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In a typical moving contaminating source identification problem, after some type of biological or chemical contamination
has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination
source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or
satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical descrip-
tion of the physical processes underlying the observed phenomena. The present work aims at bridging this gap and meeting
the needs created in the context of the source identification problem. We assume that the paths of the moving sources are
unknown, but they are sufficiently smooth to be approximated by combinations of given basis functions. This parametri-
zation makes it possible to reduce the source detection and estimation problem to that of parameter identification. In order
to estimate the source and medium parameters, the maximum-likelihood estimator is used. Based on a scalar measure of
performance defined on the Fisher information matrix related to the unknown parameters, which is commonly used in opti-
mum experimental design theory, the problem is formulated as an optimal control one. From a practical point of view, it is
desirable to have the computations dynamic data driven, i.e., the current measurements from the mobile sensors must serve
as a basis for the update of parameter estimates and these, in turn, can be used to correct the sensor movements. In the
proposed research, an attempt will also be made at applying a nonlinear model-predictive-control-like approach to attack
this issue.
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1. Introduction

1.1. Motivations behind the source identification pro-
blem. The contaminating source identification problem
has been increasingly receiving significant research inte-
rest due to its applications in the fields of security, environ-
mental and industrial monitoring, pollution control, etc.
Examples include the detection of a potential biochemical
attack in an urban environment, e.g., from a crop-duster
spreading toxins in aerosol, sensing explosives mounted
on a vehicle, detecting a leakage of dangerous biochemi-
cal materials from a tank carried by a vehicle, or detecting
a life-threatening contaminant source dropped intentional-
ly or unintentionally into a water reservoir. In a typical
scenario, after some type of biological or chemical con-
tamination has occurred, there is a developing plume of
dangerous or toxic material. Clearly, the evolution of the
cloud will be affected by the weather conditions and the
surrounding geography. It goes without saying that a cru-
cial factor in responding to a chemical or biological attack

is speed. Emergency services wish to quickly know what
the toxin is, where its sources are located and what their
strengths are. This knowledge would allow them to take
the appropriate measures to counteract or at least to redu-
ce the impact of the release.

Although laborious research is conducted towards
technologies making it possible to remotely detect the pre-
sence of a toxin, it is rather hard to envisage systems con-
tinuously monitoring vast spatial regions over long time
horizons. But even with extremely limited measurement
resources in space and time, the identification of conta-
mination sources is not doomed to failure, provided that
one has ample knowledge of the diffusion field and wind
velocity. This is because there exist mathematical models
that govern the development of the plume. They are based
on partial differential equations which include diffusion
and transport phenomena effects, as well as forcing func-
tions such as the prevailing weather conditions, or boun-
dary conditions related to the possibly complicated sur-
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rounding geography. Now, assume that a number of sen-
sors is deployed in the spatial area in question and they
can measure the concentration of the contaminant. Then
the goal is to use these observations to detect and loca-
lize the contamination source, determine the space-time
concentration distribution of the chemical dispersion, and
predict its cloud envelope evolution. As far as the form of
the mathematical model for the plume evolution is known,
a model-based approach can be used, wherein the under-
lying physical and statistical models models are coupled
with signal processing to obtain the best performance.

There are a number of difficulties inherent in the
above source identification problem. First, we note that
this is an inverse problem in which, given a model, it is
necessary to identify the system parameters from availa-
ble information about the process. As such, we demand
certain guarantees that the source position is identifiable
taking account of the typical case when sensors permit
finite-dimensional measurements. Second, as a rule, this
inverse problem is ill-posed and has to be regularized to
obtain a reasonable approximation to the solution. This
question can hardly be overestimated, since, using obse-
rvations provided by sensors which are usually coarsely
spaced and without resorting to regularization, we cannot
hope to recover components of the source function that
are more oscillatory than dictated by the spacing of the
sensors. These issues are often neglected in the engine-
ering literature, which may lead to erroneous results, cf.
the work of Sivergina and Polis (2002).

The situation is even more complicated when the-
re are multiple toxic sources which can move and keep
polluting the zone in question. Then, additionally, from
the online implementation viewpoint, we would prefer
a recursive procedure for estimating time-dependent pa-
rameters characterizing the sources so that the estimate
tracks the measurement data and so the new measurements
can be effectively incorporated. Unfortunately, no univer-
sal solutions to the above problems have been proposed so
far.

