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In sensor network localization, multihop based approaches have been proposed to approximate
the shortest paths to Euclidean distances between pairwise sensors. A good approximation can
be achieved when sensors are densely deployed in a convex area, where the shortest paths are
close to straight lines connecting pairwise sensors. However, in a concave network, the shortest
paths may deviate far away from straight lines, which leads to erroneous distance estimation and
inaccurate localization results. To solve this problem, we propose an improved multihop algorithm
that can recognize and filter out the erroneous distance estimation, and therefore achieve accurate
localization results even in a concave network.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks, network topology

General Terms: Algorithm, Performance

Additional Key Words and Phrases: Sensor networks, localization, multihop, concave

ACM Reference Format:

Wang, C. and Xiao, L. 2008. Sensor localization in concave environments. ACM Trans. Sens. Netw.
4, 1, Article 3 (January 2008), 31 pages. DOI = 10.1145/1325651.1325654 http://doi.acm.org/
10.1145/1325651.1325654

1. INTRODUCTION

It is important to determine sensors’ locations because it provides fundamen-
tal support for many location-aware protocols [Karp and Kung 2000; Ko and
Vaidya 2000; Navas and Imielinski 1997] and applications [Simon et al. 2004].
A simple approach is to infer a sensor’s position through GPS, which measures
distances from a sensor to multiple reference points in Satellites and calculates
the sensor’s position through triangulation computation. However, due to the
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design constraint of low cost, it is prohibitive to equip GPS receivers in all sen-
sors. A compromised solution is to deploy GPS receivers to a few sensors that
are defined as beacons. The rest of sensors infer their positions based on their
relative distances to those beacons. Based on this model, the sensor localization
problem can be formalized as follows. Given a network graph G = (Vm

⋃
Vn, E),

the vertex set Vm defines the beacons set, the vertex set Vn defines the sensor set
whose coordinates are unknown, and the edge set E defines all the measurable
distances between pairs of vertex (i, j ) where i, j ∈ Vm

⋃
Vn. Sensor localiza-

tion is to recover coordinates of the vertex in the set Vn under the constraints
of edge set E and beacon set Vm.

Despite its simple description in mathematics, sensor localization is a chal-
lenging task in engineering that imposes tight design constraints on sensor
nodes such as low costs, power saving, and small dimensions. Under such con-
straints, current available distance measurement techniques based on ultra-
sound can only achieve accurate results over short distances, such that beacons
are not globally accessible to all sensors, especially when beacons are sparsely
distributed. Consequently, the simple triangulation algorithm cannot be di-
rectly applied to locate all sensors because some sensors may not have sufficient
beacons available as their immediate neighbors.

To overcome the limitation of short-range distance measurements, multihop
based approaches were proposed to infer distances between any pair of sensors
(including beacons) by approximating the lengths of the shortest paths to the
Euclidean distances. The localization accuracy of multihop based approaches is
built on the basis that the Euclidean distances between pairwise sensors can be
well approximated by the lengths of the shortest paths. Such an approximation
is achievable only when the shortest paths are close to straight lines, which
requires that sensor nodes are uniformly and densely distributed in a convex
area. Although the uniform and dense distribution can be achieved through
controlled deployment, it cannot be guaranteed that sensors are deployed in a
convex area. A typical example is in habitat monitoring, sensors are deployed
to complex areas such as valleys or rivers (Figure 1), which may have concave
shapes. The other scenario is that sensors are deployed in streets of urban areas
where sensors may be separated from each other by buildings, which results in
concave network topologies. In such cases, the lengths of the shortest paths may
not reflect the Euclidean distances correctly, because the shortest paths between
some pairwise sensors have to detour along the concave areas (for instance
a C shape or S shape shown in Figure 2 and Figure 3) and cannot be close
to a straight line no matter how densely sensors are deployed. Since concave
scenarios in the real world such as rivers are the combinations of C shapes and
S shapes, we choose the C shape and the S shape as the representatives to be
discussed in this paper.

Previous work [Shang and Ruml 2004; Lim and Hou 2005] has shown that the
localization results of Multidimensional Scaling (MDS) and triangulation are
severely corrupted by the large errors of incorrect distance measurements that
are distorted by concave shapes. While an intuitive solution is that those dis-
torted distance measurements should be filtered out and not involved in the lo-
calization, it is impossible to recognize whether a single distance measurement
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Fig. 1. Sensors are deployed along a river.

Fig. 2. Sensors are deployed in a C shape area.

is affected by concave shapes or not due to the lack of a global geometrical view
of a network. However, our work shows that it is possible to filter out the impact
of distorted distance measurements when multiple distances from beacons to a
sensor are available. Our approach is different from previous work in that the
distorted distance measurements are directly filtered out and not involved in
the localization any more, and therefore their impact on the final localization
results are minimized.
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Fig. 3. Sensors are deployed in an S shape area.

The remainder of the article is organized as follows. Section 2 introduces pre-
vious work on sensor localization. Section 3 describes the Multihop approaches.
Section 4 describes how the distorted distance measurements are filtered out
in our improved Multihop algorithm. Section 5 evaluates the performance of
our approach through a comparison with previous work. We extend the im-
proved Multihop algorithm to the iterative approach in section 6. We conclude
in Section 7.

2. STATE OF THE ART

As described in Section 1, the goal of sensor localization is to recover sensors’
coordinates under the edge length constraints. Two steps are involved in this
process: 1) the edge lengths are obtained through in-network distance measure-
ments between neighboring sensors; 2) coordinates of sensors are calculated by
localization algorithms based on measured distances.

Due to the cost, dimension, and energy design constraints of sensors, cur-
rently available in-network distance measurements based on radio received
signal strength (RSS) or ultrasound are either error-prone [Savvides et al. 2001]
or short-range, which raises challenges in designing an effective localization al-
gorithm. Many algorithms have been proposed to locate sensors by overcoming
the limitation of incapable distance measurements. According to whether ac-
tual distances are involved in the localization, we divide those algorithms to
two categories: area-based algorithms and distance-based algorithms.

2.1 Area-Based Algorithms

In area-based algorithms, actual distance values are not involved in the lo-
calization algorithms, and the position of a sensor is estimated by picking up a
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point within an area. A typical example is the Centroid approach [Niculescu and
Nath 2001], which estimates a sensor’s position as the centroid of the polygon
formed by beacons that are within the radio transmission range of the sensor.

The APIT [He et al. 2003] approach further improves the localization accu-
racy by utilizing the redundancy of available beacons, from which 3 beacons are
selected out to form a triangle. The APIT approach can determine if a sensor is
within the triangle by comparing the beacons’ RSS with immediate neighbors.
It is possible to obtain multiple triangles from different beacon combinations,
and a set of triangles containing the sensor can be selected out. The sensor’s
position can be pinpointed to the intersection of all the containing triangles,
which can be a small area when multiple triangles are involved in the inter-
section. As a result, the APIT approach can achieve better localization results
than the basic Centroid approach.

