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Abstract

Received signal strength (RSS) can be used in sensor networks as a ranging measurement for positioning and

localization applications. This contribution studies the realistic situation where neither the emitted power nor the

power law decay exponent be assumed to be known. The application in mind is a rapidly deployed network

consisting of a number of sensor nodes with low-bandwidth communication, each node measuring RSS of signals

traveled through air (microphones) and ground (geophones). The first contribution concerns validation of a model

in logarithmic scale, that is, linear in the unknown nuisance parameters (emitted power and power loss constant).

The parameter variation is studied over time and space. The second contribution is a localization algorithm based

on this model, where the separable least squares principle is applied to the non-linear least squares (NLS) cost

function, after which a cost function of only the unknown position is obtained. Results from field trials are

presented to illustrate the method, together with fundamental performance bounds. The ambition is to pave the

way for sensor configuration design and more thorough performance evaluations as well as filtering and target

tracking aspects.

Keywords: sensor networks, localization, sensor models, acoustic sensors, seismic sensors, separable non-linear least

squares

1 Introduction
Target localization based on the target’s emitted energy

is an attractive option in large, wireless sensor networks:

• Simple and passive (no energy output) sensors like

microphones and geophones can be used.

• Requirements on network synchronization are

moderate.

• Data fusion requires limited communication

bandwidth.

By sampling the energy as a measure of the Received

Signal Strength (RSS) at geographically distributed loca-

tions and by modeling the energy decay as a function of

target-sensor distance, the location of the target can be

inferred. This paper focuses on centralized acoustic and

seismic source localization, which is interesting to use

as a part of surveillance systems for power plant protec-

tion, airport security, border control, and similar. How-

ever, the models and algorithms are applicable to

general target localization based on emitted energy from

the target.

Energy source localization is in focus here, but the

reverse problem of navigation of one sensor (“sink”)

from several beacons (“sources”) with known position is

also covered by reversing the role of emitters and sen-

sors. Therefore, the object to be located will be referred

to as the target in this paper. An underlying assumption

is that communication constraints between the sensor

units make any algorithm based on the signal waveform

(like coherent detection) infeasible. Communication only

allows for sending RSS measurements to other sensor

units.

Localization from received signal energy is of course a

fairly well-studied problem, see the surveys [1-3] and

the papers [4,5], though the major part of literature

addresses the related problem of localization from time
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of arrival (TOA) and time-difference of arrival (TDOA)

measurements. Also, the standard localization applica-

tion concerns radio networks, but localization in acous-

tic networks bears much in common. While TOA

measures range and TDOA range differences computed

from propagation time, energy-based localization utilizes

the power decay of the involved signals.

Based on the distance power law model, the received

root mean square (RMS) signal power expressed in deci-

bels (dB) is assumed to be proportional to the logarithm

of distance, and this is the main difference to time-based

localization approaches. Dedicated approaches to this

problem assume that the constant of proportionality

(power law decay exponent) is known [4-6] or include

the energy measurements as a general non-linear relation

[3]. Several ad hoc methods to eliminate nuisance para-

meters have been proposed in this context, including tak-

ing pairwise differences or ratios of observations.

A least squares solution for energy-based methods can

be found in [4], in which the power law model is verified.

However, no investigations regarding proper noise mod-

els were conducted. Maximum-likelihood (ML) estima-

tors are considered in [6,7] based on the same power law

model, but with a fixed and known power law decay

exponent. The same holds for [8], but the focus is on

least squares based approaches. These works consider a

centralized situation, where all measurements are pro-

cessed at the same location. Distributed ML is addressed

in [9], where the authors consider both the power law

decay exponent and source energy as unknowns.

In [7], an approach to localization based on a model

in linear energy scale is presented, where the power law

decay exponent is fixed to -2. In [10,11], a similar model

was used, but in logarithmic energy scale. The model is

referred to as the log range linear model, where all

environmental parameters including power law decay

exponent appear linearly. This is of course a great

advantage in estimation. The first purpose of this contri-

bution is to use measurements from extensive field tests

to validate the log range linear model.

The second contribution is to extend the theory of RSS

based localization using an approach where the power

law decay exponent and emitted power are explicitly

removed from a set of RSS measurements using the

separable least squares principle, after which the resulting

problem is non-linear in target state parameters only.

This leads to a standard low-dimensional nonlinear least

squares (NLS) problem, where efficient numerical algo-

rithms exist. Algorithms of different complexity and per-

formance are outlined for this framework. Tracking

algorithms are also described, which are based on stating

the localization NLS problem formulation as the mea-

surement relation in an extended Kalman filter.