1.2. Sensor management. In modern observation sys-
tems, sensors can be located on various platforms and the-
se platforms can be highly dynamic in motion. Recent
advances in hardware, sensor and networking technolo-
gies enable large-scale deployment of superior data acqu-
isition systems with adjustable resolutions, called sensor
networks (Zhao and Guibas, 2004; Hirsch et al., 2008; Ja-
in and Agrawal, 2005; Sastry and Iyengar, 2005; Chong
and Kumar, 2003; Sinopoli et al., 2003; Cassandras and
Li, 2005). Each sensor node has a sensing capability, as
well as limited energy supply, computing power, memory
and communication ability. These inexpensive, low-power
communication devices can be deployed throughout the
physical space, providing dense sensing close to physi-
cal phenomena, processing and communicating this infor-

mation, and coordinating actions with other nodes. Sen-
sor networks have recently come into prominence because
they hold the potential to revolutionize a wide spectrum of
both civilian and military applications, including environ-
mental monitoring, scene reconstruction, motion tracking,
motion detection, battlefield surveillance, remote sensing,
global awareness, etc. The design, implementation and
operation for a sensor network requires the confluence of
many disciplines, including signal processing, networking
and protocols, embedded systems, information manage-
ment and distributed algorithms.

Endowing nodes in a sensor network with mobility
drastically expands the spectrum of the network’s capabi-
lities. Moreover, assuming that each mobile node posses-
ses a certain amount of decision making autonomy gives
rise to a dynamic system with a considerable amount of
flexibility, depending on the extent to which the nodes can
cooperate in order to perform a mission. This flexibility,
for example, allows us to handle a large number of da-
ta source targets with a much smaller number of nodes
that can move. What is more, technological advances in
communication systems and the growing ease in making
small, low power and inexpensive mobile systems now
make it feasible to deploy a group of networked vehicles
in a number of environments (Ögren et al., 2004; Chong
and Kumar, 2003; Sinopoli et al., 2003; Cassandras and
Li, 2005; Martínez and Bullo, 2006).

In a simplest case, each networked sensor can be mo-
unted on a ground mobile robot. The mission in context
is to determine possibly multiple contamination sources.
Each robot is actuated according to spatial and temporal
sensed information (contaminant concentration gradient,
spatial position, etc.) from more than one mobile sensor. A
more complicated scenario consists in exploring a three-
dimensional space using mobile sensors being unmanned
aerial vehicles (UAVs) equipped with concentration de-
tectors. Using all possible data (such as weather informa-
tion, information about the storage facility and the possi-
ble hazardous materials that have been released), the com-
mand and control system determines where sensor measu-
rements should be made and directs the mobile sensors to
appropriate sampling locations.

Naturally, mobility implies an additional layer of
complexity (Cassandras and Li, 2005). For example, if
communication connectivity is to be maintained, we must
ensure that each node remains within the range of at least
some other nodes. We must also take into account that mo-
bility consumes a considerable amount of energy, which
amplifies the need for various forms of power control. Ho-
wever, the complexity of the resulting sensor management
problem is compensated by a number of benefits. Speci-
fically, sensors are not assigned to fixed spatial positions,
but are capable of tracking points which provide at a given
time moment the best information about the contamina-
tion sources. In order to take advantage of these possibi-
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lities, sensors must be deployed and then guided so as to
maximize the information extracted from the mission spa-
ce while maintaining acceptable levels of communication
and energy consumption.

1.3. Previous work. The input reconstruction problem
has extensively been investigated since the 1960s due to
its importance in military applications and environmental
monitoring. Most approaches pass a reference to a gene-
ral framework of inverse problems for partial differential
equations (cf. Isakov, 1998). Among recent works we can
enumerate, e.g., the one by Sivergina et al. (2003), whe-
re a recursive identification procedure was exposed based
on estimation theory for PDEs with bounded disturban-
ces and Tikhonov regularization techniques (specifically,
a generalization of a finite-dimensional Lyapunov techni-
que for systems with bounded disturbances is considered).
This scheme is closely related to the on-line approach by
Maksimov (2000), resting on principles of positional con-
trol, which was investigated in various settings and deve-
loped for linear parabolic and hyperbolic equations, non-
linear equations with monotone operators, and variational
inequalities. Note, however, that those technically sound
methods were tested only on academic examples. On the
other hand, a number of contributions appeared aimed at
source identification in complex settings encountered in
practice.

Thus, Akçelik et al. (2003) investigated the re-
construction of an arbitrary source in a time-varying
convective-diffusive transport in three space dimensions,
given a velocity field and pointwise measurements of con-
centration. The source identification problem is conver-
ted to an infinite-dimensional optimization one for which
optimality conditions are derived and solved using a Ga-
lerkin space-time finite-element method using a terascale
supercomputer. In turn, Boggs et al. (2006) proposed a si-
milar formulation for rapid source inversion for a steady-
state environment in which the transport is dominated
by advection and the turbulent flow is modeled using a
Reynolds-averaged Navier–Stokes approach.

In the work by Gnot et al. (2001), a method was de-
veloped to identify one pollution source acting on a static
DPS described by an elliptic equation. Based on measu-
rements from several monitoring stations, the authors set
forth a statistical inference procedure to estimate the mean
and variance of the source intensity, along with the varian-
ce of the measurement errors. Separating variance compo-
nents is usually avoided in the literature on source identi-
fication and therefore the value of this original technique
can hardly be overestimated.

