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Abstract—A fault diagnosis method for sensor fault based 
on ensemble empirical mode decomposition (EEMD) energy 
entropy and optimized structural parameters least squares 
support vector machine (LSSVM) is put forward in this 
paper. Firstly, the original output fault signals are 
pretreatment with EEMD, and then the EEMD energy 
entropy is extracted as the fault feature vector. Then the 
radial basis function (RBF) kernel function parameters and 
the regularization parameter of LSSVM are optimized by 
using chaotic particle swarm optimization (CPSO) 
algorithm. Finally, with the applying of proposed diagnosis 
method, the model of sensor fault diagnosis is built for 
identification and decision. The diagnostic results show that 
the proposed method can identify sensor fault effectively 
and accurately. 
 
Index Terms—Fault diagnosis, EEMD energy entropy, 
LSSVM, CPSO, Pressure sensor 

 

I.  INTRODUCTION 

Sensor, as the source of data acquisition, plays a vital 
role in automatic and intelligent system. The operation of 
system, the accuracy of analysis and the correctness of 
decision directly depend on the measurement results. 
Especially in the manufacturing industry, aerospace 
industry and rail transport, unbearable consequences 
would happen once the sensor fault occurs. Thus it’s 
necessary to research on the sensor fault detection and 
diagnosis [1]. When the senor fault occurs, several fault 
features forms of output signals are exposed frequently: 
bias, spike, periodic interference, noise, drift and stuck. 
However, the fault signals are unstable and the frequency 
components are complex, it’s difficult to conduct time-
domain analysis or frequency-domain analysis 
individually to obtain the fault feature correctly. In 
reference [2], in order to diagnose the different kinds of 
sensor faults, a wavelet and wavelet packet transform 
(WPT) is introduced to the output signals, and the energy 
gradients are calculated in different scales. In reference 
[3], multiple sensor fault detection, isolation and 
accommodation method based on neural network is 

presented in UAV simulation, but the RBF neural 
network can easily fall into the local optimum. In 
reference [4], a wireless sensor fault diagnosis method is 
presented based on CPSO and SVM, the diagnostic 
results show that the CPSO-SVM has higher diagnostic 
accuracy of wireless sensor than PSO-SVM and BP 
neural network.  

In order to solve mode mixing problem, EEMD is 
introduced, which IMFs can be extracted from an 
unstable signal. Signal energy in different frequency band 
changes when sensor fails, thus a fault diagnosis method 
is put forward based on the EEMD energy entropy and 
optimized LSSVM. In order to show the superiority of 
LSSVM in nonlinear and high dimension pattern 
recognition, other methods are presented compared to the 
method proposed in this paper. 

II.  EEMD METHOD  

A. Ensemble Empirical Mode Decomposition 
EEMD is an adaptive signal decomposition method 

and shows a good signal to noise ratio, which can be 
appropriate for the analyzing nonlinear and nonstable 
process, overcomes the mode mixing effect [5-6]. EEMD 
take advantage of Gauss white noise, which is a uniform 
distribution in frequency domain. When adding the white 
noise, signal becomes continuous in different scales, in 
which way to reduce the mood mixing. The principles 
and decomposition steps are as follows [7-9]: 

(1) Add a random Gaussian white noise ( )n i with 
magnitudeα to the original time series ( )x i , and 
generate a new signal. 

 ( ) ( ) ( )y i x i n iα= +   (1) 

(2) Decompose the signal which has been processed 
with EMD according to (2), and gain several 
IMFs. 
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Where S is the number of IMFs, ( )sr i is the 
final residue, and ( )sc i is the IMFs 1 2( , ,... )Sc c c . 

(3) Repeat Step (1) and Step (2), and change the 
amplitude of white noise for each time. 

(4) Calculate the ensemble average of IMFs as the 
final results. 
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B. Energy Entropy of EEMD 
Generally, IMFs which are gained in first steps of 

EEMD have already included the most essential feature 
of original data. Thus IMFs in first steps of EEMD are 
chosen to extract the fault feature. The steps of EEMD 
IMFs decomposition and energy entropy are described as 
follows: 

(1) Process an EEMD for the original signal, and 
pick out first n IMFs which include the fault 
essential features. 

(2) Compute each IMF energy by 
 

+ 2

-
= (t) ( 1, 2, , )i iE c dt i S

∞

∞
=∫   (4) 

(3) Construct feature vector which element represents 
IMFs energy. 

 [ ]1 2, ,... ST E E E=  (5) 
(4) Normalize the feature vector T: the sum of IMFs 

energy is defined as: 
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(5) And the normalized feature vector T’ can be 
described as: 

 ' 1 2, , , SEE ET E E E
⎡ ⎤= ⎢ ⎥⎣ ⎦

 (7) 

T’ is the final input feature vector of LSSVM 
classification. 