The fundamental performance bound implied by the

Cramér-Rao lower bound enables efficient analysis of

sensor network architecture, management, and resource

allocation. This bound has been analyzed thoroughly in

the sensor network literature, primarily for TOA,

TDOA, and angle-of-arrival (AOA), [1-3], but also for

RSS [12,13] and with specific attention to the impact

from non-line-of-sight [14,15]. The non-line-of-sight sig-

nal propagation is also related to multipath signal pro-

pagation, where the signal is reflected and is received as

multiple copies, essentially as multiple non-line-of-sight

signals replicas. Numerical explicit algorithms and Cra-

mér-Rao lower bounds (CRLB) for both stationary and

moving target are derived for the NLS problem

formulation.

In Section 2, the RSS model is introduced and com-

pared first to some previously proposed models and then

to some simplified models useful for detection purposes.

Section 3 validates the model and its assumptions using

extensive field tests with acoustic and seismic signals.

Section 4 presents a non-linear least squares (NLS) fra-

mework for localization, where the separable least

squares (SLS) principle can be used to eliminate nuisance

parameters. Localization and tracking algorithms based

on this framework are overviewed in Section 5, illustrated

with selected results from field trials. Finally, Section 7

concludes the paper.

2 RSS measurement model
It is assumed that the received signal strength (RSS)

measured at each sensor is proportional to the target-

sensor distance to the power of a constant or a para-

meter, the distance power law. For a motivating exam-

ple, the signal from a microphone (measured in Volts) is

ideally proportional to the sound pressure (in Pascal),

which in turn decays inversely proportional to the

sound source distance. This holds for punctual sources

and free-space propagation. By identifying the RSS with

the mean square of the received signal, the decay (for

punctual sources in free space) is thus expected to

decay inversely proportional to the distance square.

However, in the non-ideal case, factors like reflection,

diffraction, and refraction influence the RSS decay in a

way that generally is difficult or expensive to predict.

The approach here is to keep the distance power law for

its simplicity, but allow for the decay exponent to adapt

to the current situation. Thus, the exponent is consid-

ered as an unknown parameter.

We reason analogously in the seismic case, although

the seismic wave propagation is even more involved to

predict than is the acoustic. The particle amplitude of

seismic surface waves (Rayleigh and Love waves) ideally

decays inversely proportional to the square root
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distance, which is in agreement with the distance power

law, although distinct from the acoustic case.

The acoustic and seismic distance power laws with

unknown exponents will here be validated on data col-

lected in fairly open terrain. Generally, the distance power

law is probably too simplistic to work well in dense urban

environments, where the RSS results from a superposition

of multiple wave reflections with different path distances.

The urban non-line-of-sight case will, however, not be

treated in this text.

The RSS value itself is here computed by a first optional

pre-filtering step of the raw sensor signal, then an aver-

aging of the squared magnitude over a time window to

obtain a down-sampled signal. The signals are typically

sampled with 1-4 kHz, and the final RSS value is obtained

with one or a few Hz sampling frequency. The pre-filter

only passes signals in frequency bands of interest in the

application, and the averaging reduces the variations in

the RSS estimates.

2.1 Notation

The following notation will be used throughout the

paper:

• The sensor network consists of M sensor nodes.

These are located at pm, where m is used for sensor

index.

• Each sensor node is equipped with several different

sensors, and i indicates the sensor types. In the field

tests, i = 1 corresponds to a microphone and i = 2

to a geophone.

• There is one moving target with position xn at

time n. There are N time instants in each

experiment.

• yi,n,m is the received energy, RSS, at sensor node m,

observed by sensor type i, and averaged over time

window n.

• ei,n,m is additive noise with variance σ 2
n,m .

• θ1,i,n denotes the reference received energy for sen-

sor type i if it would have been placed 1 m from the

target, averaged over time window n.

• θ2,i,m denotes the attenuation or measurement

error bias of sensor node m at sensor type i.

• θ3,i,n,m denotes the power law decay exponent,

which may vary with sensor type, time, and space.

• θ(n, m) = [θ1,n, θ2,m, θ3,n,m]
T gathers the parameters

in a parameter vector

A convention is that energy variables are primarily

defined in logarithmic energy scale, while a bar on a

variable indicates values in linear scale. Hence,

y = log(ȳ) .

2.2 Parametric model

The acoustic sensor model proposed in [7] assumes a

fixed power law decay exponent and additive noise in

linear scale,

ȳi,n,m =
θ̄1,i,n

‖Pm − xn‖
2

+ ēi,n,m, (1)

while the log range model in [10,11] (assuming that θ1,

i,n is constant over time, and that θ3,i,m is constant over

all nodes) has a parametric path loss,

yi,n,m = θ1,i + θ3,i log(‖Pm − xn‖) + ei,n,m. (2)

We here investigate a combined and extended model

to account both for possible space and time depending

parameters,

yi,n,m = θ1,i,n + θ2,i,m

+ θ3,i,n,m log(
∥∥pm − xn

∥∥) + ei,n,m.
(3)

Note that (3) and (1) are identical in the noise-free

case when θ3,n,m = -2 and θ2,m = 0 (no sensor biases).