The number of publications on mobile sources is li-
mited owing to the inevitable increase in problem comple-
xity. Indeed, transition from static to mobile sources may
lead to states of a DPS which cannot be achieved when the
forcing input is by non-mobile sources only and, in con-

sequence, affect the underlying system properties. What
is more, this transition yields a loss of linearity in the ba-
sic relations, see the work of Butkovskiy and Pustyl’nikov
(1987) for more details. In spite of that, the problem was
attacked from various angles. Zhao and Nehorai (2006)
developed a statistical method to detect and estimate bio-
chemical dispersion by a moving source using model-
based integrated sensor-array processing. After parame-
terizing the unknown quantities (e.g., the source intensity
and trajectory) by a finite number of constant parameters,
close attention is paid to the detection and localization of
the biochemical source using maximum-likelihood esti-
mators. Additionally, the Cramér–Rao bound is compu-
ted to assess the achieved results. What is more, detectors
are constructed based on a generalized likelihood ratio test
(GLRT), and their performance is determined in terms of
the probabilities of detection and a false alarm. The pre-
sented approach constitutes a generalization of the method
set forth by Nehorai et al. (1995) for the case of stationa-
ry sensors and sources, and then extended by Porat and
Nehorai (1996) to the case of a moving sensor.

The identification of a moving source for a parabo-
lic equation with constant coefficients was attacked from
a different perspective by Kusiak and Weatherwax (2008).
The authors demonstrate that a knowledge of the instanta-
neous concentration distribution of the dispersion on any
bounded open set located away from the support of a sour-
ce is sufficient to estimate a nontrivial subset of the actual
convex hull of the support of the source which they call
the carrier support.

The estimation of moving point sources in a three-
dimensional homogeneous solid in transient heat con-
duction was investigated by Lefèvre and Niliot (2002).
The identification procedure is based on a boundary ele-
ment method formulation using transient fundamental so-
lutions. The results were verified on both simulation and
experimental examples.

1.4. Our work. A detailed review of the existing ap-
proaches provides evidence that no satisfactory and ver-
satile method to detect and estimate moving sources has
been proposed as yet, at least not for applications whe-
re (near) real-time solutions are needed (i.e., sensor data
have to be assimilated repeatedly into simulations). Abo-
ve all, this is because the size and complexity of PDE si-
mulations often present significant computational challen-
ges (Biegler et al., 2007). It also goes without saying that
the relevant algorithms are expected to produce acceptable
approximations to the sought values fast enough to make
timely decisions counteracting the aftermaths of chemi-
cal or biological attacks. What is more, the prospective
methods must be capable of dealing with the inherent ill-
posedness of inverse problems and robust to incomplete,
uncertain and noisy data. This is in sharp contrast to the
literature, where increasingly complex parameterized mo-
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dels are treated theoretically and computationally in a de-
terministic framework with little or no attention to uncer-
tainty in either the modeled mechanisms or the data used
to validate the models (Vogel, 2002). Finally, to the best
of our knowledge, no communications have been repor-
ted regarding sensor trajectory generation for the purpose
of an “optimal” estimation of moving sources. Inevitably,
node mobility involves an additional level of complexi-
ty, but this measurement strategy holds much appeal from
the perspective of achievable identification accuracy and,
what is crucial here, it can be easily implemented using
current technology.

The purpose of the research pursued in this work was
thus to develop a computationally efficient approach to the
detection and estimation of moving contamination sources
using a sensor network with multiple cooperative mobile
nodes. In contrast to conventional approaches commonly
used in mobile sensor networks, the knowledge of the ma-
thematical model of the distributed parameter system in
question is incorporated to form a basis for optimization.
Consequently, the important information about the model
governing the physical phenomenon in question will not
be lost and will be to the profit of early detection of poten-
tial chemical and biological threats. The main idea applied
here consists in formulating the problem in terms of a sta-
tistical measurement model.

1.5. Proposed approach.

1.5.1. Role of the PDE model in configuring sensor ne-
tworks with mobile nodes. In a typical sensor network
application, sensors are supposed to be deployed so as to
monitor a region and collect the most valuable informa-
tion from the observed system. The quality of sensor de-
ployment can be quantified by the appropriate performan-
ce indices, and optimum sensor node configurations can
thus be sought. The resulting observation strategies con-
cern optimal planning of trajectories of mobile nodes. Up
to now, approaches aiming at guaranteeing a dense region
coverage or satisfactory network connectivity have domi-
nated this line of research and abstracted away from the
mathematical description of the physical processes under-
lying the observed phenomena. In this way, much infor-
mation is lost which could potentially be used to make the
operation of the sensor network more efficient and yield
substantial gains in the functionality of the whole source
localization system.