2.2 Distance-Based Algorithms

Distance-based algorithms estimate sensors’ positions from pairwise node dis-
tances, which are obtained through the media of radio signals or ultrasound
with different measurement accuracy. All the distance-based algorithms re-
cover coordinates of sensor nodes from distance constraints, such that pairwise
node distances calculated from recovered coordinates are consistent with cor-
respondent measured distances.

The basic distance-based algorithm is the multilateration, which is applica-
ble when distances from a sensor to multiple beacons are available. To tolerate
distance measurement errors, least squares fitting is proposed to minimize the
difference between calculated distances and measured distances from the sen-
sor to all available beacons:

p̂ = arg min
p

∑
(|p − pi| − d̂ i)

2, (1)

where p is the sensor’s position to be estimated, pi are beacons’ positions, |p−pi|

are calculated distances, and d̂ i are measured distances.
As we mentioned before, in-network distance measurements between pair-

wise sensors are often short-range. The basic multilateration algorithm may fail
for some sensors due to an insufficient number of beacons available as their im-
mediate neighbors. Two possible solutions to overcome the limitation of short-
range measurement are recursive approaches and mutihop based approaches.

Recursive approaches [Albowicz et al. 2001; Savvides et al. 2001; Moore
et al. 2004] repeatedly apply the basic multilateration algorithm by convert-
ing sensors to beacons after their positions are determined. In recursive ap-
proaches, “converted” beacons can be propagated from an area that is close to
the “starting” beacons to an area where the “starting” beacons are inaccessible.
This makes it possible for sensors faraway from “starting” beacons to locate
themselves with the aid of “converted” beacons. One problem of recursive ap-
proaches is that the localization error may accumulate and the final result may
be severely distorted. To minimize the jeopardy of accumulated errors, recursive
approaches are usually built on the basis of accurate distance measurements
such as time of flight (ToF) of ultrasound. As pointed out in Moore et al. [2004], it
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is necessary to avoid large errors such as flip over when beacons are distributed
closely to a straight line. An error control mechanism has also been proposed
in Liu et al. [2006] to prevent errors from accumulating and propagating in the
iterative process.

By approximating the length of the shortest path to the Euclidean distance
between pairwise nodes, multihop based approaches [Niculescu and Nath 2001;
Nagpal et al. 2003; Savvides et al. 2002, 2003] can infer distances between any
pair of nodes in a connected network, hence all beacons are accessible to each
sensor. Consequently, each sensor can locate itself through the basic multilat-
eration algorithm. Multihop based approaches can only provide coarse localiza-
tion results due to their approximate distance estimation. However, multihop
based approaches are low-cost solutions because they suggest reusing the com-
munication radio signals to infer pairwise node distances. Their low-cost char-
acter makes multihop based approaches ideal candidates for applications that
have tight restriction on cost and dimension while less demand on localization
accuracy.

When a global view of all pairwise node distances is available, coordinate
assignment can be achieved through centralized localization algorithms such
as Multidimensional Scaling (MDS) [Shang et al. 2003, 2004; Ji and Zha 2004]
and Semidefinate Programming (SDP) [Doherty et al. 2001; Biswas and Ye
2004]. Both approaches use optimization algorithms to search for coordinate
assignment such that the distance constraints can be best fit. For instance,
the MDS is used to solve the following optimization problem, which minimizes
the difference between all calculated distances and measured distances:

P̂ = arg min
P

∑

i, j∈V

(|pi − p j | − d̂ ij)
2.

Here P is the position matrix that contains all the sensors’ positions that need
to be estimated. |pi −p j | is the calculated distance, d̂ ij is the measured distance
between sensor i and j , and V is the vertex set representing all sensors. It is
notable that the multihop approaches are also suggested in MDS [Shang et al.
2003] to infer distances between any pair of sensors since the classic MDS
requires distance knowledge of all pairs of nodes. The MDS approach is further
improved by the MDS-MAP(P) [Shang and Ruml 2004], which uses the MDS
algorithm to locate sensors within small areas (less than two hops), and then
patches the small maps together to get sensors’ full positions.

Both the multilateration and MDS are built on the basis of least squares
fitting, which fits the calculated distances to measured distances. The least
squares fitting algorithm is based on the belief that all the distance measure-
ments are close to their true values and have equal error distributions. However,
when sensors are deployed in a concave environment, some of the distances es-
timated by the multihop based approach may deviate far away from their true
values because the shortest paths have to detour along the concave shapes
and deviate from straight lines. If we still use the least squares fitting algo-
rithm to equally fit all the measurements, the final positioning results will be
deteriorated by those “bad” distance measurements. Two approaches have been
proposed to address this issue in multihop algorithms.
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One approach suggested in Shang and Shi [2004], is to use the four near-
est beacons instead of using all of them when performing multilateration
localization. This is based on the observation that the distances from a sen-
sor to the nearest beacons will be less affected by the concave shapes. However,
it is still possible that the shortest path to the nearest beacon is affected by
concave shapes. We will compare this approach with our approach in detail in
the coming sections.

Proximity-distance map (PDM) is proposed in Lim and Hou [2005] to ap-
proximate lengths of the shortest paths to Euclidean distances correctly in
anisotropic networks. In PDM, each sensor is assigned a coordinate in M-
dimensional embedding space defined by the lengths of the shortest paths from
sensors to all M beacons:

pi = [pi1, . . . piM ]T ,

where pij is the length of the shortest path from the ith sensor to the j th bea-
con. The objective of PDM is to find out sensors’ coordinates in M-dimensional
embedding space defined by Euclidean distances from sensors to all M beacons:

li = [li1, . . . liM ]T ,

where lij is the Euclidean distance from the ith sensor to the j th beacon. When
the Euclidean distances from a sensor to all the beacons are available, the
multilateration such as least squares fitting can be used to calculate a sensor’s
location based on those Euclidean distances. PDM assumes there exists a linear
transform between pi and li such that li = Tpi. The linear transform T can be
learned from beacons, where beacons’ coordinates of both pi and li are known.

The intuition behind PDM is that the topology character of the entire network
can be well represented by the beacons, since they are uniformly distributed
in the network. Therefore, the linear transform T learned from beacons can be
also applied to other sensors to transform their coordinates pi to coordinates
li defined by Euclidean distances. In this paper, we are trying to improve the
least squares fitting algorithm in the multihop scenario. It is possible to apply
our improved Multihop algorithm based on the Euclidean distances obtained
by the PDM.

3. EXISTING MULTIHOP APPROACHES

In this section we will introduce existing multihop approaches and explain
why they fail to accurately locate sensors in concave areas. To facilitate our
discussion, we define symbols in the following table.