It is rather obvious that the models above have a lim-

ited scope in the range ∥pm - xn∥. First, when the target

distance tends to zero, the models predict infinite RSS

(in log scale). Beside saturation in the sensors, there are

near-field and other effects that limit the validity for

close distances. Second, when the range tends to infi-

nity, the models (2) and (3) both predict negative infi-

nite RSS. For large distances, the background noise will

dominate the target signal in these models.

2.3 Simplified models

The problem is primarily to find the target locations xn,

n = 1, 2, ..., N. The parameters in θ(n, m) are considered

nuisance. Nevertheless, the dimension of θ (n and m

omitted for notational simplicity) is 2(M + N + NM)

and the number of target coordinate figures, assuming a

moving target, is 3N. However, there are only 2NM

observations, so without any further assumptions, the

system of equations is under-determined, and the locali-

zation problem not well defined. The reason for initially

describing this over-general model is that it will not

only be used for localization, but also for model valida-

tion, where a ground truth could be used in place of

otherwise unknown figures. Thus, the following sub-

models are defined, which all correspond restricted ver-

sions of (3):

M0 θ = 0, that is, there is no target-dependent rela-

tion at all.

M1 θ3,i,n,m = 0 for all i, n, m. This bias model just

compensates for sensor bias and common target energy

for all sensors. That is, there is no range dependence of

the target.
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M2 θ3,i,n,m = θ3,i for all n,m,i. This log range model

assumes that the path loss is a global time-invariant

constant.

Of these models, only M2 (with 5N+2M+2 unknowns)

can be used for actual localization. M0 and M1 are ana-

lyzed to provide a reference to which the M2 performance

and accuracy will be compared. Thus, the objective in Sec-

tion 3 is to validate M2 by showing that it gives signifi-

cantly better predictions of the measured yi,n,m than M0

and M1. Moreover, even though the models M0 and M1

are not suitable for localization, they can still be useful for

target detection, representing the hypothesis that no target

is present. The more detailed interpretation is that M0

corresponds to no observed signal and no node-specific

bias, and M1 no observed signal, but a node-specific bias.

Introducing the notation

yi,n,m = h(cm(xn), θ) + ei,n,m, (4a)

cm(xn) = log
(∥∥pm − xn

∥∥)
, (4b)

the models can be summarized as

M0 : h(cm(xn), θ) = 0, (4c)

M1 : h(cm(xn), θ) = θ1,i,n + θ2,i,m, (4d)

M2 : h(cm(xn), θ) = θ1,i,n + θ2,i,m + θ3,icm(xn). (4e)

3 Model validation
Before analyzing localization algorithms, the energy

decay model will be validated on real data. Our data set

contains GPS position of the target, so the relation

between RSS and target-sensor distance can be analyzed

given known distances.

3.1 LS estimation of θ

The models in (4) are linear in the parameters, so they can

be estimated with ordinary linear least squares (LS, see

[16]) techniques, provided that the target-sensor distance

is known. By stacking the measurements in a column vec-

tor y, and similarly for the noise e, the target positions X ,

the sensor node positions P and parameters θ, the total

model can thus be expressed as a linear regression

y = �T(X ,P)θ + e. (5a)

For example, model M2 and measurements from two

sensor nodes and three time instants give the regressors

� =

⎛
⎝

1 1 1 1 1 1

1 1 1 1 1 1

c1(x1) c1(x2) c1(x3) c2(x1) c2(x2) c2(x3)

⎞
⎠ (5b)

The LS solution is given by (see for instance Chapter

2 of [17])

θ̂ = (�(X ,P)�T(X ,P))−1�(X ,P)y. (5c)

The noise variance is estimated as

σ̂ 2 =

∥∥∥y − �T(X ,P)θ̂
∥∥∥

2

dim(y) − dim(θ)
,

(5d)

where dim(·) denotes vector dimension. The assump-

tion here is that each sensor has the same unknown

noise variance s2. Note, however, that the parameter θ2,i
takes care of individual sensor offsets per sensor type

caused by for instance wind noise and background dis-

turbances. The root mean square error is defined as

RMSE =
√

σ̂ 2 . Assuming independent and equal variance

noise components at each sensor node and type, the

asymptotic covariance matrix for the estimated para-

meters is

Pθ = Cov(θ̂) = σ 2(�(X ,P)�T(X ,P))−1. (5e)

Furthermore, since the noise variance estimate is con-

sistent, we consider the following estimate of covariance

matrix for the estimated parameters

Pθ = Cov(θ̂) = σ̂ 2(�(X ,P)�T(X ,P))−1. (5f)

The principle for model validation is to use a known

network configuration P and a known trajectory X to

estimate the parameters, and as performance indicators

compare (i) the model residuals y − �T(X ,P)θ̂ , (ii) the

parameters with their respective confidence intervals,

and the (iii) obtained RMSE for each model.