The observed processes in question are often termed
distributed parameter systems (DPSs) as their states de-
pend not only on time, but also on spatial coordinates.
Appropriate mathematical modeling of DPSs most often
yields partial differential equations (PDEs). It goes witho-
ut saying that such models involve using rather sophisti-
cated mathematical methods. This explains why so few

attempts have been made at exploiting them in the con-
text of sensor networks. But in recompense for this effort,
we would be in a position to describe the process more
accurately and to implement more effective control stra-
tegies. Early lumping, which means the approximation of
PDEs by ordinary differential equations of possibly high
order, may mask the distributed nature of the system and
therefore it is not always satisfactory.

For the last forty years, DPSs have occupied an im-
portant place in control and system theories. They are now
an established area of research with a long list of journal
articles, conference proceedings and numerous textbooks.
It is intriguing that for a long time, due to the inherent
impossibility of observing the system states over the en-
tire spatial domain, one of the topics of importance for
specialists in control theory has been the problem of se-
lecting the number and location of sensors and actuators
for the control and state/parameter estimation in such sys-
tems. A number of sensor location methods were invented
and supported by a sound theory, but they are not direc-
tly fit to the emerging technology of sensor networks. The
present work aims at bridging this gap and meeting the
needs created in the context of the source identification
problem.

1.5.2. Problem formulation in terms of a statistical
measurement model. Suppose that we have a number
of unknown moving sources (intruders) continuously re-
leasing a contaminant. In the proposed approach, we start
with the physical model including a PDE describing the
phenomenon of contaminant advection and diffusion over
a spatial domain. In some situations, some information
about the source trajectories may be known. For exam-
ple, the moving source path can be known in advance
for a car in streets or a train on rails. For an airplane,
the moving trajectory can be known by radar. But in a
general case which is considered here, we assume that
the path of each moving source is unknown. Basically,
it is possible to model it by independent spatial samples
at each time snapshot. However, the resulting number of
unknown parameters (being spatial positions at consecuti-
ve time moments) to estimate would be excessively high.
Accordingly, the computational costs would be extremely
high and the results would be inaccurate. Therefore, the
use of a parametric moving path model was advocated
by Zhao and Nehorai (2006). Such a model exploits the
fact that the trajectories are smooth, which makes it po-
ssible to somewhat reduce the number of parameters to
be estimated. In a simplest case, each path could be ap-
proximated by a linear combination of a set of given ba-
sis functions. These temporal basis functions should be
chosen based on prior information on the trajectory. Their
number should be chosen as a trade-off between the de-
sired accuracy and computational complexity. Zhao and
Nehorai (2006) used the following reasoning: If a sour-
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ce trajectory is smooth, a comparatively small number of
basis functions and unknown parameters can be used to
construct a sufficiently good approximation to its path.
Consequently, they developed a sound approach to source
identification, which was thoroughly analyzed and tested
on simulation examples. Although the parameterized mo-
del sounds appealing, as its introduction reduces the pro-
blem to a parameter identification one, the reality is that
the number of the relevant parameters to be estimated may
still be too high to avoid acute problems involved by the
extreme ill-posedness of the nonlinear least-squares ap-
proach (cf. Banks, 1992; Chavent, 1991), e.g., the lack of
the uniqueness of solutions, instabilities in the minimiza-
tion process or the presence of many local minima. These,
in turn, create a need for appropriate regularization proce-
dures, which results in an increased complexity level.

Consequently, we have decided to alter the basic pa-
rameter estimation procedure outlined above and to de-
compose source identification into a sequence of stages
carried out over consecutive time intervals. If these conti-
guous intervals are short enough, then it is reasonable to
assume that over each of them sources move along stra-
ight lines at constant speeds and release the contaminant
at constant rates. We handle the parameters governing this
simplified source behavior by estimating them off-line ba-
sed on the measurement data collected over the current
time stage. To a certain extent, this makes the whole pro-
cedure adaptive. What is more, each of these “linearized”
identification subproblems is much simpler than the origi-
nal off-line scheme, in which source dynamics were reco-
vered only at the end of the whole observation horizon.

Another benefit of the proposed adaptive scheme is
that it provides room for the optimization of sensor mo-
tions. Indeed, at the beginning of each stage, optimized
sensor trajectories can be determined based on the pre-
dicted parameter values which are the parameter estima-
tes coming from the previous stage. These trajectories are
supposed to be specified so that the information content of
the measurements with respect to the source behavior and
the PDE model is as high as possible.

The problem of optimal sensor guidance for parame-
ter estimation in DPSs has been extensively investigated
over the past twenty years, but the corresponding methods
have never been exploited in the context of the source
identification problem. Therefore, one of our goals was to
adapt some existing techniques to this setting. For the re-
ader’s convenience, in what follows we provide a concise
overview of the relevant contributions.