III.  LEAST SQUARES SUPPORT VECTOR MACHINE 

A. Least Squares Support Vector Machine Principle 
LSSVM is an improvement of SVM, which replace the 

insensitive loss function of SVM with a quadratic loss 
function [10-11]. By constructing a quadratic loss 
function, the second classification optimization in SVM 
is transformed as a quadratic equation solution problem, 
in which way, decreases the complexity of computing and 
gains a better character on noise resistance and training 
speed. The basic principle and implementation steps of 
LSSVM refer to the reference [12-13]. In brief, the 
complex compute in high-dimensional feature space is 
replaced by inner product calculation of the kernel 
function, which avoids the dimensionality curse in high-
dimensional feature space calculation. The maximum 
dimension of linearity classification facet VC is 

determined by the dimension of the feature space. By 
adjusting different parameters, the dimension of the 
feature space can be changed, which decides the 
minimum empirical error of linearity classification facet. 
In a word, different type of kernel function decides 
different features of LSSVM. 

RBF kernel function 2 2( , ) exp(- - / )i ik x x x x σ=  is to 
prove the performance efficient compared with other 
kernel functions in identification and decision [14], thus 
RBF kernel function is selected for constructing LSSVM. 

 

B. Chaotic Particle Swarm Optimization Algorithm 
In the D-dimensional search space, the position and 

velocity of particle can be described as 
1 2( , ,..., )i i i iDx x x x=  and 1 2( , ,..., )i i i iDV v v v= , and the best 

previous position of particle is recorded 
as 1 2( , ,..., )i i i iDP p p p= . Then all the best positions for 
particles are constructed as a set. The velocity and 
position of each generation particle can be update 
according to the (8) and (9) [15-18]: 

 1 1
2 2

( 1) ( ) ( ( ) 
               -  ( )) ( ( ) -  ( ))
id id id

id gd id

v k v k c r p k
x k c r p k x k

ω+ = +
+   (8) 

 ( 1)  ( ) ( 1)id id idx k x k v k+ = + +   (9) 
Where k represents the iterations; ω represents inertia 

weight; 1c and 2c are acceleration coefficients, as well as 

1r  and 2r  are acceleration parameters with range[0,1] . 
Although the standard particle swarm optimization 

algorithm (PSO) is easy to use, it can easily trap into 
local optimum and converge slowly in later generation. In 
order to improve searching ability and avoid being 
trapped into local optimum, chaos theory is applied to 
improve the PSO algorithm, which is called CPSO 
algorithm. Due to the randomness, ergodicity and 
sensibility for the initial condition of the chaotic motion, 
both the ability to skip out of local optimum, and the 
convergence rate and precision of the CPSO algorithm 
are improved [19-20]. 

In order to lead into the chaotic motion, a logistic 
model is introduced to the standard particle swarm 
algorithm, which is described as follows [21-23]: 
 1 * *(1- ) 0,1, 2, ,n n nx x x n Nμ+ = =    (10) 

Where μ  is the chaos coefficient; n is iteration 
coefficient, and nx  is a variable. The solution period of 
equation will be infinitely great, which results in an 
uncertain solution, when 3.5714 4μ≤ ≤ . At this time, 
logistic takes the mapping into a chaotic state. gdp  is 
mapped to [0,1], the domain of definition for logistic 
equation is gained as follows[24-25]: 
 min max min( -  ) / ( -  )gdy p R R R=  (11) 

maxR and minR represent the upper bound and lower 
bound respectively. Assume the chaos sequence for M-th  
generation is 1 2( , ,..., )My y y y= , and then a mapping can 
be computed by (12): 
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 , min max min ( - ) 1,2, ,gd m mp R y R R m M= + =    (12) 
A new particle feasible solution sequence is gained as 

below: 
 * * * *

,1 ,2 ,( , , ..., , )gd gd gd gd Mp p p p=   (13) 
Therefore, owing to the global ergodicity of chaotic 

particle, a chaotic ergodic process is conducted according 
to the principle of chaotic motion after the iterative 
solution for every particle, which is used to search the 
whole space instead of staying in the local optimum. 

IV. CPSO-LSSVM MODEL WITH RBF KERNEL FUNCTION 

The CPSO algorithm based on LSSVM with RBF 
kernel function need to optimize two parameters: kernel 
function parameter γ and penalty coefficient σ . Then 
initialize optimization steps are represented as follows: 

(1) System initialization. The scale of particle swarm 
is set as m=20. And particle position ( , )γ σ  
randomly. 