Symbol Definition
p position of the sensor to be estimated
|p − pi| Euclidean distance calculated from a sensor’s position

p to a beacon’s position pi

d̂ i measured distance between a senor and the ith beacon
di true Euclidean distance between a sensor and the ith

beacon
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3.1 Multihop Algorithm: Distance Fitting Approach

The key idea of multihop approaches is to discover a sensor network’s geometry
structure from its communication network topology. In multihop approaches,
a sensor network is viewed as a connected graph G = (V , E), where V is the
vertex set representing sensors and E is the edge set representing links between
a pair of sensors that are within radio transmission range. Multihop approaches
infer the distance between a pair of sensors by approximating the length of
the shortest path to the Euclidean distance. The length of the shortest path
between vertex m and n is calculated as Lmn =

∑
li, where li are the lengths of

intermediate edges included in the shortest path. The value of li can be inferred
from RSS, which attenuates exponentially when the transmission distance is
increased.

In the cases where RSS value is not available, multihop approaches infer
the length of the shortest path from the average length per hop, which can be
sampled by beacons as follows.

(1) Distances Dij between any pair of beacons can be evaluated from their
known coordinates.

(2) The number of hops Hij of the shortest path between pairs of beacons can
be inferred from the Dijkstra or Distance Vector algorithm.

(3) The average length per hop to the ith beacon can be calculated as

hi =

∑
j∈Vm

Dij∑
j∈Vm

Hij

,

where Vm is the beacon set.

When the average length per hop is available, the length of the shortest path
from a sensor to the ith beacon can be calculated as

Li = hi × Hi,

where Hi is the number of hops of the shortest path from the sensor to the ith
beacon.

The accuracy of multihop approaches is built on the assumption that the
shortest path between a pair of sensors is close to a straight line, which is
possible as long as the following assumptions hold:

(1) Sensors and beacons are densely and uniformly distributed.

(2) The network is maintained as a connected graph.

(3) The deployed area has a convex shape.

The uniform and dense distribution of sensors can be achieved through a care-
fully controlled deployment. How to maintain k-connectivity of a network by
selecting a proper transmission power is well studied in Li and Hou [2004],
and Li et al. [2003]. Therefore, it is not difficult to hold the first two assump-
tions. However, the third assumption cannot be guaranteed when sensors are
deployed in areas full of obstructions.

As we pointed out before, the concave shape has severe impact on distance
estimation of multihop approaches. Although a good approximation between the
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Fig. 4. The estimated position Pe is push away from the true position P by the incorrect distance
measurement between P and P2.

length of the shortest path and the Euclidean distance can still be achieved in
some scenarios (for instance P1 P2 shown in Figure 2), the lengths of the shortest
paths may differ significantly from the Euclidean distances between pairwise
nodes. This is because the shortest paths may be distorted by the concave area
and cannot be close to a straight line. Such an example is shown as P3 P4 in
Figure 2. To distinguish the distorted distance estimation from the rest, we
divide the distances estimated by the multihop approach into two categories:
one is incorrect distance measurements, which are distorted by the concave
shape, the other is correct distance measurements, which are not affected by
the concave shape. Previous work [Shang and Ruml 2004; Lim and Hou 2005]
has shown that the localization results of MDS and multilateration are severely
corrupted by the large error of incorrect distance measurements.

As we discussed before, to offset the inaccuracy of distance measurements,
the least squares fitting algorithm is suggested in multilateration to estimate
sensors’ positions by minimizing the difference between the calculated dis-
tances and measured distances as Equation (1). Based on the belief that all
the distance measurements d̂ i have the same error distribution and are close
to their true values di (d̂ i ≈ di), the least squares fitting tries to fit each mea-
sured distance equally. Thus, the final estimated position is the averaged result
of all measurements and the impact of an individual measurement error is re-
duced. However, the assumption d̂ i ≈ di does not hold in a concave area, since
the incorrect distance measurement has a much larger error than the rest. The
final localization result is corrupted by fitting to the incorrect distance mea-
surements. An example is shown in Figure 4.

3.2 n-Multihop Algorithm: The Four Nearest Beacons

To eliminate the impact of concave shapes, a solution is proposed in Shang
and Shi [2004] that uses the 4 nearest beacons instead of all of them. The
intuition is that the shortest path from a sensor to the nearest beacon may
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be less affected by concave shapes. To facilitate our presentation, we denote
this algorithm as the n-Multihop algorithm. The n-Multihop algorithm has two
potential limitations.

(1) The shortest path to the nearest beacon does not necessarily mean it is
not affected by the concave shape. An example is shown in Figure 3, where
the path P1 P2 is longer than P3 P4, while the former is less affected by the
concave shape and closer to its Euclidean distance.

(2) By only using 4 beacons, some of the good distance measurements are elim-
inated from the localization, and therefore the redundancy of available bea-
cons is sacrificed.

4. THE i-MULTIHOP ALGORITHM

Now we detail our i-Multihop algorithm below.

4.1 i-Multihop: Upper Bound Approach

To facilitate the discussion, we first assume the in-network distance measure-
ments between immediate neighbors are accurate, thus the mismatch between
the shortest paths and straight lines connecting pairwise sensors is the only
source of the distance measurement error. We will relax this assumption in later
discussion. Based on this assumption, we can have the following observation:

Observation 1. All the measured distances d̂ i are no less than their true
value di (d̂ i ≥ di), because the length of the shortest path is always longer
than the Euclidean distance of the straight line connecting pairwise nodes.
Especially, the incorrect distance d̂ ′

i distorted by the concave shape is much
larger than its true value d ′

i (d̂ ′
i ≫ d ′

i), because the shortest path deviates
significantly from the straight line.

Based on the observation above, we model sensor localization in concave
areas as described below.

Model 1. Given a network graph G = (Vm ∪ Vn, Es ∪ Et), the vertex set
Vm defines the beacons set; the vertex set Vn defines the sensor set whose
coordinates are unknown; the edge set Es defines all the correct distance mea-
surements d̂ i ≥ di; and Et defines all the incorrect distance measurements
d̂ ′

i ≫ d ′
i . The objective of sensor localization is to filter out the incorrect dis-

tance measurements Et and recover coordinates of the vertex set Vn under the
constraints of correct measurements Es and beacon set Vm.

The challenge is how to recognize the incorrect distance measurements in
the model where incorrect distance measurements are mixed together with cor-

rect distance measurements, which is impossible to achieve by observing an
individual distance measurement alone. However, we show that it is possible
to eliminate the impact of incorrect distance measurements from the final lo-
calization result when multiple distance measurements are available. Instead
of fitting distance measurements, we use upper bound constraints to locate
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sensors as described in the following.

p̂ = arg min
p

∑
|p − pi|

2 (2)

subject to |p − pi| ≤ d̂ i

Remark 1. The algorithm described in Equation (2) can filter out incorrect
distance measurements and achieve accurate localization results if and only if
the number of correct distances is no less than 3.

Based on our assumption d̂ i ≥ di we have distance measurement error δi =

d̂ i − di ≥ 0. Without losing generality, for all the distances measurements be-
tween the senor and beacons, we assume δ1 ≤ δ2 ≤ . . . ≤ δm ≪ δm+1 ≤ δm+2 . . . ≤

δn. Here, δi (1 ≤ i ≤ m) are small errors of correct distance measurements, and
δi (m + 1 ≤ i ≤ n) are large errors of incorrect distance measurements.