1.5.3. Sensor trajectory design in DPSs: State of the
art. The importance of sensor planning has already been
recognized in numerous related application domains, e.g.,
air quality monitoring systems, groundwater-resources
management, the recovery of valuable minerals and hy-
drocarbon, model calibration in meteorology and oceano-

graphy, chemical engineering, hazardous environments
and smart materials (Nehorai et al., 1995; Porat and Neho-
rai, 1996; Jeremić and Nehorai, 1998; Jeremić and Neho-
rai, 2000; Navon, 1997; Daescu and Navon, 2004; Chri-
stofides, 2001; Banks et al., 1996; Sun, 1994; Uciń-
ski, 2005). The operation and control of such systems usu-
ally require precise information on the parameters which
condition the accuracy of the underlying mathematical
model, but that information is only available through a
limited number of possibly expensive sensors. Over the
past years, this limitation has stimulated laborious rese-
arch on the development of strategies for efficient sensor
placement (for reviews, see the papers by Kubrusly and
Malebranche (1985), van de Wal and de Jager (2001), and
the comprehensive monographs by Uciński (1999; 2005)).
Nevertheless, although the need for systematic methods
was widely recognized, most techniques communicated
by various authors usually are limited to sensor network
nodes with no mobility, and rely on exhaustive search over
a predefined set of candidates. What is more, the combi-
natorial nature of the design problem is taken into account
very occasionally (van de Wal and de Jager, 2001). Ne-
edless to say, this approach, which is feasible for a rela-
tively small number of possible locations, soon becomes
useless as the number of possible location candidates in-
creases or the nodes are mobile.

In the context of parameter estimation, exceptions
to this naive approach constitute the works originating
in statistical optimum experimental design (Fedorov and
Hackl, 1997; Walter and Pronzato, 1997; Uciński and
Bogacka, 2005; Uciński and Atkinson, 2004), and its
extensions to models for dynamic systems, especially in
the context of the optimal choice of sampling instants
and input signals (Ljung, 1999; Gevers, 2005; Hjalmars-
son, 2005). In this vein, various computational schemes
have been developed to directly attack the original pro-
blem or its convenient approximation. The adopted opti-
mization criteria are essentially the same, i.e., various
scalar measures of performance based on the Fisher in-
formation matrix (FIM) associated with the parameters
to be identified are maximized. The underlying idea is
to express the goodness of parameter estimates in terms
of the covariance matrix of the estimates. For sensor-
location purposes, one assumes that an unbiased and ef-
ficient (or minimum-variance) estimator is employed so
that the optimal sensor placement can be determined in-
dependently of the estimator–used. This leads to a great
simplification since the Cramér-Rao lower bound for the
aforementioned covariance matrix is merely the inverse of
the FIM, which can be computed with relative ease, even
though the exact covariance matrix of a particular estima-
tor is very difficult to obtain.

The first treatments of this type for the sensor-
location problem were proposed by Uspenskii and Fedo-
rov (1975) as well as Rafajłowicz (1981), cf. also another
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work of Rafajłowicz (1983). Over the past two decades,
this methodology has been substantially refined to extend
its applicability. A comprehensive treatment of both the-
oretical and algorithmic aspects of the resulting sensor lo-
cation strategies is contained in the monograph by Uciń-
ski (2005). The potential of the approach for generaliza-
tions was exploited, e.g., in the work by Uciński and Patan
(2007), describing the setting in which a large number of
possible sites at which to locate a sensor are given, but
cost constraints allow only some proper subset of them to
be selected. The search for the optimal solution was per-
formed using the branch-and-bound method in which an
extremely simple and efficient technique was employed to
produce an upper bound to the maximum objective func-
tion.

Using mobile sensor network nodes, we can expect
the minimal value of an adopted design criterion to be lo-
wer than the one with no mobility. In the seminal article
by Rafajłowicz (1986), the D-optimality criterion is con-
sidered and an optimal time-dependent measure is sought,
rather than the trajectories themselves. On the other hand,
in the works by Uciński (2005; 2000a; 2000b) as well as
Uciński and Korbicz (2001), apart from generalizations,
some computational algorithms are developed based on
the FIM. The problem is reduced to a state-constrained
optimal-control one for which solutions are obtained via
the method of successive linearizations, which is capable
of handling various constraints imposed on sensor mo-
tions. In turn, Uciński and Chen (2005) attempted to pro-
perly formulate and solve the time-optimal problem for
moving sensors which observe the state of a DPS so as to
estimate some of its parameters. In the paper by Uciński
and Chen (2006), a similar technique was presented so as
to make the Hessian of the parameter estimation cost well
conditioned subject an additional constraint imposed on
the achievable D-efficiency of the solutions. This line of
research was extended in the monograph by Song et al.
(2009) towards applications involving sensor networks.