3.2 Single sensor experiments

The purpose of the first experiment is to validate the log

range model under ideal conditions, where a vehicle fol-

lows a straight path and passes a single sensor node.

The scenario is depicted in Figure 1, and then in addi-

tion to a microphone, the sensor node also contains a

geophone for seismic signals.

0

Vehicle Position x on the Road [m]

Range [m
]

} Sensor-to-road Distance

Sensor Unit

Figure 1 Field trial setup for sensor model validation.
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The positions of the vehicle and sensor are known

perfectly in this experiment.

Figure 2 visualizes RSS as a function of the vehicle

position x along the road, where the origin is defined as

the closest point to the sensor. Results from both the

microphone and the geophone are presented for

comparison.

Figure 3 illustrates the same data, but with RSS as a

function of range in logarithmic scale, together with the

straight line adapted by the model in (4e). For example,

the estimated power law exponent at the specific field

trial environment is θ3 = -2.3 for the microphone (and θ3

= -2.6 for the geophone).

The results and conclusions from these figures, which

are also supported by data from the sensor network

field trials in Section 3.3, are as follows:

• Figure 2 indicates that the microphone is subject

to more noise or rather variations than the geo-

phone, provided that the proposed models are rele-

vant. The variations are probably due to wind gusts

as well as fading effects when the ground reflected

wave interferes with the line-of-sight wave. Such fad-

ing effects have been analyzed thoroughly for radio

channel using the two-ray model, see for example

[18].

• Figure 2 indicates that the RSS is slightly skewed

and more energy is received when the vehicle is

moving away from the sensor compared to when it

is moving toward the sensor at the same distances

from the sensor. This is explained by the fact that

there is more sound coming from the back of the

vehicle, the exhaust pipe end, compared to the front.

• Figure 3 shows that the RSS is linearly dependent

of the log range, which verifies model M2. There is

a slight near-field effect for the microphone, in that

the RSS value saturates for short distances.

• From Figure 3, the noise contribution as well as

the fading effects appears fairly independent of range

in logarithmic scale, which would confirm the

assumption that noise is additive to the logarithmic

RSS measurements.

3.3 Sensor network experiments

Figure 4 shows the sensor network layout when gather-

ing our evaluation data. In total, M = 12 sensor nodes

are deployed, each with a microphone and a geo-phone,

as indicated in the figure. The sensor node is wireless

with capability to store raw sensor data on an on-board

storage medium. The geophone is stuck into the round

and the microphone is placed some 10 cm above the

−15 −10 −5 0 5 10 15

  Microphone  

R
SS

   
[ V

2 ]

−15 −10 −5 0 5 10 15
Vehicle Position x on the Road [m]

Geophone

R
SS

   
[ V

2 ]

Figure 2 RSS in linear scale at the microphone and the

geophone, respectively.

0.5 1 1.5 2 2.5 3 3.5 4

Microphone

0.5 1 1.5 2 2.5 3 3.5 4
Log Scale Target-Sensor Distance,  log c

1
(x)    [log m]

Geophone

R
SS

   
[lo

g
 V
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R

SS
   

[lo
g

 V
2]

Figure 3 RSS in log scale together with a fitted linear relation

as modeled in (5).
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Figure 4 Sensor node locations ‘+’ and sample trajectory ‘o’

for the motorcycle data set.
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ground level. The sampling rate for the microphone is 4

kHz, and for the geophone 1 kHz. Two different vehi-

cles run one at a time along the track at a constant

speed of 30 km/h (19 miles/h):

• A motorcycle (MC).

• A four-wheeled all-terrain vehicle (FW).

The two data sets denoted MC and FW contain differ-

ent number of samples N. Reference positions of the

targets are measured with differential GPS (DGPS) with

sampling rate 1 Hz.

For least squares estimation, sensor data from the tar-

get positions in the time interval (20, 30) seconds are

used. This is due to the rapidly decreasing signal quality

as a function of range and that the purpose here is sen-

sor model validation rather than tracking. The results

and conclusions are as follows:

• Table 1 shows the RMSE value of the received

logarithmic energy for model M0 (raw data), model

M1 and model M2, respectively. The RMSE is signif-

icantly smaller with log range in the model.

