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The quadrotor drone is small in size and light in weight, the mechanical structure is simple, and the requirements for the working
environment are low. The development of a quadrotor UAV technology is also the focus of the current technical personnel. The
author proposes a four-rotor UAV sensor fault diagnosis and fault-tolerant control based on genetic algorithm and introduces
common sensor failures, and based on the improved BP neural network of the GA algorithm, the genetic algorithm is
improved. This paper uses a classical BP algorithm, a classical GA-BP algorithm, and an improved GA-BP algorithm for
training. Using a total of 150 sets of training data and training function using LevenbregMarquardt (trainlm),
MeanSquaredError (performance function using mse), in the same noise background, the improved GA-BP algorithm has the
highest detection rate, the classical GA-BP algorithm followed, and classical BP algorithm is the worst. Therefore, using the
improved GA-BP algorithm, various errors of the sensor can be detected quickly and accurately.

1. Introduction

The quadrotor unmanned aerial vehicle is a kind of direct
torque that achieves six degrees of freedom (position and
attitude) control and a small UAV system that can take off
and land vertically [1]. It is multivariable and nonlinear,
has strong coupling and interference sensitivity, and is a
multirotor unmanned aerial vehicle with strong maneuver-
ability and simple structure. The micro-multirotor drone
has the following advantages: small size and lightweight,
low requirements for the working platform and space envi-
ronment, even the requirements for take-off and landing
space are not high [2]. It can be in a relatively small and
enclosed space; in order to complete the specified tasks, the
flight altitude requirements are low; it can work close to
the ground; and the requirements for the working environ-

ment are also low—even if it is complex and harsh, it can
work [3]. The mechanical structure design is relatively sim-
ple, and the cost of components is low, but it also guarantees
a certain degree of reliability [4]. Using it in the fields of mil-
itary operations and civil aerospace, there is a broad space
for development and application [5]. At present, military
and commercial use generally choose quadrotor drones;
compared with other types of multirotor drones, the
mechanical structure design of the four-rotor UAV aircraft
is simpler and the volume of the aircraft can be made
smaller. And its output control volume is also small; the lift
provided by the quadcopter is already enough to bear the
general load [6]. Therefore, quadrotor drones can currently
play a role in many fields. The development of the quadrotor
UAV technology is also the focus of current scientific
research workers. It is also one of the hot research issues that

Hindawi
Journal of Sensors
Volume 2022, Article ID 8626722, 8 pages
https://doi.org/10.1155/2022/8626722

https://orcid.org/0000-0003-4577-5275
https://orcid.org/0000-0002-1593-3677
https://orcid.org/0000-0002-1642-3257
https://orcid.org/0000-0002-0112-1555
https://orcid.org/0000-0001-6164-0915
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8626722


many countries are vigorously developing. A fault detection
process for a UAV longitudinal flight control system based
on nonlinear adaptive observer is shown in Figure 1 [7].

2. Literature Review

In response to this research question, Peng et al. proposed
fault diagnosis and fault-tolerant control: as the name
implies, fault diagnosis part and fault tolerance control part.

These two parts can be designed separately in the general
system, but they are interdependent on and complement
each other. Fault detection and diagnosis are the basis for
achieving fault tolerance control [8]. Khil et al. suggested
that, in general, some functions of the actuator mechanism
that are partially disabled, or have failed completely, are
defined as actuator failure. This type of fault is in fault diag-
nosis and separation research, the most common type of
failure. If we follow the severity of its failure, the fault can
be further divided into partial failure (the output of the actu-
ator has an error, but there are some basic functions) and
completely invalid (the actuator completely loses its original
function); that is, regardless of the input signal, the actuator
will not make any response [9]. Wang et al. believe that
when the sensor cannot output with high precision or out-
puts wrong data or no data, the performance of these sensors
can be considered a sensor failure [10]. Chen et al. believe
that according to the degree of impact caused by the failure,
it can also be classified as complete failure—that is, the read-
ing of the sensor has nothing to do with the actual status
information of the system— and partial failure—that is,
the reading deviates from the true state of the system, but
its readings still have a certain reference value [11]. Chung
et al. in their work on a knowledge-based fault diagnosis
method proposed that, due to the characteristics of prior
knowledge of the model, it is generally used in the fault diag-
nosis of offline systems [12]. Yang et al. on the XV215 tilting
propeller platform use the extended adaptive neural network
for fault diagnosis to test and verified on this basis a nonlin-
ear adaptive controller structure, which can perform fault
diagnosis and is very effective [13]. Yang et al.’s paper is
based on the analytical model method. Its realization idea
can be explained in detail as making full use of existing
knowledge in order to build a mathematical model of the
system, then pass the input and output of the system to
the established mathematical model [14]. Vahidi-
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Figure 1: Control system fault detection process.

