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ABSTRACT 

This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using 
the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The 
SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is there- 
fore numerically robust. The SCIF is applied to a highly maneuvering target tracking problem in a distributed sensor 
network with feedback. The SCIF’s performance is finally compared with the regular cubature information filter and the 
traditional extended information filter. The results, presented herein, indicate that the SCIF is the most reliable of all 
three filters and yields a more accurate estimate than the extended information filter. 
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1. Introduction 

Sensor fusion is generally defined as the use of techni- 
ques that combine data from multiple sensors such that 
the resulting information is more accurate and more reli- 
able than that from a single sensor. Sensor fusion tech- 
niques are widely used in many applications such as mo- 
bile robot navigation, surveillance, air-traffic control and 
intelligent vehicle operations. For multiple sensor fusion 
in a linear Gaussian environment, the information filter, 
which can be considered as the dual of the Kalman filter, 
has been a viable solution [1-3]. Although the Kalman 
filter and the information filter are algebraically equiva- 
lent, the Kalman filter propagates a state vector and its 
error covariance whereas the information filter uses an 
information vector and an information matrix. This dif- 
ference makes the information filter to be superior to the 
Kalman filter in fusion problems because computations 
are straight-forward and simple. Moreover, no prior in- 
formation about the system state is required. 

For nonlinear fusion problems however, it is difficult 
to obtain an optimal solution. In the past, researchers 
have closely followed the linear fusion theory to obtain a 
suboptimal solution for nonlinear fusion problems. Re- 
cently, Vercauteren et al. derived the sigma-point infor- 
mation filter using the statistical linear regression theory 
and the unscented transformation [4] whereas Kim et al. 
derived a similar set of steps using a minimum mean 
squared-error criterion [5]. When we are confronted with 
an issue of striking the appropriate balance or trade-off  

between accuracy and computational complexity, the cu- 
bature Kalman filter (CKF) is considered to be the logi- 
cal choice [6]. The CKF is a more accurate and stable 
estimation algorithm than the unscented/sigma-point fil- 
ter. However, due to the fact that the sigma-point filter 
and the CKF share a number common characteristics, the 
derivation of the Cubature Information Filter (CIF) is 
straightforward and hence trivial. In this paper, we focus 
on to derive the square-root version of the CIF for im- 
proved numerical stability. Unlike the CIF, the SCIF 
avoids numerically sensitive matrix operations such as 
matrix square-rooting and inversion. 

The rest of the paper is organized as follows: Section 2 
reviews information filtering in general. Section 3 de-
rives the SCIF using the linear fusion theory and matrix 
algebra. In order to validate the formulation and reliabil- 
ity of the SCIF, it is applied to a highly maneuvering tar- 
get tracking problem in a distributed sensor network with 
feedback in Section 4. Section 5 concludes the paper 
with final remarks. 

2. Information Filtering: A Brief Review 

The information filter is a modified version of the Kal- 
man filter. The state estimates and their corresponding 
covariances in the Kalman filter are replaced by the in- 
formation vectors and information matrices (inverse co- 
variances), respectively, in the information filter. The 
updated covariance and the updated state take the infor- 
mation form, as shown by 
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Similarly, the predicted covariance and the predicted 
state have equivalent information forms: 

              (3) 

1|ˆk k            (4) 

At the heart of any one of information filters lies the 
information update, which now becomes a trivial sum. 

1| 1k k             (5) 

1| 1k k  1| 1ˆ ˆk k k  y y i

 T

1| , 1|k k xz k k Y P

 1 T
, 1| 1|ˆxz k k k k  z P y

          (6) 

Here, the information contribution matrix and the in- 
formation contribution vector are defined as follows, 
respectively [4,5]: 

  1
1 1| , 1| 1=k k k xz k k kR
   Y P

  ˆRi Y P z

    (7) 

1 1| , | 1 1 1|k k k xz k k k k k k      (8) 