Since d̂ i ≥ di, we have p ∈ Ci, where Ci is the circular region with origin pi

and radius d̂ i. We define the area of Ci as Si, which represents the uncertainty of
the estimated position p̂. Based on the knowledge of d̂ i ≥ di, we have |p−pi| ≤

d̂ i. The probability of estimated position p follows the uniform distribution:

p(p) =

{
1/Si, if |p − pi| ≤ d̂ i;

0, otherwise.

When Si becomes smaller, the probability density of p(p) is increased. Thus,
the uncertainty of the estimated position p̂ is decreased. When multiple dis-
tance measurements are available, the true position of node p should be in the
intersection of all circular regions Ci, i.e., p ∈ I =

⋂
1≤i≤n Ci, and the probability

of p follows:

p(p) =

{
1/S(I ), if p ∈ I ;

0, otherwise.

Here, the area S(I ) of intersection region I represents the uncertainty of the
final estimation result. If δi → 0, S(I ) → 0, the estimated position p̂ can be
accurately pinpointed to its true position p.

Let St =
⋂

1≤i≤m Ci. We have S(I ) ≤ St , which means the uncertainty will
not be increased when incorrect distance constraints are added in the localiza-
tion. Therefore, the incorrect distance measurements will not deteriorate the
final localization result. The fundamental reason why the i-Multihop: upper
bound approach can tolerate the incorrect distance measurement is that its
assumption d̂ i ≥ di is consistent with the observation d̂ i ≫ di, while the as-
sumption d̂ i ≈ di of the original distance fitting algorithm is inconsistent with
the observation d̂ i ≫ di.

An example of i-Multihop: upper bound approach is shown in Figure 5, where
the distance measurement between P and P4 is much longer than its true value,
which results in the large circle constraint. However, the incorrect distance
measurement between P and P4 has no impact on the final estimation result,
since sensor P is tightly constrained by the constrained circular regions of P1,
P2 and P3.
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Fig. 5. Sensor P is constrained in the intersection of the circular regions P1, P2 and P3.

Fig. 6. Collapsed result of the i-Multihop: upper bound approach.

The previous work [Doherty et al. 2001; Wang et al. 2005] also suggests to
use the upper bound constraints to locate sensors. Instead of using the local
optimization where only distances to immediate neighboring beacons are used,
Doherty et al. [2001] use the global optimization of semidefinite programming.
However, all approaches suffer the same problem, which requires that beacons
are placed on the outside boundary of a deployed area. Otherwise, the estimated
positions will collapse toward the center. Such a phenomena has been observed
in previous work [Biswas and Ye 2004; Shang et al. 2004]. Below is a formalized
description of the problem.

Problem 1. Given beacons pi, there exists a polygon region P with all the
vertices of pi. if sensor p is not within the polygon P (p �∈ P ), the sensor’s
position p̂ estimated by i-Multihop: upper bound approach will collapse toward
the P .

An example is shown in Figure 6, where P �∈ △P1P2P3. The sensor is
constrained by a large intersection area, and therefore has high uncertainty.
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Position Pe estimated by the upper bound algorithm of Equation (2) is attracted
towards the △P1P2P3 and deviates from its true position. This is in contrast
to the previous example in Figure 5, where sensor P is tightly constrained in a
small intersection because beacons are distributed around the sensor.

We propose our solution in the following to solve the collapse problem.

4.2 i-Multihop: Hybrid Approach

In this section, we assume that sensors are densely distributed, thus the correct
distance measurements, which are not affected by the concave shape, are close
to their true values. Based on this assumption, we have the observation below.

Observation 2. All the measured distances d̂ i are no less than its true value
di (d̂ i ≥ di). For all the correct distance measurements d̂ i, we have d̂ i ≈ di. For
incorrect distance measurements, we have (d̂ ′

i ≫ d ′
i).

Based on Observation 2, we model the sensor localization below.

Model 2. Given a network graph G = (Vm

⋃
Vn, Es

⋃
Et), the vertex set

Vm defines the beacons set; the vertex set Vn defines the position unknown
sensor set; the edge set Es defines all the correct distance measurements d̂ i ≥

di & d̂ i ≈ di; and Et defines all the incorrect distance measurements d̂ ′
i ≫ d ′

i .
The objective of sensor localization is to recover coordinates of vertex set Vn

by filtering out the incorrect distance measurements Et and fitting the correct

distance measurements.

Based on Model 2, we propose the following localization algorithm.

p̂ = arg min
p

∑
(d̂

2
i − |p − pi|

2) (3)

subject to |p − pi| ≤ d̂ i.

Remark 2. The algorithm described in Equation (3) can filter out the incor-
rect distance measurements, and the final localization results will not collapse
even when the sensor is not contained in the polygon formed by beacons.

The hybrid algorithm described in Equation (3) combines the advantage of
upper bound constraints and distance fitting. First, it uses the upper bound
constraints to filter out the impact of incorrect distance measurements and
pinpoint the estimated position to the intersection constrained by correct dis-
tance measurements. Second, it uses the distance fitting to fit correct dis-
tance measurements, which pushes the estimated position p̂ toward its true
position p and the final estimated position is not affected by the layout of
beacons.

Since d̂ i are constants, we can rewrite the objective function in Equation (3)
as:

p̂ = arg min
p

−
∑

(|p − pi|)
2

subject to |p − pi| ≤ d̂ i,
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which is equivalent to the objective function below.

p̂ = arg max
p

∑
(|p − pi|)

2 (4)

subject to |p − pi| ≤ d̂ i.

The intuition of the algorithm above is that the estimated position is pushed far
away from beacons, thus towards the outside constrained boundaries. The final
optimization result is that the estimated position is limited in the intersection
area of circular constrained regions (upper bound constraints) and pushed to-
wards the constrained boundaries (distance fitting), which is the intent of the
i-Multihop: hybrid approach.

4.3 Apply i-Multihop Algorithm with Inaccurate Range Measurements

In this section, we will relax the assumption that the in-network distance mea-
surements between immediate neighbors are accurate. Without this assump-
tion, distances estimated from the lengths of the shortest paths will have two
error sources: one is the measurement error between immediate neighbors, the
other is incurred when the shortest path is not close to a straight line. Under
this circumstance, it is possible that some of the distance measurements are less
than their true values. This happens in correct distance measurements where
the shortest path is very close to a straight line and the measured distance of
each segment is less than its true values, such that the length of the shortest
path is less than the Euclidean distance due to the error accumulation of each
segments. Under this circumstance, we need to slightly modify Observation 2
as follows. All the correct distance measurements d̂ i are close to (either larger
or less than) its true value di (d̂ i ≈ di) instead of always larger than its true
value (d̂ i ≥ di). In this case, the i-Multihop: hybrid approach with the upper
bound constraints will not work correctly, because incorrect distance measure-
ments may be less than their true values such that the constrained circular
regions cannot intersect with each other. Therefore, no feasible position exists
to satisfy all the upper bound constraints and the objective function will not
find out a suitable solution.