Table 1: Comparison of three algorithms.

Algorithm Target error Average number of iteration steps

Classic BP 0.01 10

Classic GA-BP 10e-15 17

Improve GA-BP 10e-15 17
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Figure 2: Convergence curve of a classic BP algorithm.
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Moghaddam et al. designed another one for an actuator fault
diagnosis based on the analytical model and fault diagnosis
method; this method is also based on the Romberg observer
residue generation method [15]. Guangming used the Rom-
berg observer residue generation method and applied it to
the sensor fault diagnosis of the unmanned helicopter con-
trol system. Finally, the method passes simulation and actual
flight test and proved that its application in sensor fault
diagnosis is effective [16]. Rajeswari and Neduncheliyan also
proposed a brand new sensor fault diagnosis method based
on the analytical model; this method constructs a set of

full-order unknown observers in order to estimate the local
state of the system. Moreover, these local state estimates do
not require any local information. Finally, the residual error
of the observer is used to detect and reconstruct the fault sig-
nal [17]. Nguyen and Ha tested the extended adaptive neural
network for fault diagnosis on the XV215 tilt paddle rotor
platform and verified that the nonlinear adaptive controller
structure can be fault diagnosis and very effective [18]. On
the basis of current research, the author proposes a four-
rotor UAV sensor fault diagnosis and fault-tolerant control
based on genetic algorithm and introduced common sensor
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Figure 3: Convergence curve of a classic GA-BP algorithm.
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Figure 4: Improved GA-BP algorithm convergence curve.
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failures, and based on the improved BP neural network of
the GA algorithm, the genetic algorithm is improved. This
paper considers the fault of the accelerometer sensor and
designs three detection models using MATLAB—the first
is the classical BP neural network detection model, the sec-
ond is the classical GA-BP neural network detection model,
and the third is the improved GA-BP neural network detec-
tion model—so as to compare the advantages of the three
models. The neural network constructed in this paper has
three layers: a transmission layer, a hidden layer, and an out-
put layer—100 neurons in the transmission layer, 6 neurons
in the hidden layer, and 1 neuron in the output layer. It is
very necessary for us to perform fault diagnosis and fault-
tolerant control of the actuator mechanism of the quadrotor

UAV: on the one hand, it can improve the safety of the
entire quadrotor UAV control system, and on the other
hand, it can ensure that the entire quadrotor UAV system
is not affected by external environmental factors, maintain-
ing the stability of the system.

3. Methods

3.1. Common Sensor Failures. The main sensor faults studied
by the author are sensor stuck, sensor gain change, and sen-
sor constant deviation. Suppose cout is actually output, cin is
normal output, and i = 1, 2,⋯,m.