Information Fusion 

In the sensor fusion literature, there are a number of sen- 
sor networks with their own virtues and limitations [2]. 
In this paper, we specifically consider a distributed con- 
figuration with feedback [3]. As shown in Figure 1, in 
this network, each local sensor has its own information 
processor. The locally processed results are then trans- 
mitted to the fusion center for computing a global esti- 
mate. The global estimate is broadcast so that all the lo-
cal sensors utilize the global estimate for the purpose of 
processing the next measurement. The advantage of us- 
ing the information filters within the local sensors is that 
the global estimate in the fusion center can be computed 
from 

ply summing the local information vectors and matrices: 

sn

| | 1 ,
1

ˆ ˆ
sn

k k k k k s
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 sensor measurements at each time step by sim-  

y y i

| | 1 ,
1

sn

k k k k k s
s




 Y Y

             (9) 

           (10) 

Note that the computations outlined in this section 
hold under the following assumptions: 1) The tracking 
problem at hand is described by a linear Gaussian system; 
2) The sensor measurements are uncorrelated to each 
other; 3) There is no measurement origin of ambiguity; 4) 
The sensors are synchronized; 5) There is no receipt of 
out-of sequence measurements; 6) There is no commu- 
nication loss among sensors. When one or more of these 
conditions are violated, various techniques have been 
proposed to get around them in the literature [2]. 

3. Square-Root Cubature Information  
Filtering 

In each recursion cycle, it is important that we preserve 
the two properties of an information matrix, namely, its 
positive definitiveness and symmetry. Unfortunately, when 
the CIF is committed to an embedded system with lim- 
ited word-length, numerical errors may lead to a loss of 
these properties. The accumulation of numerical errors 
may cause the information filter to diverge or otherwise 
crash. The CIF involves numerically sensitive operations 
such as matrix square-rooting and matrix inversion, 
which may combine to destroy the fundamental proper- 
ties of an information matrix. The logical procedure to 
preserve both properties of the information matrix and to 
improve the numerical stability is to design a square-root 
version of the CIF. Although the square-root cubature 
information filter (SCIF) is reformulated to propagate the 
square-roots of the information matrices, both the CIF 
and the SCIF are algebraically equivalent to other. 

 

 

Figure 1. Information flow in a distributed sensor configuration with feedback. 
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Before deriving the SCIF, for convenience, we intro- 

duce the following notations: 
 We denote a general triangularization algorithm (e.g., 

QR decompositio n) as  TriaS A , where S  is a 
lower triangular matrix. The matrices A  and S  are 
related to each other as follows: Let R  be an upper 
triangular matrix obtained from the QR decomposition 
on TA ; then TS R . 

 We use ,Q kS  and ,R kS  to denote the square-roots 
of kQ  and kR , respectively. That is, T

k Q S  
and T S . 

, ,k Q kQ S

|k kY
T

| , | , |y k k y k kY S S

1|k kY
T

, 1| , 1| .y k k y k k  S

ˆ ,y S

1
| | .k k k k

P Y

T 1
, | , |y k k y k k
  S S

T
| , |k k y k k

S S

, ,k R k R k

Because many of the SCIF computations can be easily 
borrowed from the SCKF [7], we only derive the steps 
that require explicit treatments in the sequel. Like the 
SCKF, the SCIF also includes two steps, namely, the 
time update and the measurement update. 

R S

3.1. Time Update 

Let  be 

k k               (11) 

and  be  

1|k k Y S             (12) 

As depicted in Figure 2, the time update of the SCIF 
connects  to  1| , 1|k k y k k   via three paths. 
Let us first consider how to derive Path 1, in which the 
information space is projected onto the state space. Tak- 
ing inverse on both sides of (1), we get  

 | , |ˆ ,k k y k ky S

               (13) 

Substituting the square-root factors on both side of (13) 
yields 

  1T T
| | , | , |k k k k y k k y k k


S S S S     (14) 

We may therefore write the square-root of the error 
covariance matrix 

                (15) 

We summarize the following important result from (13) 
and (15) as follows: 

1 T
| | | , | .k k k k k k y k k

   P Y S S         (16) 

Because , |y k k  is a triangular matrix, the least-squares 
method can be used to avoid computing its inversion ex- 
plicitly [8]. From (2), we write the updated state estimate  

S

T
| | | | | |ˆ ˆ ˆ ,k k k k k k k k k k k k x P y S S y

x̂ S
ˆ k

       (17) 

which completes Path 1. 
As shown in Figure 2, Path 3 is an inverse projection 

(from the state space to the information space) of Path 1. 
By closely following this idea and using (3), (4), the state 
space quantities can be projected back onto the informa- 
tion space to obtain Path 3. Because Path 2 is identical to 
the time update of the SCKF, the reader may refer to Sec- 
tion VII of [7] for a detailed derivation. 