To solve the problem above, we add slack variables εi to the i-Multihop: hybrid
approach to get our final version of the i-Multihop algorithm.

p̂ = arg min
p

∑
(d̂ i + εi − |p − pi|)

2 + k
∑

εi (5)

subject to |p − pi| ≤ d̂ i + εi,

where k is the weight coefficient which is set to a large value (106 in our compu-
tation). Due to the large value of the weight coefficient k, the second part k

∑
εi

has much higher priority to be minimized than the first part, which means
the slack variable εi has higher priority to be minimized than the difference
between calculated distance |p − pi| and the measured distance d̂ i.

The intuition behind the objective function Equation (5) can be described
as follows. For those distance measurements that are less than their true val-
ues, the slack variables εi can increase the upper bound to a minimum extent
such that the summary of the measured distance d̂ i and the slack variable
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εi is greater than the true value di. The consequence is that all the circular
region constraints intersect into an nonempty set that contains a feasible so-
lution for the objective function. Through this way, the problem is transformed
to Model 2 where all the upper bound constraints are larger than the true dis-
tances. Therefore, we can use an approach similar to Model 2 to locate sensors
by filtering out incorrect distance measurements and fitting correct distance
measurements.

The algorithm above is based on the assumption that distance measure-
ments between neighboring sensors have small errors and the concave shape
contributes the major error source of the distance estimated from the shortest
path. Therefore, when the correct distance measurement d̂ i is less than its true
value di, it is still close to its true value (d̂ i ≈ di). By selecting a large value k,
the correct distance measurements d̂ i will be increased by a minimal value εi

to form the upper bound, which can be utilized to find the accurate locations of
sensors. The performance evaluation in Section 6.5 shows that the i-Multihop
algorithm performs well when distance measurements between neighboring
sensors have small errors, and its performance can be degraded by large mea-
surement errors between neighboring sensors.

Again, we simplify the objective function (5) to facilitate our optimization
computation as follows.

p̂ = arg min
p

−
∑

(|p − pi|)
2 + k

∑
εi (6)

subject to |p − pi| ≤ d̂ i + εi.

4.4 Average Length per Hop

In the case where distance measurements between immediate neighbors are
unavailable, the multihop algorithm estimates distances by multiplying the
number of hops of the shortest path with the average length per hop. Here, the
average length per hop to the ith beacon can be sampled as follows.

hi =

∑
j∈Vm

Dij∑
j∈Vm

Hij

,

where Dij is the Euclidean distance from the j th beacon to the ith beacon, and
Hij is the number of hops from the j th beacon to the ith beacon.

However, the average length per hop as already calculated can be severely af-
fected by the concave shapes. Because the shortest path between beacons may
also be distorted by the concave shape and deviate far away from a straight
line, the actual length Lij of the shortest path will be much longer than the
Euclidean distance Dij calculated from the coordinates of the beacons. There-
fore, the true value of the average length per hop Lij/Hij is much larger than
the value estimated from Dij/Hij. This will make the average value estimated
by

∑
j∈Vm

Dij/
∑

j∈Vm
Hij less than the actual one

∑
j∈Vm

Lij/
∑

j∈Vm
Hij because

some of the distances Dij are much less than the lengths of Lij.
To solve this problem, we need to filter out the pairwise beacon distances that

are distorted by concave shapes, which is achievable by reusing the i-Multihop
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algorithm above. Since the calculation of the average length per hop is to infer
distances from coordinates, it is a reversed process of the localization algorithm
that infers coordinates from distances. Therefore, we can use an idea similar to
the i-Multihop algorithm to filter out distorted pairwise beacon distances and
calculate correct average length per hop:

l̂ = arg min
l

∑
(lhi + εi − |pi − p|) + k

∑
εi

subject to |pi − p| ≤ lhi + εi.

where l is the average length per hop, hi is the number of hops of the shortest
path between p and pi, εi is the slack variable, and k is the weight coefficient.
The intuitive explanation of the objective function is to find the optimal value
of the per hop’s average length l which can minimize the difference between
the calculated distance |pi − p| and the summary of the measured distance
lhi and the slack variable εi under the upper bound constraints. Similar to
the i-Multihop algorithm, with the help of the upper bound constraints, only
measured distances that are close to their true Euclidean distances will be
involved in the optimization, and the incorrect distance measurements that are
much larger than the true values are filtered out. To facilitate the optimization
computation, we simplify the objective function above to the following linear
optimization.

l̂ = arg min
l

(∑
hi

)
l + k

∑
εi (7)

subject to |pi − p| ≤ lhi + εi.

5. PERFORMANCE EVALUATION

We compare the i-Multihop algorithm with the original Multihop algorithms
and n-Multihop algorithm in this section. Since all these three algorithms use
the same beacon message flooding or Distance Vector algorithm to compute the
number of hops along the shortest paths, the communication cost of the three is
the same. Therefore, we can ignore the details of message communication and
focus on the character of their geometry calculation. Such an abstraction can
help us to evaluate their performance in the Matlab simulation, where a sensor
network is described as a network graph with vertices representing sensor
nodes and edges representing the measurable distances between immediate
neighbors.

To investigate the impact of concave shapes on the performance of the Mul-
tihop algorithms, we used three basic configurations. In the first configuration,
400 nodes were randomly deployed in a 200×200m2 square area that has a con-
vex shape. In the second configuration, a portion of sensors in the square area
were moved out and the square shape of the network topology was transformed
to the C shape as shown in Figure 2. In the third configuration, we transformed
the network topology to the S shape as shown in Figure 3.

The following metrics are used in our evaluation.

—Transmission range R: the maximum measurement range between neigh-
boring sensors.
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—Estimation error µi: the distance between the estimated position and true
position of sensor node i, and µi = |p̂i − pi|.

—Average estimation error µ̂: the average value of the estimation error µi and
µ̂ =

∑
µi/N , where N is the total number of sensors.

—Median estimation error: when estimation error µi are ordered from the
smallest to largest, the Median estimation error is defined as the one in
the middle of the list.