(1) Failure phenomenon: this phenomenon is mainly
stuck due to the failure of the mechanical parts of the
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actuator or the lack of mechanical lubrication. Regardless of
any adjustment and change of the input signal of the actua-
tor, the output of the actuator maintains a fixed value. This
failure type will have a serious impact on the stability of
the system and is a complete failure fault. The sensor is
stuck:

ciout tð Þ = αi, ð1Þ

where ai is a constant
(2) Sensor gain change:

ciout tð Þ = βicin tð Þ, ð2Þ

where βi is the proportional coefficient of gain change
(3) Constant deviation of sensor:

ciout tð Þ = βcin tð Þ + Δ, ð3Þ

where Δ is a constant
(4) Pine float: the main sign of failure is that the voltage

signal interrupted, resulting in the free deflection of the
operating surface and the actuator produces no control
force, the output of the actuator is zero, so the propeller
stops turning

(5) Saturate: the main sign of failure is that the actuator
enters saturation after the one-set limit value. The input sig-
nal cannot drive the actuator, the actuator is stuck in the
limit state of the saturation value, the essence of the time
dead failure, which can be described as:

uF tð Þ = sat u tð Þð Þ ð4Þ

(6) Failure: the main failure signs are the reduced gain of
the actuator, the output control signal is not consistent with
the actual situation, the function of the actuator changes
compared with the expected situation, and the system con-
trol parameter value changes, which leads to the decline of
the flight performance of the aircraft. The failure of the devi-
ation also includes constant deviation, drift, and precision
damage

3.2. Improved BP Neural Network Based on GA Algorithm.
The BP neural network contains an input layer, an output
layer, and a hidden layer. The BP algorithm divides the
training process into two steps. In the forward operation
stage, the signal is transmitted from the loser and the layer
to the output layer, reducing the actual value and the
expected value to obtain the residual signal. If the error
requirement is not met, the residual signal is transmitted
from the output layer to the loser layer, and the error is
assigned to the connection weights are adjusted according
to the error. The BP algorithm is to find the minimum error,
using the steepest descent method, the gradient of the error
is obtained, and adjust the weight according to its negative
gradient direction. In order to illustrate the BP algorithm,
first define the error function ε. Subtract the expected output
from the actual output, and the squared sum of the differ-
ence is used as the error function, then:

ε = 1
2〠

m

i=1
ci tð Þ − ĉ tð Þ½ �2: ð5Þ

Among them, ciðtÞ is the expected output, and ĉiðtÞ is the
Δωijactual output.
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The BP algorithm adjusts the weight according to the
negative gradient direction of the error ε, then the modifica-
tion amount Δωij of weight ωij is:

Δωij nð Þ = −ηg nð Þ + αΔωij n − 1ð Þ: ð6Þ

Among them, α is the momentum factor, n is the num-
ber of iterations, η is the adaptive learning rate, and g ðnÞ
is the gradient of the error function to the weight [19].

4. Improved Genetic Algorithm

The basic GA algorithm has a good solution ability for the
unimodal function, but the nonlinear problem in practice
is very serious, so it is very necessary to improve the algo-
rithm. This paper effectively improves the accuracy of the
algorithm by adjusting the coding method while improving
parameters such as crossover and variant operator.

4.1. Hybrid Coding Scheme. The advantage of binary coding
is simple operation, the search ability is strong, and the real
number coding is characterized by high precision and fast
efficiency [20]. In this paper, we combine binary and real
number coding optimization. This hybrid encoding
approach increases the genetic search range while improving
the algorithm accuracy.

4.2. Selection of Fitness Function. The fitness value is
expressed as:

f Xið Þ = e Xið Þ−1: ð7Þ

The objective function is expressed as:

e Xið Þ = 1
2n〠

n

j=1
〠
m

k=1
cjk − qijk

� �2
, ð8Þ

where qijk is the output of the jth node of the kth input,
cjk is the expected output, n is the number of training sam-
ples, and m is the number of output neurons [21].

4.3. Mixed Selection Operator. The author’s selection opera-
tion is divided into the following steps: sort by fitness value,
then randomly select m samples, and cross and mutate m
samples [22]. Keep the best sample of the parent.

4.4. Crossover Operator. When coding real numbers, use an
arithmetic crossover operator [23]. The arithmetic crossover
operator can be expressed as follows:

C1
i = P1

i + a1i P2
i − P1

i

� �
, i = 1, 2,⋯, n

C2
i = P2

i + a2i P2
i − P1

i

� �
, i = 1, 2,⋯, n

)
, ð9Þ

where C1
i , C

1
i are the individuals after crossover, P1

i ,P
2
i

are the individuals before the crossover, and a1i , a
2
i are ran-

dom numbers from 0 to 1 [24].