3.2. Measurement Update 

In the measurement update step, we will see how to fuse a 
new measurement with the predicted information to ob- 
tain the updated information. As depicted in Figure 3, the 
measurement update step also includes three paths. Con- 
sider Path 1. Given 1|k k  and 1|k k , the predicted 
measurement 1|kz  and the sub-matrices of the trans- 
formation matrix T , namely, 11  and 21  can be ob- 
tained as described in Section VII of [7]. Fortunately, 

1|k k  and 1|k k  are available as the by-products of the 
time update of the SCIF, specifically, from Path 2 of the 
time update. For this reason, we do not describe the deri- 
vation of Path 1 in this paper. 

T T

x̂ S

 

 

Figure 2. Time update of the SCIF. 
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Figure 3. Measurement update of the SCIF. 
 

Let us derive Path 2 now. The end products of Path 2 
are the information contribution vector  1k , and the 
square-root information contribution matrix 

i
 S

S
, 1i k . 

First, we will derive , 1i k . By closely following (16), 
we may write the inverse of the measurement noise co- 
variance matrix 

T
, , .R k R k

S S                  (18) 

Substituting (18) into (7) and rearranging the right hand 
side, we get 

  T

, 1| , 1z k k R k P S

1k

1 1| , 1| , 1 1|k k k xz k k R k k k x     Y P S Y  (19) 

Therefore, from (19), we may write   in a fac- 
tored form:  

T
1 , 1 , 1,k i k i k   S S

 n m

            (20) 

where the square-root information matrix of dimension 
 is defined as  

, 1 1i k k k S Y | , 1| , 1xz k k R k P S             (21) 

T
, 1| , 1|y k k y k k  S S

T

, 1| , 1.xz k k R k P S

1 11P T T

     (22) 

Because , 1| 2xz k k  (see Equation (37) of [7]), 
we finally write (22) as 

T T
| 21 11 , 1k R k T T S

1ki

1| 1|ˆ ˆk k k k  y Y x

1|Y

T
1| 1|ˆk k k k  y Y x

 

, 1 , 1| , 1i k y k k y k S S S     (23) 

To determining , we rewrite (4) as  

1|k k             (24) 

Because k k  is a symmetric matrix, we may also 
write (24) as  

1|ˆk k              (25) 

Substituting (25) into (8) yields  

 

1
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Substituting (21) into (26) and expanding the right 
hand side yields  

  T
1 , 1 , 1 1 1| , 1 , 1 1|ˆˆk i k R k k k k i k i k k k         i S S z z S S x

ˆ

 (27) 

Consider Path 3 now. The updated information vector 

1| 1k k   can be computed by substituting (27) into (6). 
To obtain the updated information matrix 1| 1k k

y

 Y , we 
replace the right hand side of with square-roots and write  

T T
1| 1 , 1| , 1| , 1 , 1

T

, 1| , 1 , 1| , 1

k k y k k y k k i k i k

y k k i k y k k i k

     

   

 

       

Y S S S S

S S S S
 

Hence, the square-root of the updated information ma- 
trix is given by 

 , 1| 1 , 1| , 1Triay k k y k k i k      S S S      (28) 

Note: When the local sensors employ the square-root 
information filtering algorithm, they are required to send 
the square-root information matrices to the fusion center 
(see Figure 1). For a distributed sensor network with sn  
sensors, we may obtain , 1| 1y k k   by augmenting the 
arguments on the right hand side of (28) with 

S

sn  square- 
root information contribution matrices coming from sn

   

 
sensors. 