Finally, we should also pass a reference to the works
by Demetriou (2006a; 2006b; 2007; 2009), Demetriou and
Hussein (2009), Hussein and Demetriou (2007), as well
as Uciński and Demetriou (2008) focused on on-line opti-
mal guidance of actuator/sensor network nodes for control
and/or state estimation, which demonstrate that the inclu-
sion of a DPS model into the optimization setting can sub-
stantially improve the quality of network performance.

1.5.4. Brief outline of the proposed sensor routing.
We assume that the original observation horizon is arbitra-
rily partitioned into a finite sequence of consecutive sub-
intervals which will be further called stages. In much the
same way as in the work of Uciński (2005, Chapter 4), at
the beginning of each stage, the expected estimation accu-
racy is quantified based on a scalar measure defined on the
Fisher information matrix related to the unknown parame-

ters (they can characterize both the sources and the rele-
vant PDE). The sensor routing problem over the current
stage is then formulated as an optimal-control one with
state-variable inequality constraints representing geome-
tric constraints induced by the admissible measurement
regions and allowable distances between the sensor nodes.
Taking account of the dynamic models of the vehicles co-
nveying the sensors, the problem is finally reduced to the
determination of the control forces exerting on the sensor
nodes. After a transformation of the resulting optimal con-
trol problem to the canonical Mayer form, its numerical
solution can be determined using common computational
tools for algorithmic optimal control, e.g., RIOTS_95.

2. Source identification procedure

2.1. Optimum source identification problem. Consi-
der a (possibly nonlinear) DPS

∂y

∂t
= A(x, t, y) + f(x, t), (x, t) ∈ Ω× T, (1)

with initial and boundary conditions of the general form

y(x, 0) = 0, x ∈ Ω, (2)

B(x, t, y) = 0, (x, t) ∈ Γ× T, (3)

where Ω ⊂ R
2 is a fixed, bounded, open set with suffi-

ciently smooth boundary Γ, the points of which will be
denoted by x = (x1, x2), A is a (possibly nonlinear) spa-
tial differential operator which includes first- and second-
order spatial derivatives, B is an operator acting on Γ, f
signifies a source term, t stands for time, T = (0, tf ),
y = y(x, t) signifies the state variable with values in R.

We assume that, for a given set of initial and boun-
dary conditions and for each appropriate function f , the
system of equations (1)–(3) has a unique solution. The
mathematically delicate questions of the existence, uniqu-
eness and smoothness of solutions to Eqn. (1) are beyond
the scope of this work.

In the treatment to follow, we shall assume that the
source term constitutes a sum of contributions coming
from r sources, and each of them may be decomposed
into the product of a temporally dependent concentration
wi ≥ 0 and a function gi ≥ 0 defining the spatial distri-
bution of the source, such that

f(x, t) =
r∑

i=1

gi(x− ξi(t))wi(t), (4)

where a continuous function ξi : [0, tf ] → Ω̄ = Ω ∪ Γ
defines the trajectory of the i-th source. As for possible
options for gi, we might be given, e.g.,

gi(x) = δ(x), i = 1, . . . , r, (5)
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δ being the Dirac delta function concentrated at the ori-
gin, which correspond to pointwise sources, or Gaussian
models

gi(x) = exp(−βi‖x‖2), i = 1, . . . , r, (6)

where βi > 0 are constants. In turn, as for options for wi,
unless otherwise stated, we assume that

wi(t) = �i(Hbi(t)−Hai(t)), (7)

where 0 ≤ ai < bi, �i ≥ 0 and Hτ (t) denotes the Heavi-
side function

Hτ (t) =

{
0 if t < τ,

1 otherwise.
(8)

This means that each source releases a substance at a con-
stant rate over the time interval [ai, bi).

Note that in our approach the number of sensors is
supposed to be known in advance.

Assume that the state of the DPS in question can be
measured by a set ofN mobile sensor network nodes inde-
xed by j = 1, . . . , N . Let xj : T −→ Ωad be the trajecto-
ry of the j-th sensor, where Ωad ⊂ Ω̄ stands for the region
where measurements can be made. The observations are
assumed to be of the form

z(t) = ym(t) + εm(t), t ∈ T, (9)

where

ym(t) = col[y(x1(t), t), . . . , y(xN (t), t)],

εm(t) = col[ε(x1(t), t), . . . , ε(xN (t), t)],

z(t) is the N -dimensional observation vector and ε =
ε(x, t) is a white Gaussian noise process (a formal time
derivative of a Wiener process) whose statistics are

E
{
ε(x, t)

}
= 0, (10)

E
{
ε(x, t)ε(x′, t′)

}
= σ2δ(x− x′)δ(t− t′), (11)

σ > 0 being the standard deviation of the measurement
noise. The assumption that we are in a position to obse-
rve directly the system state is made only for simplicity of
presentation. The approach outlined in what follows can
be easily generalized to indirect observation of state va-
riables.