(2) Determine the range of optimized parameters, and 
set the maximum speed. Penalty coefficient σ is 
used to balance the model complexity and 
approximate error, which means a greater 
σ represents a higher degree of fitting. γ is a 
parameter used to reflect the connection between 
support vectors. Considering reference [15] and 
several trial results, the range of ( , )γ σ  is set 
to{0.01,1000;0.01,1000} . 

(3) Build a CPSO-LSSVM model, and calculate the 
fitness function ( ) 1,2, ,iF x i m=   for each 
particle. ( )iF x  is applied to compare with local 
optimum value ( )

ibestF P  then. If 

( ) ( )
ii bestF x F p< , the former generation ( )

ibestF P  

is replaced by ix . Fitness function is described as 
below: 

 
1

1( )
m

r
i

i r w

f
F x

m f f=

<
+∑  (14) 

Where cf  represents the right fault identification, 
and cf  represents the wrong fault identification. 

(4) Compare the best fitness function for each 
particle ( )iF x  to that for all the particles ( )

ibestF G . 

If ( ) ( )
ii bestF x F G< , the swarm best position 

ibestG  is replaced by ix . 
(5) Refresh the particle position and speed, as well as 

inertia weight coefficientω . 

(6) Judge the terminal condition. Check the iterations 
whether meets T = 200; or check the fitness 
function -4( ) 1 10iF x < × . If so, terminate the 
optimization.  

(7) Calculate the optimum parameters, and then build 
the CPSO-LSSVM sensor fault identification 
model with the optimum values of ( , )γ σ . 
 

2Obtain the global optimum values of ( , )c σ

 
Figure 1.  Flow Chart of LSSVM optimized by CPSO 

V.  EXAMPLES AND ANALYSIS 

A. Feature Extraction 
The fault diagnosis flow chart of sensor based on 

EEMD energy entropy and LSSVM is shown in Figure 2. 
Firstly the original output signal is decomposed with 
EEMD according to (1)-(3), and IMFs energy can be 
achieved according to (4)-(7). Then the feature vector is 
concluded after normalization process. At last, sensor 
failure types are identified by optimized LSSVM

 
Figure 2.  Flow chart of sensor fault diagnosis 

The proposed fault diagnosis algorithm in this paper is 
confirmed by an example of the fault diagnosis for 

pressure sensor of electric multiple units (EMUs), which 
is used to measure the brake control system air spring 
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pressure of CRH2 EMUs. According to the data in bias, 
spike, drift, cyclic, erratic and stuck (Figure 3), an EEMD 
process is conducted for every 150 sets of data in every 
fault type, following the steps proposed in Section 2.1. 
Then the IMFs energy feature vector is extracted and 100 
sets of are selected among them randomly, used for the 
input of LSSVM classification training, while 50 sets of 
data for fault diagnosis. As EEMD is a principal 
component analysis method, and IMFs gained in first 
steps of EEMD has already included the most essential 
feature of original data, the first 8 IMFs components are 
chosen. 

The simulation spike failure of pressure sensor is 
shown in Figure 4. Figure 5 is EMD waveform of spike 
failure. It includes 8 IMFs and residual items, and has 

mode mixing during the EMD, which influence the 
accuracy of fault feature extraction. Figure 6 is the 
waveform of EEMD, which includes 8IMFs and residual 
items, and without mode mixing. Each IMF indicates the 
different fault information.  

The energy distributions for 8 IMFs components are 
calculated respectively in seven fault states, and 
eigenvector matrix is built by normalization operation. In 
order to compare with other fault feature extraction 
methods, part of the experiment data are shown in 
TABLE I and TABLE II, which applied with wavelet 
packet energy entropy extraction method and EMD 
energy entropy extraction method. TABLE III lists 
pressure sensor feature vector of seven fault state.  

 

Figure 3.  Pressure sensor fault output voltage signal 
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Figure 4.  Waveform of simulation spike failure 
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Figure 5.  EMD waveform of spike failure 
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Figure 6.  EEMD waveform of spike failure 

B.Parameters Optimization 
The penalty coefficient γ and kernel function 

parameter σ of LSSVM are optimized with CPSO 
algorithm. The detail optimized parameters are set as 
following: the number of particle is 20; the learning 
coefficients 1 2r r= are constantly equal to 2.05; the 

maximum iterations max 500k = ; and the initial inertia 
weight max 0.95ω = , min 0.35ω = .The penalty coefficient 
γ and kernel function parameters σ  are optimized 
according to the flow of Fig.1,and then the optimization 
results are 108.245γ =  and 1.436σ = . 
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TABLE I.  
THE PART OF SENSOR FEATURE VECTOR UNDER DIFFERENT FAULT TYPES BY WPT 