• Table 2 shows the estimated log range parameter

θ̂3 together with its standard deviation (square root

of last diagonal element of Pθ). The standard devia-

tion is orders of magnitude smaller than the para-

meter estimate, indicating an accurate estimate. The

conclusion is that no generic constant, as for

instance -2, should be used.

• Figure 5 shows the estimated sensor bias. For

instance, microphone number 2 has a significant

bias in both data sets. The sensors themselves are

factory calibrated, but the deployment may give

cause to a systematic difference. These terms also

capture individual background noise and line-of-

sight/non-line-of-sight issues. That is, the sensor

bias term is needed. On the other hand, the time-

varying offset is not significantly different from zero

and can be neglected for a single target passage.

• Figure 6 shows the spectrum for the sensor signal

between 23 and 24 s. Each vehicle seems to have a

characteristic signature, with one fundamental fre-

quency, and a lot of harmonics.

• The model residuals from both microphones and

geophones are illustrated as smoothed histograms in

Figure 7 and compared to Gaussian approximations.

The Gaussian noise assumption is apparently quite

realistic. The noise standard deviation can be set to

s Î (2, 3).

4 Eliminating nuisance θ

The goal in this section is to eliminate the nuisance

parameters θ, including the power law exponent, the

emitted energy, and optionally the unknown noise var-

iances s.

From now on, the focus is on model M2 in (4) only.

Furthermore, it is assumed that sensors and target are

in the plane (pm, xn Î ℝ
2), which means that the num-

ber of unknowns is 4N+2M+2, provided that 2 sensors

per node are used (geophone and microphone). The

localization algorithm described here is intended to run

in a centralized fashion on a fusion node in the sensor

network. For localization, the model is used at one time

instant only, so the index n will be dropped for simpli-

city, so xn = x and N = 1. Extending the LS framework

in (5) to also include the target position x gives the non-

linear least squares (NLS) problem

(̂x, θ) = arg min
x,θ

V(x, θ), (6a)

V(x, θ) =

M∑

m=1

(ym − h(cm(x), (θ))2

σ 2
. (6b)

In this section, we assume that the noise variance s2

is known. Also note that the parameter θ1,i,n, represent-

ing time-varying background noise in (4e) is irrelevant

in this snapshot formulation, since it cannot be distin-

guished from the sensor-varying background noise θ2,i,m.

4.1 Separable Least Squares

Using the separable least squares (SLS, see [16]) princi-

ple, the environmental nuisance parameters can be

eliminated explicitly from (6). The minimizing argument

θ in (6a) can be written analytically (assuming that the

measurement noise at different sensor nodes is indepen-

dent) as

Table 1 RMSE (dB) for no model (M0), bias model (M1),

and log range model (M2), respectively

RMSE0 RMSE1 RMSE2

FWmic 32.5 3.9 3.2

MCmic 30.1 4.7 4.1

FWgeophone 34.1 3.3 2.2

MCgeophone 35.7 4.1 2.8

Table 2 Estimated power law exponent θ3,i with its

standard deviation using the log range model (M2)

θ3 std

FWmic -2.6 0.02

MCmic -2.6 0.04

FWgeophone -2.8 0.01

MCgeophone -3.4 0.02
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θ̂(x) =

(
M S

S S2

)−1

︸ ︷︷ ︸
R(x)

×

⎛
⎜⎝

∑M
m=1 ym∑M

m=1
cm(x)ym

⎞
⎟⎠

︸ ︷︷ ︸
f (x)

(7a)

where S =
∑M

m=1 cm(x). Note that the parameter esti-

mate depends on the target location x. The matrix R(x)

and vector f(x) are introduced in (7a) to get more com-

pact notation in the following. Note also that the matrix

R(x) is just a function of sensor geometry and target

position. The matrix inversion can be performed
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Figure 5 Estimated sensor bias over time (θ1,i,n) and space (θ2,m) with sensor one as reference (θ1,i,1 = 0). Left column for motorcycle

(MC) and right column for four-wheeled ATV (FW), first row for microphones, second row for geophones.
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Figure 6 Sound spectrum for the two vehicles and two sensors, and the applied band-pass filter. Upper row for microphones, lower row

for geophones. Left column for motorcycle (MC) and right column for four-wheeled ATV (FW).
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analytically to get

R(x) =
1

M
∑M

m=1 c2
m(x) −

(∑M
m=1 cm(x)

)2

×

( ∑M
m=1 c2

m(x) −
∑M

m=1 cm(x)

−
∑M

m=1 cm(x) M

)
.