4.5. Mutation Operator. The mutation operation can
strengthen the diversity of the population. It is very impor-
tant to search for the optimal solution. The author uses basic
bit mutation operations in binary coding; in real coding, a
nonuniform mutation is used [25]. The new gene value xk′
used in the nonuniform mutation is:

xk′ =
xk + Δ t,Uk

max − ηk

� �
, random 0, 1ð Þ = 0,

xk − Δ t, ηk −Uk
max

� �
, random 0, 1ð Þ = 1,

8><
>:

ð10Þ

where Δðt,Uk
maxÞ is a random number in the range of ½

0,Uk
max − ηk� and Δðt, ηk −Uk

maxÞ is a random number in
the range of ½0, ηk −Uk

max�.
4.6. Crossover Probability and Mutation Probability. In the
GA algorithm, crossover probability Pc and mutation prob-
ability Pm will affect the convergence of the algorithm; there-
fore, the choice of Pc and Pm is very important to the
algorithm. The author chooses the adaptive crossover and
mutation probability:

Pc =
λ1 fmax − f ′
� �

/ fmax − �f
� �

, f ′ ≥ �f ,

λ2, f ′ < �f ,

8<
:

Pm =
λ3 fmax − fð Þ/ fmax − �f

� �
, f ′ ≥ �f ,

λ4, f ′ < �f ,

( ð11Þ

where λ1, λ2, λ3, and λ4 are constants of 0-1, fmax is the
maximum fitness value, 1 is the average value of fitness, �f is
the larger cross fitness value, and f is the fitness value of the
variant individual.

5. Results and Analysis

The author considered the failure of the accelerometer sen-
sor. Three detection models are designed using MATLAB:
the first is the classic BP neural network detection model,
the second type is the classic GA-BP neural network detec-
tion model, and the third is the improved GA-BP neural net-
work detection model, in order to compare the pros and
cons of the three models. The neural network constructed
by the author has 3 layers: the input layer, hidden layer,
and output layer, each having 1 layer, and the input layer
has 100 neurons, the hidden layer has 6 neurons, and the
output layer has 1 neuron.

In this paper, the classical BP algorithm, the classical
GA-BP algorithm, and the improved GA-BP algorithm were
trained, respectively, with a total of 150 sets of training data,
with the training function using LevenbregMarquardt
(trainlm), and the performance function using MeanSquare-
dError (mse). The simulation results are listed in Table 1,
and the convergence curves of the three algorithms are
shown in Figures 2, 3, and 4.

For the three algorithms, the detection rate can also be
used to evaluate the performance of the three methods, the

6 Journal of Sensors



detection rates of the three methods are shown in Figures 5,
6, and 7.

6. Conclusion

In the quadrotor UAV aircraft system, due to issues such as
manufacturing quality, working environment, and its own
structure, the actuator mechanism is easy to cause the failure
of the actuator mechanism. And as the application of quad-
rotor drones becomes more popular, the workplace and
environment of this work have gradually come into people’s
lives. Once the actuator mechanism fails, it is very easy to
cause fatal errors and hazards to the entire quadrotor UAV
system, seriously threatening people’s lives and property
safety. Therefore, it is very necessary for us to perform fault
diagnosis and fault-tolerant control on the actuator mecha-
nism of the quadrotor UAV. On the one hand, it can
improve the safety of the entire quadrotor UAV control sys-
tem; on the other hand, it can ensure that the entire quadro-
tor UAV system is not affected by external environmental
factors, maintaining the stability of the system. In the same
background of noise, the improved GA-BP algorithm has
the highest detection rate, the classic GA-BP algorithm is
second, and the classic BP algorithm is the worst. Therefore,
the improved GA-BP algorithm can quickly and accurately
detect various errors of the sensor. Response to the failure
can be accelerated by designing the failure regulation law
in the future.

Data Availability
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