5.1 Comparison of Multihop, i-Multihop: Upper Bound, and i-Multihop:
Hybrid Approaches

We compared the performance of Multihop, i-Multihop: upper bound, and
i-Multihop: hybrid approaches in the C shape configuration. In this compar-
ison, we assumed distance measurements between immediate neighbors are
accurate enough, thus the deviation of the shortest path from the straight line
is the only error source of distance measurement. The comparison result is
shown in Figure 7, where circles represent the true positions of sensors (solid
circles for beacons and empty circles for sensors), and the lines represent the
estimation error µi. The distribution of estimation error µi is also described by
the bar graph on the right side, where the sensors are ordered by their estima-
tion error µi. The comparison shows that the Multihop approach (Figure 7(a))
has the worst performance, because it tries to fit the distances to all the bea-
cons while some of them are severely distorted by the C shape. Figure 7(b)
shows that the performance is improved significantly by the i-Multihop: upper
bound approach, which uses the distance upper bound to filter out the impact
of distorted distance measurements. The performance is further improved by
the i-Multihop: hybrid approach (Figure 7(c)), which solves the problem that
the i-Multihop: upper bound approach may have large estimation errors when
all the beacons are located on one side of a sensor. This comparison shows
that the i-Multihop: hybrid approach can achieve the most accurate results
among the three approaches. In the following discussion, we only evaluate the
i-Multihop: hybrid approach, and will not evaluate the i-Multihop: upper bound
approach any more. For simplicity, we use the short name i-Multihop approach
to refer to the i-Multihop: hybrid approach in the discussion that follows.

5.2 Average Length per Hop

When distances between immediate neighbors are not available, we can sample
the average distance per hop from beacons. However, as we have discussed, the
average length per hop calculated in the original multihop algorithm will also
be affected by concave shapes because the shortest paths between beacons may
deviate far away from straight lines. To eliminate the effect of concave shapes,
we used the upper bound constraints in the i-Multihop algorithm to filter out the
shortest paths, which are distorted severely by concave shapes. We evaluated
the estimation accuracy of the average length per hop as follows. First, the
average length per hop was estimated in the square shape configuration using
the original Multihop algorithm. The experiment was repeated multiple times
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Fig. 7. Comparison of Multihop, i-Multihop: upper bound and i-Multihop: hybrid approaches in C
shape configuration.
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Fig. 8. Average length per hop.

with different radio transmission ranges. For each radio transmission range,
the square shape configuration was transformed to the C shape configuration
by removing some sensor nodes, and the average length per hop was estimated
again by the i-Multihop algorithm and the Multihop algorithm respectively.
Since the C shape is the subset of the square shape, they both should share
similar topology properties including the average length per hop. Figure 8 shows
that the average length per hop calculated by the i-Multihop algorithm is closer
to the average length per hop of the square shape configuration than the one
calculated by the Multihop algorithm. This demonstrates that the i-Mulithop
algorithm can recover the average length per hop correctly even in concave
shapes.

A notable thing on the average length per hop of the shortest path is that it is
different from the average distance between immediate neighbors. The reason
is explained as follows. To minimize the total number of hops between two
sensors, each hop of the shortest path is stretched to its maximum value. The
consequence is that the average length per hop is increased with the radio’s
maximum transmission range, as shown in Figure 8. In the experiment, we
repeated the test by varying the radio transmission range while keeping all
other network configuration the same as each other, thus the distances between
immediate neighbors were the same in each test. However, the experiment
shows that the average length per hop is increased when the maximum radio
transmission range becomes longer.

5.3 Impact of Concave Shapes

In this section, we focus the performance comparison on the connectivity-based
multihop algorithms, where the distances between immediate neighbors are not
available and the average length per hop is sampled from beacons. To investi-
gate the impact of concave shapes on the performance of Multihop algorithms,
we compared the Multihop algorithm, n-Multihop algorithm, and i-Multihop
algorithm in square shape, C shape and S shape configurations.

Figure 9 shows the performance comparison of the three algorithms in the
square shape configuration. The Multihop and the i-Multihop algorithms have
similar performance, while the performance of the n-Multihop algorithm is
much worse than the other two algorithms. The n-Multihop algorithm has the
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Fig. 9. Square shape configuration.

worst performance because in connectivity-based multihop algorithms, the dis-
tance estimated from the nearest beacon does not guarantee it is the best es-
timation that is closest to the true Euclidean distance. The performance of the
n-Multihop algorithm becomes worse when the maximum transmission range
becomes much longer than the average distance between immediate neigh-
bors. As we discussed above, the average length per hop h is different from the
average distance d between immediate neighbors, and the former is strongly
related to the maximum radio transmission range R. When the density of de-
ployed sensors is fixed, choosing a large transmission range R will improve the
network connectivity, which is helpful to sensor localization since the network
becomes more rigid with higher connectivity. However, the large transmission
range R will lead to the consequence that the average length per hop h is much
larger than the average distance d between immediate neighbors. If we esti-
mate distances from the nearest beacon, it is possible that the beacon is within
the range of one or two hops. If it is within the one hop range, the true distance
to the beacon is close to the average distance d between immediate neighbors.
The consequence is that the true distance is less than a single average length
per hop h, which is the smallest measurable unit in a connectivity-based Mul-
tihop algorithm. This will cause relatively large errors in distances estimated
from the sensor to nearby beacons. Such a distance estimation error imposes
a limitation on the positioning accuracy of the n-Multihop algorithm. On the
other hand, instead of fitting distances to the nearest beacons, the i-Multihop
algorithm tries to fit the distance measurements that are closest to their true
Euclidean distances, such that the final positioning result of a sensor is closer
to its true location.

Figure 10 shows the performance comparison of the three algorithms in the
C shape configuration. The Mulihop algorithm performs worst, while the i-
Multihop algorithm is the best of the three. The localization accuracy of the
i-Multihop algorithm is improved significantly when the number of beacons
is increased from 10 to 16, and it eventually converges to a fixed value when
the number of beacons is continuously increased. There exists a critical point,
because in C shape configuration, when the number of beacons exceeds certain
value, most of the sensors can have three beacons that are connected by the
shortest paths that are close to straight lines. The Mulithop algorithm has the
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Fig. 10. C shape configuration.

Fig. 11. S shape configuration.

worst performance because some of the distance estimation are distorted by the
C shape. The n-Multihop algorithm does not perform as well as the i-Multihop
algorithm because its localization accuracy is upper bounded by the granularity
of the transmission range, as we have discussed.

Figure 11 shows the performance comparison of the three algorithms in the
S shape configuration, which is more concave than the C shape, and some of
the distances estimated by the shortest paths deviate further from their true
Euclidean distances. The comparison shows that the Multihop algorithm per-
forms much worse than the n-Multihop algorithm and i-Multihop algorithm,
and the i-Multihop algorithm has the best performance. In the S shape config-
uration, the performance of the i-Multihop algorithm is increased significantly
when the number of beacons is increased to 30, and after that, it eventually
converges to a fixed value. The critical point of the number of beacons is larger
than the C shape because more beacons are necessary for all sensors to have
at least three beacons connected by the close-to-straight-line shortest paths.

From the given comparison we can conclude that the i-Multihop algorithm
performs best out of the three algorithms, and it can locate sensors in concave
environments with positioning accuracy comparable to that of convex environ-
ments if the number of beacons reaches the threshold.
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6. ITERATIVE APPROACHES

These simulations show that a certain minimum number of beacons is required
for the i-Multihop algorithm to achieve sufficient localization accuracy in con-
cave areas. More beacons are demanded when deployed areas become more
complicated. This is because a sensor can accurately locate itself only when
it is connected to at least three beacons by the close-to-straight-line shortest
paths. If only a few beacons are deployed in a concave area such as a C shape
or a S shape, it is possible that some of sensors are connected to less than three
beacons by the close-to-straight-line shortest paths, which results in large es-
timation errors. In this section, we show that high accuracy can be achieved
with less beacons by iteratively applying the i-Multihop algorithm.