(7b)

With this matrix defined, the covariance matrix is

given by

Cov(θ̂(x)) = σ 2R(x). (7c)

The variance of the model predictor, obtained after

plugging in the parameter estimate in the model, is thus

given by

λm(x) = Var(h(cm(x), θ̂(x)))

= σ 2(1, cm(x))R(x)(1, cm(x))T .
(7d)

This is larger than the measurement error variance s2

alone.

In order to fit the general estimation and nonlinear fil-

tering framework, the original RSS model in (4) and (4e)

can be rewritten by introducing a virtual measurement

ŷm resulting in a model with additive white Gaussian

unity variance measurement errors at each sensor:

ŷm = ĥ(x, y) + êm, (8a)

ĥ(x, y) =
ym − h(cm(x), θ̂)√

λm(x)
, (8b)

Var(êm) = 1, (8c)

with the virtual observations

ŷm = 0. (8d)

Note that the real observation ym is seen as a known

input, and the virtual observation ŷm is always zero.

This signal model depends on x only, and the new mea-

surement error is additive white Gaussian with unity

variance.

4.2 SNLS formulation

Using (8), (7) is now reformulated as the equivalent

separable NLS (SNLS, see [16,19]) problem

x̂ = arg min
x

min
θ

VSNLS(x, θ) = arg min
x

VSNLS(x, θ̂),(9a)

VSNLS(x, θ̂) =

M∑

m=1

(ym − h(cm(x), θ̂(x)))
2

λm(x)
,

=

M∑

m=1

y2
m − f T(x)θ̂(x)

λm(x)
.

(9b)

The cost function VSNLS in (9) is similar to the cost

function V in (6), except that the model prediction error

variance lm is considered in the former, while the sen-

sor measurement error variance s2 is considered in the

latter. Hence, the new weighting in the sum of least

squares accounts for both measurement noise and the

estimation uncertainty in the nuisance parameters. Typi-

cally, far away sensor nodes m get larger uncertainty in

the parameters and thus automatically a smaller weight

in the criterion.

4.3 Sensor noise variance estimation

Similar to (5d), the minimum of the sum of least

squares can be taken as an estimate of the measurement

variance as [20]

σ̂ 2(x) =
1

M − 2

M∑

m=1

(ym − h(cm(x), θ̂(x)))
2

(10)

=
1

M − 2

(
M∑

m=1

y2
m − f T(x)θ̂(x)

)
, (11)

where the normalization with N - 2 accounts for the

degrees of freedom lost by the minimization and is

needed to get an unbiased variance estimate. The last

equality is a consequence of the LS theory and will be

used in the NLS formulation below.

5 Localization algorithms
In summary, in the previous section, we have derived

the SNLS model, which in simplified cleaned up nota-

tion can be expressed as

y = h(x) + e, (12a)

y = 0M, (12b)

Cov(e) = IM, (12c)

hm(x) =
ym − h(cm(x), θ̂(x))√

λm(x)
. (12d)
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We have here omitted the dependence of the original

observation in (12a). Here, θ̂(x) is given in (7a), cm(x)

in (7d), h(cm(x), θ̂) in (7c), and l(x) in (7d) (using the

measurement variance estimate σ̂ 2(x) from (10)). The

purpose in this section is to outline possible implemen-

tation strategies.

Extensive experiments have been performed to evalu-

ate the potential of the proposed algorithm. Different

targets (military and civilian vehicles, pedestrians etc),

trajectories and sensor types and node configurations

have been tested. We here present some selected results

for the MC and FW as described in Section 3.3. The

trajectory and sensor node layout are illustrated in Fig-

ure 4, where these are overlayed a satellite image, and

Figure 8 which shows the two trajectories studied in

detail. The sensor observations are downsampled to 2

Hz before estimation, all sensor nodes are carefully cali-

brated, and the vehicle is equipped with GPS satellite

navigation for validation of the performance.

5.1 Estimation criteria

The derivation in Section 4 was motivated by NLS.

However, the same elimination of nuisance parameters

can be applied to more general maximum-likelihood

(ML) approaches, with a Gaussian assumption or with

other assumptions on sensor error distributions, as sum-

marized in Table 3. These criteria are further discussed

in [3].

Figure 9 illustrates the NLS cost as function of target

position x for a particular true position xo.

5.2 Eliminating the Noise Variance

Remember that the noise variance has been assumed to

be known in the NLS approach above. To simply use,

the estimated variance does not work, since

V(x, θ̂(x), σ̂ 2) = M − 2, (13)

which is independent of x. The Gaussian maximum-

likelihood (GML) approach (see e.g., [16]) can be used

to circumvent this problem. Minimizing the GML cost

with respect to s gives a result similar to (9b),

min
σ 2

VGML(x, σ 2) = M log

(
M∑

m=1

y2
m − f T(x)θ̂(x)

)
. (14)

The logarithm intuitively decreases the difference in

weighting between the different sensor types compared

to the case of known noise variances in (9b).