 1
, 1| 1 , 1| , 1 , 1Tria sn

y k k y k k i k i k    
  . S S S S  (29) 

Table 1 below summarizes the steps involved in the 
SCIF algorithm. 
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Table 1. SCIF algorithm 

SCIF: Time Update 

1) Assume at time k that  | , |
ˆ ,k k y k ky S  is known. Compute the square-root covariance matrix 

S T

| , |k k y k k

 S

T

| | | |
ˆ ˆ

k k k k k k k kx S S y

                                                   (30)

2) Compute the state estimate 

                                                (31)

3) Use the time-update of the SCKF to compute  from  1| 1|
ˆ ,k k k k x S  | |

ˆ ,k k k kx S

T

, 1| 1|y k k k k


 

. 

4) Compute the square-root of the predicted information matrix 

S S

T

, 1| , 1| 1|
ˆ ˆ

y k k y k k k k   y S S x

                                                 (32)

5) Compute the predicted information vector 

1|k k                                             (33)

SCIF: Measurement Update 

1) Use the measurement-update of the SCKF to compute  and  from 11 21T T 1| 1|
ˆ ,k k k k x S . 

2) Compute the square-root of the information contribution matrix 

T T

, 1| 21 11 , 1,y k k R k S T T S, 1 , 1|i k y k k S S                                         (34)

where the inverse of the measurement noise covariance matrix 

T

, 1 , 1.R k R k


 S S                                               (35)

3) Compute the information contribution vector 

 1 , 1 , 1 1 1|
ˆ

k i k R k k k k    i S S z z T

, 1 , 1 1|
ˆ .i k i k k k    S S x

1| 1 1| 1
ˆ

k k k k k

                               (36)

4) Compute the updated information vector 

ˆ
    y y i                                            (37)

5) Compute the square-root of the updated information matrix 

 , 1| , 1 .y k k i k , 1| 1 Triay k k     S S S                                      (38)

 
4. Application to Decentralized Sensor  

Fusion 

Context. We consider an air-traffic control scenario, 
where an aircraft executes maneuvering turn in a horizon- 
tal plane at a constant, but unknown turn rate . Figure 
4 shows a representative trajectory of the aircraft. The 
kinematics of the turning motion can be modeled by the 
following nonlinear process equation [1]: 



1 1

sin 1 cos
1 0 0

0

,
0

0

1

k k k

T T

0 cos 0 sin

1 cos sin
0 1

0 sin 0 cos

0 0 0 0

T T

T T

T T

 

         
 
 
  
 
 


 
 
 

x x v

where the state of the aircraft 

  

  
 

  

  

Figure 4. True aircraft trajectory—solid line, SCIF esti-

[ [1]  [2]  [3]  [4]  [5] ]x

 
mate—dotted line, —Radar locations. 

 
T x x x x x ;    1x  and  3x  

denote positions, and  2x  and  4 te velocities x  deno
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in the x and y directions, respectively; T is the time-in- 
terval between two consecutive measurements; the proc- 
ess noise  1 ,kv Q0  with a nonsingular covariance 

 1 1 2q qM Mdiag TQ , where  q

3 2T

2
3 2 ;

2

T

T
T

 
 
 
 
 
 

 

m 1q  and 2q  are related to proc-
a

tion is given 

 

M

The scal
ess

by 

ar para eters 
 noise intensities. The r dars were assumed to measure 

range and range-rate. For a radar located at  
    T
1 , 2s s s   x x x , the measurement equa

       
          

       
  
 

2
1 1 3

1 1 2 3

1 1 3

k s k

k k s k k s
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x x x x
2

2 2

2

2 4

2

s

k k

s




   
  
 

z x x x x x

x x x x

x w

(39) 

where the measurement noise covariance R  is given by  

   2 2cov diag .   R w  k r r 

To make this nonlinear tracking problem highly diffi-
cu

e d  70 s, 70 - 90
0 - 

2 sT   

2 30.1 m s   

6 3
2 10 sq

lt, the target trajectory was made up of four segments, 
in each of which   was set to be 1 1 15 s , 9 s , 3 s       
and 19 s  for th uration of 0 - 4  
s and 100 s, respectively. We used the following pa- 
rameters for simulation: 

0 s, 40 -
 9

1q

   

10 mr   

10 mr s 

itial state was assumed to be at  
T12 s  

  

osen randomly 
fr un, w

2 2diag 25 m s  
 

tal of 100N

 

The true in

1 1s    0 0 m 100 m s 400 m 120 mx

The initial state estimate 0/0x̂  was ch
om  ,x P  in each r here 

2 2 2m 25 m s 25 mP

0 0/0

100

 
0

211.7 m rad s .   