A preliminary version of our source identification
problem is formulated as follows: We seek the source tra-
jectories ξi and intensities wi that yield a simulated con-
centration field which best matches the data from the sen-
sors, i.e., the ones that minimize the mismatch functional

J (ξ, w) =
1
2

N∑

j=1

∫

T

‖z(t)− ŷm(t; ξ, w)‖2 dt, (12)

where

ŷm(t; ξ, w)
= col

[
ŷ(x1(t), t; ξ, w), . . . , ŷ(xN (t), t; ξ, w)

]
(13)

and ŷ( · , · ; ξ, w) denotes the solution to Eqns. (1)–(3)
corresponding to given functional parameters (ξ, w) =
(ξ1, . . . , ξr, w1, . . . , wr).

Note that the above estimation process is usually ill
posed in the sense that noise in the data may give rise to
significant errors in the estimate. Accordingly, a regulari-
zation functional is then usually added to (12) to impose
stability or a priori information, or both (Vogel, 2002).

Before proceeding with solution, we need to address
the issue of reducing the problem of source identification
to a finite-dimensional form. As Zhao and Nehorai(2006)
did, here we apply the parametrization approach common-
ly used in algorithmic optimal control (Polak, 1997; Py-
tlak, 1999). It corresponds to explicit discretization of the
source trajectories ξi. We can represent them, e.g., as line-
ar combinations of canonical Lagrange interpolation po-
lynomials or B-splines. To a great extent, the limitation of
admissible source trajectories to a finite-dimensional sub-
space becomes a necessity if we wish to make the source
identification problem tractable. Clearly, the selection of
the subspace affects both the accuracy of numerical inte-
gration and the accuracy with which the solutions of the
original problem are approximated. But a thorough analy-
sis of this choice falls far beyond the scope of this paper.
The reader interested in this complex problem is referred
to specialized literature (e.g., Polak, 1997; Schwartz et al,
1997).From now on we thus make the assumption that the
source trajectories can be represented as parametric curves
of the form

ξi(t) = η(t, αi), t ∈ T, (14)

where η denotes a given function such that η( · , αi) is con-
tinuous for each fixed parameter vector αi ∈ A ⊂ R

p, A
being a given compact set. For example, if the i-th source
sets off from the initial position at point xi

0 = (x01, x02) ∈
Ω̄ ⊂ R

2 and moves along a straight line with constant ve-
locity vi = (vi

1, v
i
2) ∈ R

2, then its parameterized path
model is

η(t, αi) = xi
0 + vit, (15)

where αi = (x01, x02, v
i
1, v

i
2).

According to the above remarks, in order to model
the action of the i-th source, we can form a vector θi =
(�i, ai, bi, αi, βi) which consists of constant parameters.
In consequence, the cumulative effect of all sources will
dictated by the parameter vector

θ = (θ1, . . . , θr). (16)

Consequently, our modified form of the source identifi-
cation problem then consists in minimizing the fit-to-data
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criterion

J (θ) =
1
2

∫

T

‖z(t)− ŷm(t; θ)‖2 dt, (17)

where

ŷm(t; θ) = col
[
ŷ(x1(t), t; θ), . . . , ŷ(xN (t), t; θ)

]
(18)

and ŷ( · , · ; θ) stands for the solution to (1)–(3) correspon-
ding to a given vector of parameters θ specifying the so-
urce term through (4), (7) and (14).

We feel, intuitively, that the parameter estimate θ̂ de-
pends on the trajectories xj since the integrand on the
right-hand side of Eqn. (17) does. This fact suggests that
we may attempt to select sensor trajectories which wo-
uld lead to the best estimates of the system parameters.
To form a basis for the comparison of different trajecto-
ries, a quantitative measure of the ‘goodness’ of particular
trajectories is required. A logical approach is to choose a
measure related to the expected accuracy of the parame-
ter estimates to be obtained from the data collected (no-
te that the design is to be performed off-line, before ta-
king any measurements). Such a measure is usually based
on the concept of the Fisher Information Matrix (FIM),
(Sun, 1994; Rafajłowicz, 1986), which is widely used in
optimum experimental design theory for lumped systems
(Walter and Pronzato, 1997; Fedorov and Hackl, 1997; At-
kinson et al., 2007). When the time horizon is large, the
nonlinearity of the model with respect to its parameters is
mild and the measurement errors are independently distri-
buted and have small magnitudes, the inverse of the FIM
constitutes a good approximation of the covariance matrix
for the estimate of θ (Walter and Pronzato, 1997; Fedorov
and Hackl, 1997; Atkinson et al., 2007).