5.3 Optimization

As in any estimation algorithm, the classical choice is

between a gradient and Gauss-Newton algorithm, see

[21]. The basic forms are given in Table 4. These local

search algorithms generally require good initialization,

otherwise the risk is to reach a local minimum in the

loss function V(x). Grid-based optimization does not

suffer from local minima, and a proposed method is

described in Section 5.3.1. However, since such methods

may be practically intractable to implement due to

memory requirements, we also address gradient calcula-

tions in Section 5.3.2. Today, simulation-based optimiza-

tion techniques (see e.g., [22] for a survey) may also

provide an alternative.
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Figure 8 Sensor node locations and sample trajectory for MC

and FW, respectively (almost the same trajectories).

Table 3 Optimization criteria V(x) for estimating position

x from uncertain measurements y = h(x) + e

NLS VNLS(x) = (y - h(x))TR-1(x)(y - h(x))

GML VGML(x) = (y - h(x))TR-1(x)(y - h(x))+log detR(x)

ML VML(x) = log pe(y - h(x))
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Figure 9 NLS cost function as a function of position for a

certain target location indicated with dashed lines in the

contour plot and the thick cross in Figure 4.
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5.3.1 Grid-Based optimization

The loss function is evaluated for a set of grid points x
(ℓ), which gives a set of loss function samples V(x(ℓ)). A

natural approach to loss function minimization is thus

to find the grid point corresponding to the lowest loss

function sample, i.e.,

x̂o = arg min
x∈{x(1),x(2),...,x(L)}

V(x)

However, as indicated by Figure 9, a reasonable local

model of the loss function V(x) close to its minimum is

a quadratic function:

V(x) ≈ V(xo) + (x − xo)TPx(x − xo), ||x − xo|| ≤ dx

The matrix Px in the quadratic form coincides with a

lower bound on the covariance matrix of the NLS esti-

mate (which for Gaussian noise corresponds to the

CRLB). Considering only local grid points that satisfies

∥x(ℓ)-xo∥ ≤ dx, this gives a number of scalar equations

V(x(ℓ)) = V(xo) + (x(ℓ) − xo)TPx(x
(ℓ) − xo) (15)

This can be rewritten as a system of linear equations

yℓ = ϕT
ℓ η, ℓ = 1, . . . , L by exploiting the relation

xTPxx = xT(xT ⊗ I)vec(Px), (16)

where ⊗ denotes the Kronecker product and vec(Px) is

the vector formed by stacking covariance matrix col-

umns. Hence, (15) can be rewritten as

V(x(ℓ)) = V(xo) + (xo)TPxx
o − 2(x(ℓ))TPxx

o+

(x(ℓ))TPxx
(ℓ)

= 1︸︷︷︸
ϕ1

ℓ

V(xo) + (xo)TPxx
o

︸ ︷︷ ︸
η1

+ −2(x(ℓ))
T

︸ ︷︷ ︸
ϕ2

ℓ

Pxo
︸︷︷︸

η2

+

(x(ℓ))
T
((x(ℓ))

T
⊗ I)︸ ︷︷ ︸

ϕ3
ℓ

vec(Px)︸ ︷︷ ︸
η3

,

(17)

where ϕℓ = [ϕ1
ℓ , ϕ2

ℓ , ϕ3
ℓ ]T and h = [h1, h2, h3]T. Note

that some rows of vec(Px) will be identical since Px is

symmetric and duplicates shall therefore be removed

from h, as well as corresponding rows of �ℓ. This is

thus a linear regression resulting in an over-determined

system if the number of local grid points are sufficiently

large. Least squares provides the solution η̂ to (17),

from which Px and xo can be derived.

Figure 10 illustrates the localization accuracy when the

target passes the network, together with a 90% confi-

dence interval. The confidence interval calculations are

based on the estimated covariance matrix Px and an

assumption of Gaussian inaccuracies. Both targets give

similar results.

5.3.2 Gradient derivation

The gradient H(x) = ∇xh(v) of the model with respect to

the position is instrumental in several loss function

minimization algorithms, and it is the purpose here to

derive the necessary equations.

First, it is easier to apply the chain rule to the expres-

sion

cm(x) = log(||x − pm||) =
1

2
log(||x − pm||2), (18)

though the result is the same in the end. The gradient

is then immediate as

∇x(cm(x)) =
x − pm

||x − pm||2
. (19)

The gradient of the NLS loss function V(x)) becomes

a function of the gradients of h(x, θ̂) and l(x). These

are all tedious but straightforward applications of the

chain rule, not reproduced here. However, the gradient

can be expressed as a closed expression based on the

target location x and sensor locations pm.