Type of  speed 
sensor fault 1 /E E  2 /E E 3 /E E 4 /E E 5 /E E 6 /E E 7 /E E  8 /E E

Nomal 

0.731 0.350 0.278 0.281 0.271 0.243 0.194 0.093 
0.729 0.345 0.284 0.279 0.254 0.249 0.193 0.086 

        
0.729 0.354 0.279 0.283 0.258 0.238 0.195 0.098 

Bias 

0.994 0.066 0.048 0.046 0.043 0.038 0.034 0.019 
0.994 0.045 0.044 0.044 0.042 0.035 0.031 0.014 

        
0.992 0.058 0.048 0.040 0.035 0.035 0.028 0.017 

Spike 

0.842 0.268 0.240 0.210 0.179 0.182 0.136 0.085 
0.834 0.271 0.234 0.204 0.183 0.178 0.141 0.091 

        
0.841 0.265 0.241 0.211 0.180 0.177 0.138 0.087 

Drift 

0.999 0.008 0.007 0.004 0.004 0.003 0.002 0.002 
0.999 0.007 0.007 0.005 0.003 0.003 0.003 0.001 

        
0.998 0.009 0.007 0.004 0.004 0.002 0.002 0.002 

Cyclic 

0.912 0.214 0.179 0.168 0.167 0.161 0.115 0.087 
0.924 0.187 0.181 0.154 0.153 0.148 0.108 0.065 

        
0.911 0.212 0.176 0.164 0.162 0.157 0.112 0.074 

Erratic 

0.409 0.408 0.399 0.387 0.384 0.334 0.271 0.132 
0.411 0.410 0.400 0.378 0.374 0.341 0.270 0.128 

        
0.408 0.408 0.398 0.386 0.382 0.331 0.268 0.134 

Stuck 

0.735 0.346 0.298 0.268 0.266 0.248 0.195 0.101 
0.734 0.347 0.301 0.267 0.265 0.245 0.196 0.098 

        
0.739 0.351 0.297 0.270 0.269 0.247 0.194 0.104 

 

TABLE II.  
THE PART OF SENSOR FEATURE VECTOR UNDER DIFFERENT FAULT TYPES BY EMD 

Type of  speed sensor 
fault Feature vector 

Nomal 

0.519 0.365 0.501 0.412 0.291 0.287 0.674 
0.521 0.364 0.503 0.414 0.292 0.285 0.677 

       
0.517 0.366 0.499 0.411 0.290 0.284 0.676 

Bias 

0.085 0.065 0.084 0.091 0.102 0.982 0.687 
0.086 0.064 0.087 0.092 0.106 0.984 0.683 

       
0.089 0.068 0.085 0.094 0.105 0.981 0.688 

Spike 

0.352 0.317 0.450 0.438 0.382 0.425 0.836 
0.354 0.318 0.448 0.437 0.379 0.423 0.837 

       
0.351 0.316 0.426 0.435 0.377 0.428 0.834 

Drift 

0.009 0.007 0.007 0.006 0.009 0.998 0.782 
0.008 0.007 0.008 0.006 0.011 0.997 0.778 

       
0.007 0.008 0.007 0.005 0.008 0.999 0.774 

Cyclic 

0.319 0.554 0.657 0.273 0.185 0.181 0.689 
0.321 0.556 0.651 0.274 0.189 0.179 0.690 

       
0.318 0.555 0.654 0.276 0.182 0.182 0.687 

Erratic 

0.736 0.467 0.339 0.261 0.178 0.201 0.753 
0.736 0.461 0.340 0.264 0.177 0.204 0.759 

       
0.740 0.468 0.335 0.264 0.174 0.199 0.756 

Stuck 

0.532 0.378 0.465 0.425 0.302 0.298 0.801 
0.533 0.381 0.461 0.426 0.304 0.299 0.798 

       
0.530 0.376 0.467 0.426 0.304 0.301 0.803 
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TABLE III. 
 THE PART OF SENSOR FEATURE VECTOR UNDER DIFFERENT FAULT TYPES BY EEMD 

Type of  speed sensor 
fault 1 /E E  2 /E E 3 /E E 4 /E E 5 /E E 6 /E E 7 /E E  8 /E E

Nomal 

0.731 0.350 0.278 0.281 0.271 0.243 0.194 0.093 
0.732 0.349 0.277 0.280 0.272 0.244 0.194 0.092 

        
0.733 0.350 0.276 0.283 0.269 0.241 0.192 0.094 

         

