomy. The key motivation for the advancement

of cyber-physical systems is the need to better coordinate the inter-

actions between the software and hardware designs by facilitating self-

awareness in evolving environments and the handling of a huge amount

of data of different time and space characteristics. However, reach-

ing such a level of system intelligence necessitates the development of

mechanisms capable to assess the reliability of information acquired by

2
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3

distributed deployed sensors and sensor networks through wired and

wireless links [Ding et al. (2006)], or by internet-of-things devices.

A representative example of a large network of cyber-physical sys-

tems is a smart city with intelligent infrastructures for supporting the

environment, energy and water distribution, transportation, telecom-

munication, health care, home automation and many more [Chourabi

et al. (2012)]. Each of these critical infrastructures consists of a large

number of distributed, interconnected subsystems, which need to be

monitored and controlled using a large number of sensing/actuation

devices and feedback control algorithms.

Although the benefits of the use of automated monitoring and con-

trol procedures are widely accepted, this use has made critical infras-

tructures more susceptible to faults [Kröger and Zio (2011)]. Thus, su-

pervision schemes capable of diagnosing and accommodating faults are

applied for ensuring system reliability and safety. From a systems point

of view, safety, reliability and fault tolerance become key challenges in

designing cyber-physical systems. For meeting these challenges, the cy-

ber core should be empowered with supervision capabilities for diagnos-

ing faults in the physical part and compensating their effects by taking

appropriate remedial actions [Blanke et al. (2016); Isermann (2006)].

Fault detection addresses the problem of determining the presence of

faults in a system and estimating their instant of occurrence [Isermann

(2006); Gertler (1998); Chen and Patton (1999); Blanke et al. (2016);

Ding (2008)]. Fault detection is followed by fault isolation, which deals

with finding which ones are the faulty components in the system, or

the type of fault. Fault identification is described as the procedure of

determining the size and the time variant behavior of the fault. In

some cases, during the fault identification procedure, we also seek to

assess the extend of the fault and the risks associated with it [Chen

and Patton (1999); Ding (2008)]. The result of fault identification is

essential for performing fault accommodation by either changing the

control law or using virtual sensors or actuators in response to a fault,

without switching off any system component [Blanke et al. (2016)].

In this tutorial, we will consider mainly the fault detection and fault

Full text available at: http://dx.doi.org/10.1561/2600000007



4 Introduction to Sensor Fault Diagnosis

isolation problems, which, for simplicity, together we will refer to as

fault diagnosis.

Various methodologies have been developed for the fault diagno-

sis problem in general [Isermann (2006)], but the detection and iso-

lation of sensor faults has become a key challenging problem in the

last few years. This is due to the large number of sensors and sen-

sor networks, used for (i) monitoring and controlling large-scale cyber-

physical systems; (ii) providing rich and redundant information for exe-

cuting safety-critical tasks; and (iii) offering information to citizens and

governmental agencies for resolving problems promptly in emergency

situations. For instance, in intelligent transportation systems, vehicles

may be equipped with odometers, lasers, frontal camera video-sensors,

GPS, speed or object tracking sensors, in order to be able to acquire

and broadcast information relevant to performing tasks such as cooper-

ative or fully autonomous driving, avoiding lane departure and collision,

etc. In smart buildings, multiple sensors are installed in different zones

(measuring quantities such as temperature, humidity, CO2, contami-

nant concentration, occupancy), as well as in heating, ventilation and

air-conditioning systems for measuring supply/return/mixed air tem-

perature, supply/return air differential pressure, return air humidity,

etc. Such sensing information may be used for reducing the energy con-

sumption of a building and maintaining the desired living conditions,

as well as for executing evacuation plans in safety-critical situations

(e.g. fire). Undetected sensor faults can severely impact automation

and supervision schemes [Sherry and Mauro (2014)], possibly leading

to system instability, loss of information fidelity, incorrect decisions and

disorientation of remedial actions [BEA (2012)].