In the iterative approach, a few beacons are deployed as initial beacons. Due
to the small number of initial beacons, they may be “visible” to only a small
portion of sensors through the close-to-straight-line shortest paths. That small
portion of sensors can accurately locate themselves by referring to the initial
beacons. After that, those sensors with accurately determined positions “con-
vert” themselves into new beacons by advertising beacon signals. It is possible
that the newly added beacons are connected through the close-to-straight-line
paths to some sensors that did not have sufficient initial beacons before. By
utilizing the beacon signals sent from newly added beacons, those sensors with
previously inaccurate estimation results can refine their positions and achieve
accurate positioning results. The whole process is recursively repeated until all
sensors are accurately located or no more beacons are added.

The challenging of applying the i-Multihop algorithm into the iterative pro-
cess is how to identify “good” candidates which can accurately locate themselves.
In other words, we need to estimate how accurately a sensor can locate itself
before we can iteratively apply the i-Multihop algorithm. Due to the absence of
a global view of the entire network, a sensor cannot judge if it is connected to
at least three beacons through the close-to-straight-line paths. Thus, we can-
not identify “good” candidates by simply counting the distances estimated from
close-to-straight-line paths. In the following discussion, we propose the upper
bound approach to estimate sensors’ positioning accuracy.

6.1 Estimate Positioning Accuracy

As we discussed in Section 4.1, suppose a sensor p is within circular region
constraints Ci with origin pi and radius d̂ i. Here pi are beacons’ positions and
d̂ i are estimated distances from p to pi. Let St =

⋂
Ci, which represents the

intersection area of all constrained regions Ci. We notice that the position of
the sensor can be pinpointed more accurately when the area of St becomes
smaller. On the other hand, if fewer than three distance measurements are
correct distance estimations, the intersection area St tends to be large. This
observation shows that we can identify good candidates for new beacons by
checking the size of the intersection area St .

However, it is difficult to accurately calculate the area of the intersection
St due to its irregular shape. Instead, we use the radius of the intersection St

to estimate the positioning accuracy. As shown in Figure 12, the intersection’s
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Fig. 12. By its definition, the radius du is larger than the estimation error de.

radius du is defined as the maximum distance between the estimated position
p̂ to any other point px within the intersection area and can be calculated as
below.

du = max
p

|p̂ − px | (8)

subject to |px − pi| ≤ d̂ i

Here, p̂ is the position estimated by our i-Multihop algorithm, pi are beacons’
positions and d̂ i are measured distances. By the definition of du, we have du ≥

de, where de is the estimation error between estimated position p̂ and the true
position p. In other words, du is the upper bound of the estimation error de and
can be used to estimate the positioning accuracy. Sensors with small estimation
errors are identified if they have the small estimation radius du.

6.2 Apply i-Multihop Algorithm Iteratively

Based on the radius du, we can determine sensors’ locations with high po-
sitioning accuracy, which makes it possible to apply the i-Multihop algorithm
iteratively in concave areas. In the iterative approach, positions of beacon nodes
are broadcasted through beacon signals. Beacon signals have counters that are
increased by the lengths of hops when they are forwarded between neighboring
sensors. The length of the shortest path from a sensor to a beacon can be deter-
mined from the minimum counter value among all the received beacon signals
sent out by that beacon. Therefore, each sensor can learn beacons’ positions
and the lengths of the shortest paths to those beacons. Sensors keep listening
to beacon signals and refine their positions each time when new beacon sig-
nals are received. At the same time, sensors’ position accuracy is estimated by
their radiuses du. When the radius of a sensor is less than the threshold, it
will advertise itself as a new beacon, whose beacon signals can be utilized by
other sensors to refine their estimated positions. The positioning processes are
repeated until all sensors are accurately located or no more beacons are added.
Note the iterative process can be achieved by sensors localized computation,
which consists of beacon signals listening and position refining. Therefore, it
can be implemented in a fully distributed fashion.
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While true do

if the sensor is a beacon then

send out beacon packets which contain the sensor’s coordinate;

break;

end

keep listening to beacon packets for a time period;

if beacon packets received then

Update the sensor’s position with the newly received beacon packets;

else

break;

end

Estimate the upper bound of localization error du;

if du ≤ beacon threshold then

set the sensor as a beacon;

end

end

Algorithm 1. Iterative i-Multihop algorithm.

6.3 Implement Iterative i-Multihop Approach in a Distributed Fashion

The pseudo-algorithm of the iterative i-Multihop approach is described in Algo-
rithm 1. In the iterative algorithm, if a sensor is a beacon, it exits the localization
algorithm after it sends out beacon packets. If the sensor is not a beacon, the
sensor keeps listening to beacon packets. After it receives new beacon pack-
ets, the sensor recalculates its location together with the estimation error. If
the estimation error falls below the threshold that determines it will become a
beacon, the sensor will announce itself as a new beacon and send out beacon
packets. The entire algorithm terminates when no new beacons are added into
the system. This algorithm is fully distributed because it can be finished by in-
dividual sensors without global coordination. The localized operations involve
three simple steps: 1) keep listening to beacon packets; 2) update the estimated
location and estimation accuracy; and 3) announce itself as a new beacon if the
estimation accuracy falls below the threshold.

6.4 Performance of the Iterative i-Multihop Algorithm

We evaluate the performance of the iterative i-Multihop algorithm as follows.
In the evaluation, 314 nodes were deployed in a C shape area with only 4 ini-
tial beacons deployed at the four corners. We assume that distances between
neighboring sensors are measurable; thus the mismatch between the shortest
path and the straight line is the main source of the distance measurement
error. Figure 13 shows both the average estimation error and the median es-
timation error are decreased along the iterative process when more and more
beacons are involved in the localization process. We also note that the me-
dian estimation error is always smaller than the the average estimation error.
This is because a small portion of sensors have much larger errors than the
rest of the sensors. To further illustrate the iterative i-Multihop algorithm, an

ACM Transactions on Sensor Networks, Vol. 4, No. 1, Article 3, Publication date: January 2008.



Sensor Localization in Concave Environments • 3:25

Fig. 13. Positioning accuracy is improved along the iterative process.

example is shown in Figure 14. At the beginning (Figure 14(a)) when only the
four initial beacons are used, a number of sensors have large errors because
they do not have three beacons visible through the close-to-straight-line short-
est paths. Figure 14(b) shows the intermediate status of the iterative process,
where some sensors improve their positioning accuracy by referring to newly
added beacons. Figure 14(c) shows the final stage of the iterative process, where
the majority of sensors can locate themselves accurately. We notice that there
are a few sensors that can not locate themselves accurately in the final stage.
This is because those sensors do not have good access to beacons even with the
help of the iterative approach. Those sensors with large estimation errors can
be identified by their radius du, thus we can notify upper layer location-aided
applications when sensors have large estimation errors and the positioning
results are unreliable.