6 Fundamental bounds
The Fisher Information Matrix (FIM) provides a funda-

mental estimation limit for unbiased estimators referred

to as the Cramér-Rao lower bound (CRLB) [23]. This

bound has been analyzed thoroughly in the literature,

Table 4 Estimation algorithms applicable to optimization

criteria in Table 3

Grid-based x̂o = arg minx∈{x(1),x(2),...,x(L)}V(x)

Steepest descent x̂o
j = x̂o

j−1 − μk∇x[V(x)]

Newton-Raphson x̂o
j = x̂o

j−1 + μk(∇x[∇
T
x [V(x)]])−1∇x[V(x)]
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primarily for AOA, TOA, and TDOA, [1-3], but also for

RSS [12,13] and with specific attention to the impact

from non-line-of-sight [14,15].

In this section, the notation x = (x1, x2)
T is adopted

for the two-dimensional coordinates x1 and x2, respec-

tively. The Fisher Information Matrix J(x) is defined as

J(x) = E(∇T
x log pe(y − h(x))∇x log pe(y − h(x))) (20a)

∇x log pe(y − h(x)) =

(
∂ log pe(y − h(x))

∂x1

∂ log pe(y − h(x))

∂x2

)
(20b)

where p is the two-dimensional position vector and pe
(y - h(x)) the likelihood given the error distribution. For

the SNLS model 8, J(x) is 2 × 2. Again, the gradient

derivations are tedious but symbolic exercises not repro-

duced here.

Plausible approximative scalar information measures are

the trace of the FIM and the smallest eigenvalue of FIM

Jtr(x) � tr J(x), Jmin(x) � min eig J(x). (21)

The former information measure is additive as FIM

itself, while the latter is an under-estimation of the

information useful when reasoning about whether the

available information is sufficient or not. Note that in

the Gaussian case with a diagonal measurement error

co-variance matrix, the trace of FIM is the squared gra-

dient magnitude.

The Cramér-Rao lower bound is given by

Cov(x̂) = E(xo − x̂)(xo − x̂)T ≥ J−1(xo), (22)

where xo denotes the true position. (22) holds for any

unbiased estimate of x̂, although the right hand side is

not necessarily attainable. Asymptotically in the number

of sensor nodes, the ML estimate is

x̂ ∼ N(xo, J−1(xo)) [24] and thus reaches this bound, but

this may not hold for finite amount of data.

The right hand side of (22) gives, however, an idea of

how suitable a given sensor configuration is for posi-

tioning. It can also be used for sensor network design. It

should always be kept in mind though that this lower

bound is quite conservative and relies on many

assumptions.

In practice, the root mean square error (RMSE) is per-

haps of more importance. This can be interpreted as the

achieved position error in meters. The CRLB implies the

following bound:

RMSE =

√
E

(
(xo

1 − x̂1)2 + (xo
2 − x̂2)2

)

=
√

tr Cov(x̂) ≥

√
tr J−1(xo).

(23)

If RMSE requirements are specified, it is possible to

include more and more measurements in the design

until (23) indicates that the amount of information is

enough.

Figure 11 illustrates how the RMSE lower bound var-

ies for different target positions x. One observation is

that the bound is approximately equally good within the

area where the sensor nodes are placed. This observa-

tion is in line with Figure 10, where the performance

within this area is about the same. Such findings illus-

trate the the use of CRLB analysis of sensor configura-

tions as a means for sensor configuration design

7 Conclusions
Conventional received signal strength (RSS)-based algo-

rithms as found in the literature of wireless or acoustic

networks assume either that the emitted power is

known or that the distance power law exponent is

known from calibration. We have considered a network

of microphone sensors that is rapidly deployed in an

unknown environment where the distance power law

exponent is unknown or may vary with time. Also, the

emitted power is inherently unknown in the localization

and tracking applications under consideration. For loca-

lization, both the emitted acoustic energy and the power

law exponent are nuisance parameters unique for each

target and sensor type, but constant over the sensor

nodes.

The nonlinear least squares (NLS) algorithm offers a

suitable framework for positioning in this kind of sensor

networks, where the RSS measurements suffer from

unknown emitted power and where also the environ-

mental path loss constant is unknown. Marginalization

of the nuisance parameters using the separable least

squares principle leads to a NLS cost function of only
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two unknowns (horizontal position), where global grid-

based methods can be used for minimization. Results

from field trials confirm the usability of the proposed

method. Hopefully, the provided framework can form a

basis for subsequent target tracking and thorough per-

formance evaluations.
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