Sensor fault detection and isolation (FDI) methods are classified

into physical redundancy-based and model-based methods [Betta and

Pietrosanto (2000)]. In many applications, the physical redundancy ap-

proach is not used due to the high cost of installation and maintenance,

as well as due to space restrictions. However, the evolution of microtech-

nology in recent years has contributed to the reduction of the size and

fabrication cost of sensors, making physical-redundancy methods more

cost effective. Current technological advances are geared towards the
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5

use of multiple, possibly heterogeneous sensors, which are not neces-

sarily co-located, however the measured variables may have redundant

information, which is useful for fault diagnosis purposes. For example,

in a smart building, there may exist two sensors measuring the tem-

perature in adjacent rooms; in such a case, the relation (either known

apriori or learned during operation) between the two measured quanti-

ties maybe used to determine if one of the two sensors is faulty [Alippi

et al. (2013)]. With the current trend towards utilizing larger and larger

numbers of sensors, there is also a higher probability of multiple sensor

faults occurring, which is an issue that has not been well studied in the

fault diagnosis literature.

The majority of sensor FDI techniques rely on the utilization of

models only [Isermann (2006)]. These techniques are further cate-

gorized as quantitative or qualitative methods [Venkatasubramanian

et al. (2003a,b)]; the first category relies on a nominal mathematical

model describing the system, while the second one uses symbolic and

qualitative system representations. The equivalence and the differences

between these two categories, as well as the design of a unified frame-

work taking advantage of the benefits of each approach have been stud-

ied by several researchers [Cordier et al. (2004); Pulido and González

(2004); Gentil et al. (2004)].

Qualitative model-based techniques are typically used by the artifi-

cial intelligence diagnostic (DX) community [Travé-Massuyès (2012)].

The design of these techniques is based on the utilization of either

causal models, such as signed digraphs, bond graphs, fault trees, etc.

[Vedam and Venkatasubramanian (1997); Bregon et al. (2012)], or func-

tional or structural abstraction hierarchies [Daigle et al. (2012); Blanke

et al. (2016); Monteriu et al. (2007)]. The nature of these models fa-

cilitates especially the fault isolation procedure. Moreover, the quali-

tative approach treats fault detection and isolation as a unified prob-

lem, and exploits reasoning techniques, thereby providing by design

more straightforward methods for multiple sensor fault isolation [Ny-

berg (2006); De Kleer and Williams (1987); Daigle et al. (2012); Frisk

et al. (2012)].

Full text available at: http://dx.doi.org/10.1561/2600000007



6 Introduction to Sensor Fault Diagnosis

While qualitative model-based approaches have mostly been

adopted by the DX community, quantitative model-based approaches

such as parity equations and observers are widely used for sensor FDI

by the control-oriented FDI community [Gertler (1998); Chen and

Patton (1999)]. Among the quantitative methods, observer-based ap-

proaches have been applied to nonlinear systems, using a single nonlin-

ear observer [Rajamani and Ganguli (2004); Narasimhan et al. (2008);

Yan and Edwards (2007); Talebi et al. (2009)], or a bank of observers

[Mattone and De Luca (2006); Rajaraman et al. (2006); Samy et al.

(2011); Reppa et al. (2014b, 2012)]. Several researchers have devel-

oped sensor FDI methods, which treat sensor faults as actuator faults

and apply observer-based approaches for nonlinear systems [Kabore

and Wang (2001); De Persis and Isidori (2001)], as well as methodolo-

gies for tackling the problem of actuator and sensor faults in a unified

framework [Du et al. (2013)]. One of the common characteristics of the

majority of observer-based methods is the use of the open-loop system

model and the input and output data. Recently, observer-based sensor

FDI techniques have been proposed, which take advantage of the in-

formation about the closed-loop operation of the system (i.e. reference

signals and controller’s structure), when this is available [Olaru et al.

(2010); Seron et al. (2012, 2013)]. The control-oriented FDI community

focuses mostly on making methods robust against modeling uncertain-

ties and views the fault detection and fault isolation as two different

tasks.

Clearly, mathematical models never capture the real behavior of the

modeled system, due to the presence of uncertainties including para-

metric uncertainty, unmodeled system dynamics, or faults occurring

in the system, which can be function of the system state and input.