Bias 

0.994 0.066 0.048 0.046 0.043 0.038 0.034 0.019 
0.993 0.065 0.049 0.045 0.044 0.038 0.031 0.020 

        
0.995 0.062 0.047 0.045 0.042 0.039 0.035 0.018 

Spike 

0.842 0.268 0.240 0.210 0.179 0.182 0.136 0.085 
0.841 0.269 0.241 0.211 0.178 0.183 0.137 0.086 

        
0.839 0.267 0.240 0.212 0.180 0.181 0.138 0.086 

Drift 

0.999 0.008 0.007 0.004 0.004 0.003 0.002 0.002 
0.999 0.008 0.005 0.005 0.004 0.003 0.003 0.002 

        
0.998 0.007 0.006 0.006 0.004 0.003 0.003 0.001 

Cyclic 

0.912 0.214 0.179 0.168 0.167 0.161 0.115 0.087 
0.914 0.215 0.180 0.166 0.165 0.160 0.114 0.089 

        
0.911 0.216 0.176 0.169 0.166 0.159 0.115 0.088 

Erratic 

0.409 0.408 0.399 0.387 0.384 0.334 0.271 0.132 
0.410 0.409 0.398 0.385 0.383 0.332 0.273 0.133 

        
0.407 0.407 0.396 0.389 0.385 0.335 0.274 0.131 

Stuck 

0.735 0.346 0.298 0.268 0.266 0.248 0.195 0.101 
0.736 0.347 0.299 0.265 0.264 0.245 0.198 0.103 

        
0.734 0.348 0.300 0.267 0.266 0.247 0.197 0.102 

 

C. Experiment Analysis  
In order to compare the identification performance for 

the fault features of method proposed and methods, eight 
energy entropy features are achieved in the EEMD 
process in 700 sets of data, 100 for each state. Then 50 
sets of data are input to the LSSVM for training, while 
the others are used for test. The comparison results are 
shown in TABLE IV. 

To compare the identification ability of different 
methods, 50 sample sets of data for each sensor fault are 
used to train the classifiers, and the other 50 sets of data 

to sensor fault identification. Compared with the methods 
based on WPT, EMD and EEMD could diagnose the 
sensor fault efficient as preprocessor, TABLE IV shows 
that the LSSVM based on EEMD is superior to those 
based on WPT and EMD in classification. This is because 
that the EEMD decomposition is a self-adaptive and can 
avoid the mode mixing effect compared to the EMD 
decomposition, and the WPT decomposition is not self-
adaptive, that is the frequency components after 
decomposition would not change with the fault signal. 

TABLE IV.  
COMPARISON OF DIAGNOSTIC RESULTS AMONG DIFFERENT METHODS 

Method Training 
samples 

Diagnosis 
samples 

Identification results 
Normal Bias Spike Drift Cyclic Erratic Stuck 

WPT- 
BPNN 50 50 38 39 41 40 38 41 43 

EMD- 
SVM 50 50 48 50 46 49 47 48 49 

EEMD- 
LSSVM 50 50 50 50 49 49 50 50 50 

 
TABLE V. 

 COMPARISON OF DIAGNOSTIC RESULTS UNDER SMALL SAMPLES  

Method Training 
samples 

Diagnosis 
samples 

Identification results 
Normal Bias Spike Drift Cyclic Erratic Stuck 

WPT- 
BPNN 10 30 18 20 20 19 17 18 22 

EMD- 
SVM 10 30 28 27 24 28 26 27 28 

EEMD- 
LSSVM 10 30 29 30 26 27 28 29 29 
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According to the results in TABLE V, EEMD-LSSVM 
can diagnose the sensor fault in a higher accuracy among 
EEMD-LSSVM, EMD-SVM and WPT-BPNN, and the 
fault diagnosis strategy based on energy entropy feature 
with EEMD is validly. 10 sets of original sensor output 
data is taken in the example as a kind of small sample 
situation. EEMD-LSSVM performs better in 
identification accuracy of seven different sensor faults 
than EMD-SVM and WPT-BPNN of small sample 
situation. 

VI.  CONCLUSION 

In order to diagnose the sensor fault, EEMD energy 
entropy is preprocessed to the sensor output fault signal, 
which performs very well in noise reduction and detail 
features extraction. An eigenvector that represents the 
energy distribution in different fault patterns can be 
achieved by extracting the IMFs energy entropy of 
EEMD. Then a training and identification method is 
presented for pressure sensor of EMUs by optimized 
LSSVM with the parameters is optimized by CPSO 
algorithm. According to the theory analysis and 
experiment results, the extracted feature has a good 
separability and robustness for the sensor fault 
identification. 
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