The iterative i-Multihop algorithm differs from previously proposed iterative
approaches in the following aspects:

—It does not require that initial beacons are adjacent to each other, which is
an implicit assumption for other iterative approaches to initiate the iterative
process.

—For beacons to be propagated to entire areas, previous iterative approaches
usually require dense and uniform sensor distribution. Otherwise, the newly
added beacons cannot approach some sensors and the whole iterative process
is interrupted. On the contrary, in the iterative i-Multihop algorithm, all
sensors can be located as long as they form a connected network. This is
because sensors’ positions are first estimated from initial beacons, and then
refined by newly joined beacons. Here, the iterative strategy is mainly used
to improve the positioning accuracy.

—If the positioning accuracy cannot be improved by the iterative process due to
awkward beacon layout, the positioning error can be estimated by the radius
du, which can be sent to upper layer applications together with the positioning
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Fig. 14. Demo of iterative i-Multihop algorithm.
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data. With the notification of positioning accuracy, the upper layer location-
aided applications can utilize the location information more intelligently by
prudently dealing with the sensors with large estimation errors.

—A potential problem of the previous iterative approach is that the positioning
errors may accumulate along the iterative process. This is because the newly
joined beacons are not as accurate as initial beacons and may have large esti-
mation errors, especially the flip-over errors discussed in Moore et al. [2004].
The estimation errors of newly joined beacons may accumulate in the fol-
lowing localization process and the final results are severely corrupted. The
accumulative errors are minimized in the iterative i-Multihop algorithm be-
cause of two reasons: (1) We use the radius du to estimate positioning accuracy
and beacons are only converted from sensors that can accurately locate them-
selves. (2) In the iterative i-Multihop algorithm, the positioning accuracy is
consistently increased because sensors’ estimated positions are updated by
new beacon signals only when their estimation accuracy is improved, that is,
smaller radius du can be achieved.

6.5 Comparison between Iterative i-Multihop Algorithm and MDS-MAP

We further evaluate the performance of the iterative i-Multihop algorithm by
comparing it with the MDS-MAP(P) algorithm [Shang and Ruml 2004]. The ba-
sic idea of the MDS-MAP(P) algorithm is to first locate sensors within a small
area (usually less than two hops range), which produces multiple small pieces of
maps comprising relative coordinates of sensors. Since adjacent maps share the
same edges, they can be patched together. This process can be iteratively con-
tinued until all the maps are patched together to form a single localization map
comprising the relative coordinates of all sensors. With the knowledge of a few
beacons, the map can be rotated and scaled such that sensors’ relative coordi-
nates can be converted to their physical coordinates. In the above process, since
MDS-MAP(P) only uses distances within two hops, distance measurements in-
ferred from the shortest path are less likely to be affected by the concave shape.
As a result, the MDS-MAP (P) can also achieve good localization results when
sensors are deployed in a concave environment. We have conducted intensive
simulations to compare these two algorithms and summarize their advantages
and disadvantages as follows.

We first compared their localization accuracy under different network con-
nectivity. We deployed 241 sensors in a C shape area with the longest edge
of 200m. By varying the measurement range from 25m to 45m, we got differ-
ent network connectivity from 12 to 36. We introduced random measurement
error between neighboring sensors, which follows the Gaussian distribution
with mean of 0 and standard deviation of 5%R, where R is the maximum mea-
surement range between neighboring sensors. 10 beacons are used for both
algorithms. The comparison results are presented in Figure 15, which shows
that the two algorithms have similar performance. Both have large localization
errors (around 15%R) when the network connectivity is low, and have small
localization errors (close to 5%R) when the network connectivity is high. The
high network connectivity improves the localization accuracy of the i-Multihop
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Fig. 15. Localization error of i-multiple and MDS(P) under different connectivity.

Fig. 16. Localization time of i-multiple and MDS(P) under different connectivity.

algorithm because the shortest path can be close to a straight line in a network
consisting of densely distributed sensors. The high network connectivity also
improves the localization accuracy of the MDS-MAP(P) because adjacent small
maps share more edges and therefore can be patched more precisely.

We further evaluated the localization cost with the metric of computing time.
We used the same configuration as above. The two algorithms were run in Mat-
lab 7.0 on a Dell DIMENSION 8250 PC with a 2.4GHz Pentium 4 CPU and
1G RAM. We measured the computation time under different connectivity. The
comparison results are shown in Figure 16, which illustrates that the two algo-
rithms have close computing time when the network connectivity is low. How-
ever, the i-Multihop algorithm performs faster when the network connectivity
is high. Particularly, the i-Multihop algorithm has constant computing time,
while the computing time of the MDS-MAP(P) is proportional to the network
connectivity. This is because when the network connectivity becomes higher,
adjacent maps share more edges, which incurs more intensive computation to
patch maps.

We also compared how these two algorithms performs with different number
of beacons. The comparison results in Figure 17 shows that a certain number
of beacons is required for the i-Multihop algorithm to achieve high localization
results, while only a small number of beacons is necessary for the MDS-MAP(P)
to obtain good results. The MDS-MAP(P) has less reliance on the number of
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Fig. 17. Localization error of i-multiple and MDS(P) under different beacons.

Fig. 18. Localization error of i-multiple and MDS(P) under different measurement errors.

beacons because it computes the relative coordinate first and only uses beacons
to convert relative coordinates to physical coordinates.

We evaluated how the measurement error affects localization accuracy by
varying the standard deviation from 8%R to 18%R. The comparison results
in Figure 18 show that when the standard deviation is less than 16%R, the
i-Multihop has better localization accuracy than the MDS-MAP(P). However,
when the standard deviation become larger, the MDS-MAP(P) performs better.
The MDS-MAP(P) is more resilient to measure error because it only uses dis-
tances within two hops. In contrast, the i-Multihop algorithm uses distances
along multihop, and the measurement errors can accumulate to a large value
in this case. Based on this comparison, we suggest that distance measurement
with ultrasound is more suitable for the i-Multihop algorithm that has short
measurement range, but high measurement accuracy (usually less than 5%R).

7. CONCLUSION

In this article, we investigate the Multihop algorithms in concave environments,
where some of the distances estimated from the shorted path significantly de-
viate from the true Euclidean distances. While previous approaches cannot
perform well due to distorted distance estimation, our proposed i-Multihop can
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filter out the impact of distance measurements with large errors and achieve
sufficient localization accuracy. Therefore, we extend the original Multihop al-
gorithm to concave environments, which is necessary in many cases when sen-
sors are deployed in either urban areas or wild habitats. We also show that the
i-Multihop algorithm can be iteratively applied to achieve accurate localization
results with less beacons. Moreover, the i-Multihop algorithm can estimate the
positioning accuracy, which provides a good basis for upper layer application to
intelligently utilize the location data.
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