A powerful approach to robust FDI for nonlinear uncertain systems

is based on the use of learning techniques [Polycarpou and Helmicki

(1995); Trunov and Polycarpou (2000)]. The main concept behind the

learning approach for FDI is the approximation of the unknown system

behavior using adaptive approximation models (e.g. sigmoidal neural

networks, radial basis functions, support vector machines) and nonlin-

ear estimation schemes [Trunov and Polycarpou (2000); Caccavale et al.
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(2008); Talebi et al. (2009); Thumati and Jagannathan (2010)]. Under

healthy conditions, adaptive approximation based schemes can be used

to learn the modeling uncertainty during the initial stage of nonlin-

ear system operation (training period) [Caccavale et al. (2009); Reppa

et al. (2014b)]. Then, the nonlinear functional approximator of mod-

eling uncertainty can be used for optimizing the adaptive thresholds,

thus enhancing the fault detectability and isolability of a quantitative

model-based scheme [Reppa et al. (2014b)]. Another approach for re-

ducing the modeling error is offline identification of uncertainties. In

general, adaptive approximation schemes provide a flexible methodol-

ogy for learning the uncertainties in the sense that the training time

can be adjusted online based on some criterion involving the estimation

error. Under faulty conditions, adaptive approximation based schemes

can be applied for learning the faults for isolation and identification

purposes initially [Zhang et al. (2005, 2008)], and then for compensat-

ing the fault effects [Zhang et al. (2004); Reppa et al. (2014a)].

The majority of model-based sensor FDI methods are deployed in

a centralized framework (see Fig 1.1-1), but these approaches are less

suitable for large-scale and complex systems such as a network of in-

terconnected cyber-physical systems. In this context, centralized ap-

proaches have the following disadvantages: (i) increased computational

complexity of the FDI algorithms, since centralized architectures are

tailored to handle (multiple) faults globally, (ii) increased communica-

tion requirements due to the transmission of information to a central

point, (iii) vulnerability to security threats, because the central cy-

ber core in which the sensor FDI algorithm resides is a single-point of

failure, and (iv) reduced scalability in case of system expansion, due

to the utilization of a global physical model or black-box. A common

design characteristic of non-centralized methods is that they handle

the large-scale and complex system as a set of interconnected subsys-

tems and they employ local agents that perform diagnosis based on

local subsystems’ models. The local agents are commonly deployed in

either a distributed (Fig 1.1-2) or decentralized (Fig 1.1-3) architec-

ture. The classification of these architectures is based on the type of

system interconnections, the cyber levels of diagnosis, the task of the
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8 Introduction to Sensor Fault Diagnosis

(1) Centralized architecture.

(2) Distributed architecture. (3) Decentralized architecture.

Figure 1.1: Typical architectures for interconnected systems. (1) In a central-
ized approach, input/output information of all systems is transmitted to one agent.
(2) In a distributed architecture, input/output information of each subsystem is
transmitted to its dedicated agent, and the agents are allowed to exchange infor-
mation (input/output information, decisions). (3) In a decentralized architecture,
input/output information of each subsystem is transmitted to its dedicated agent,
but the agents do not exchange information.

Full text available at: http://dx.doi.org/10.1561/2600000007
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local diagnosers, as well as the type of communication and information

exchanged between the local and high-level diagnosers.

In [Yan and Edwards (2008); Zhang and Zhang (2013); Zhang

et al. (2014); Klinkhieo et al. (2008); Ferrari et al. (2012); Boem

et al. (2013a); Ferdowsi et al. (2012); Indra et al. (2012); Reppa

et al. (2015a,b)], decentralized and distributed FDI methods are de-

veloped for physically interconnected subsystems. Distributed architec-

tures have also been designed for systems with interconnections in the

control law [Shames et al. (2011)], interconnected inputs [Daigle et al.

(2007)] or sensing interconnections (i.e. relative output measurements)

[Davoodi et al. (2014)]. For enhancing fault isolation, multiple levels of

diagnosis in a hierarchical architecture have been designed. In partic-

ular, while the single level diagnosis is realized by the local diagnosers

[Yan and Edwards (2008); Zhang and Zhang (2013); Klinkhieo et al.

(2008); Shames et al. (2011); Davoodi et al. (2014); Daigle et al. (2007)],

additional FDI units are developed in a hierarchical architecture, aggre-

gating and processing the outputs of the local diagnosers [Ferrari et al.