For a fair evaluation, we made a to

0/

  
in  refer to

e 

dependent Monte Carlo runs (The reader may  
https://sites.google.com/site/haranarasaratnam/software 
for a set of Matlab code used to generate the results). Th
radars were randomly placed in a square-shaped surveil- 
lance region with the opposite vertices at (–4000, –4000) 

and (4000, 4000). In this experiment, the number of ra- 
dars, sn , was varied from one to fifteen. We employed 
the following information filters for tracking the aircraft: 
 Extended Information Filter (EIF); 
 Cubature Information Filter (CIF); 
 Square-root Cubature Information Filter (SCIF). 

own 
to

rformance comparison, 
w

Note that the unscented information filter boils d
 the CIF when the free parameter   is forced to take 

zero. For this reason, the unscented information filter 
was excluded from comparison. 

Performance Metrics. For pe
e computed the accumulative root mean-squared error 

(ARMSE) in position and velocity. The ARMSE yields a 
combined measure of the bias and variance of a filter 
estimate. We define the ARMSE in position  

 ARMSE pos

         2 2

, | , , | ,
1 1

1 1
ˆ ˆ1 1 3 3

N K

k n k k n k n k k n
n kN K 

     x x x x
 

where     , ,1 , 3k n k nx x  and     | , | ,ˆ ˆ1 , 3k k n k k nx x  are 
e and globally e d positions at the the tru stimate n-th 

Monte Carlo run. Similarly to the ARMSE in position, 
we may also write formula of the ARMSE in velocity. To 
check the numerical robustness of an information filter, 
the filter divergence rate was introduced. The filter was 
declared to diverge when  MSE pos  of a specific 
Monte Carlo run exceeded 1 quently, those 
diverged runs were excluded from the final calculations 
of 

00 m. Subse

 ARMSE pos  and  ARMSE vel . 
Obse igures 5( howrvations. F a) and (b) s  the ARMSE 

in position and velocity, respectively, for the SCIF and 
EIF. As expected, as the number of sensors sn  increases, 
the ARMSEs in position and velocity decrea . However, 
the performance gain quickly diminishes; as 5sn  , the 
performance gain seems to be trivial. Mor , the 
SCIF consistently outperforms the EIF irrespective of 

se

eover

sn  although the performance deviation between the tw  
reduces with 

o

sn . The CIF is not included in Figures 5(a) 
and (b) because its performance was almost identical to 
the SCIF. 

Figure 6 shows how many times each filter experi- 
en

5. Concluding Remarks 

erically robust square-root  

ced divergence out of N = 100 independent Monte 
Carlo runs. As can be seen from Figure 6, the EIF di-
verges the most. However, its divergence rate decreases 
as ns increases. The CIF diverges a few times especially 
when ns is less. The SCIF diverges a few times only when 
ns = 2. Unlike the CIF, the SCIF does not diverge when ns 
= 3 and 4. This observation indicates that the SCIF is su- 
perior to other filters in terms of numerical robustness. 
None of the filters diverged when 7sn  . 

This paper has presented a num
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cubature information filter (SCIF) algorithm for multi- 
sensor fusion in a nonlinear Gaussian environment. Be- 
cause the SCIF propagates the square-root matrices, it 
avoids to compute numerically sensitive matrix calcula- 
tions. It was successfully demonstrated that the proposed 
SCIF algorithm is numerically robust using a computer 
experiment in which a target tracking problem in a dis- 
tributed sensor network with feedback was considered. 
One of the interesting future research topics is to compare 
the computational demands of various information filters. 
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