(2012); Boem et al. (2013a); Ferdowsi et al. (2012); Indra et al. (2012)].

The decentralized or distributed nature of the FDI process is related

to either the task executed by the local diagnosers or the communi-

cation between the local diagnosers. In decentralized schemes, a local

diagnoser is commonly designed to detect and isolate faults only in its

underlying system [Yan and Edwards (2008); Klinkhieo et al. (2008);

Reppa et al. (2015a)], while it may not exchange any information with

other local diagnosers [Ferdowsi et al. (2012); Indra et al. (2012)]. On

the contrary, in distributed schemes, there is communication between

the local diagnosers and every local diagnoser can detect and isolate

faults in neighboring systems [Zhang and Zhang (2013); Shames et al.

(2011); Davoodi et al. (2014); Daigle et al. (2007); Ferrari et al. (2012);

Boem et al. (2013a); Reppa et al. (2015b)]. The design of distributed

FDI architectures may also differ in the type of exchanged information.

Specifically, the local diagnosers may exchange estimations [Zhang and

Zhang (2013); Yan and Edwards (2008)] [Daigle et al. (2007)], or mea-

surements of the interconnected states [Shames et al. (2011); Ferrari

et al. (2012); Boem et al. (2013a)], or fault signatures [Daigle et al.
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10 Introduction to Sensor Fault Diagnosis

(2007)]. In multi-level FDI schemes, the communication between levels

is commonly sporadic and event-driven, while the information trans-

mitted to higher levels can be the decisions of the local diagnosers

[Ferrari et al. (2012); Boem et al. (2013a); Reppa et al. (2015b)], the

time instances of fault detection of the local diagnosers [Ferdowsi et al.

(2012)] or the calculated analytical redundancy relations [Indra et al.

(2012)].

It is worth noting that non-centralized fault diagnosis techniques

can be applied to a monolithic system. A common approach is based

on the use of multiple processing units (agents) and an aggregation

unit that fuses the information from these units. This approach is fol-

lowed by several existing FDI methods for stochastic systems based

on interacting multiple models (IMM)[Zhang and Li (1998)], multiple

sensor fusion (MSF) [Salahshoor et al. (2008); Reece et al. (2009)] or

hidden Markov models (HMM) [Alippi et al. (2013)]. In IMM-based

techniques, the multiple models describe the system in healthy and

various faulty system modes and are designed using the a priori knowl-

edge of the possible system faults. Fault diagnosis using MSF-based

techniques can be conducted by using local filters that generate local

estimates and local decisions, and a global filter that combines the local

state estimates to derive an improved global estimate and/or fuse the

local decisions for obtaining a global decision. In HMM-based meth-

ods, spatial and temporal relationships among sensor datastreams is

exploited, and a HMM-based module is designed for each pair of sen-

sors. The lower processing layer detects variations in the relationships

between pairs of sensors, while the upper processing (cognitive) level

aggregates the information coming from all sensor units to distinguish

faults from changes in the environment and false positives [Alippi et al.

(2013)].

The main goal of this tutorial is to provide a cyber-physical method-

ology for designing and analyzing quantitative model-based sensor FDI

techniques for large-scale nonlinear systems, which are monitored and

controlled by a large number of sensors. To this end, Chapter 2 presents

models that describe the system behavior, along with the underlying
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assumptions that are commonly used for the design of sensor FDI tech-

niques and the formulation of the sensor fault diagnosis problem. Then,

Chapter 3 surveys various architectures (centralized, decentralized, dis-

tributed) for solving the sensor FDI problem, taking into account the

system scale and the number of sensors, as well as the communication

needs. Chapters 4 describes the stages for designing observer-based

fault detection methods, taking into account the nonlinear system na-

ture, while Chapters 5 details the isolation steps with emphasis on

multiple sensor faults. The performance of the observer-based sensor

FDI techniques is analyzed in Chapter 6 with respect to robustness

against modeling uncertainties, sensor fault detectability and isolabil-

ity. Chapter 7 presents learning techniques that can be used for enhanc-

ing the performance of sensor FDI methods under healthy and faulty

conditions. This tutorial is completed by summarizing the concluding

remarks and discussing some open issues in fault diagnosis in Chapter

8.
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