For notational convenience, introduce

s(t) = (x1(t), x2(t), . . . , xN (t)), ∀ t ∈ T (19)

and set n = dim(s(t)). The FIM has the following repre-
sentation (Uciński, 2005; Quereshi et al., 1980):

M(s) =
N∑

j=1

∫ tf

0

g(xj(t), t)gT(xj(t), t) dt, (20)

where
g(x, t) = ∇θy(x, t; θ)

∣∣
θ=θ0 (21)

denotes the vector of the so-called sensitivity coefficients,
θ0 being a prior estimate to the unknown parameter vector
θ (Uciński, 2000b; Uciński, 2005).

Optimal sensor trajectories can be found by choosing
s so as to maximize some scalar function Ψ of the in-
formation matrix. The introduction of the design criterion
permits to cast the sensor location problem as an optimiza-
tion one, and the criterion itself can be treated as a measu-
re of the information content of the observations. Several

choices exist for such a function (cf. Walter and Pronza-
to, 1997; Fedorov and Hackl 1997; Atkinson et al., 2007),
and the most popular one is the D-optimality criterion:

Ψ[M ] = log det(M). (22)

Its use yields the minimal volume of the confidence ellip-
soid for the estimates.

2.2. Limitations on sensor movements.

2.2.1. Dynamics. We assume that the sensors are co-
nveyed by vehicles whose motions are described by

ṡ(t) = h(s(t), u(t)) a.e. on T , s(0) = s0, (23)

where a given function h : R
n × R

p → R
n is required to

be continuously differentiable, s0 ∈ R
n defines an initial

sensor configuration, and u : T → R
p is a measurable

control function which satisfies

ul ≤ u(t) ≤ uu a.e. on T (24)

for some constant vectors ul and uu.
Given any initial sensor configuration s0 and any

control function, there is a unique absolutely continuous
function s : T → R

n which satisfies (23) a.e. on T . In
what follows, we will call it the state trajectory correspon-
ding to s0 and u, and make the following notational co-
nvention: if s appears without mention in a formula, it is
always understood that a control u and initial condition s0
have been specified while s is the trajectory corresponding
to u and s0 through (23).

2.2.2. Pathwise state constraints. In reality, some re-
strictions on the motions are inevitably induced. First of
all, all sensor network nodes should stay within the ad-
missible region Ωad where measurements are allowed. We
assume that it is a compact set defined as follows:

Ωad =
{
x ∈ Ω̄ : bi(x) ≤ 0, i = 1, . . . , I

}
, (25)

where bi’s are given continuously differentiable functions.
Accordingly, the conditions

λij(s(t)) = bi(xj(t)) ≤ 0, ∀ t ∈ T, (26)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N .
Moreover, we can restrict the admissible distances

between the sensors by imposing the constraints

μij(s(t)) = R2−‖xi(t)−xj(t)‖2 ≤ 0, ∀ t ∈ T, (27)

where 1 ≤ i < j ≤ N and R stands for a minimum al-
lowable distance which guarantees that the measurements
taken by the sensors can be considered independent.
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To shorten the notation, after relabelling, we rewrite
constraints (26) and (27) in the form

γ�(s(t)) ≤ 0, ∀ t ∈ T, (28)

where γ�, � = 1, . . . , IN tally with (26), whereas γ�, � =
IN + 1, . . . , [I + (N − 1)/2]N coincide with (27). In
the sequel, ν̄ stands for the set if indices

{
1, . . . , ν

}
, ν =

[I + (N − 1)/2]N .

2.3. Optimal control formulation. The goal in the
optimal measurement problem is to determine the for-
ces (controls) applied to each vehicle conveying a sensor,
which maximize the design criterion Ψ[ · ] defined on the
FIMs of the form (20), which are determined unequivo-
cally by the corresponding trajectories, subject to the con-
straints (24) on the magnitude of the controls and induced
state constraints (28). In order to increase the degree of
optimality, in our approach we will regard s0 as a control
parameter vector to be chosen in addition to the control
function u. Clearly, the correctness of such a formulation
necessitates some additional restrictions on the smooth-
ness of sensitivity coefficients g. In what follows, we thus
assume the continuity of g and ∂g/∂x.

The above formulation can be interpreted as the fol-
lowing optimization problem: Find the pair (s0, u) which
maximizes

J(s0, u) = Ψ[M(s)] (29)

over the set of feasible pairs

P =
{
(s0, u) | u : T → R

p is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩN
ad

}
, (30)

subject to the pathwise state inequality constraints (28).
Evidently, its high non-linearity excludes any possi-

bility of finding closed-form formulas for its solution.
Accordingly, we must resort to numerical techniques. A
number of possibilities exist in this respect (Polak, 1997;
Gruver and Sachs, 1980), but before exploiting them, ob-
serve that in spite of its apparently non-classical form, the
resulting optimal-control problem can be easily cast as a
classical Mayer problem where the performance index is
defined only via terminal values of state variables.

2.4. Equivalent canonical problem. The aim of this
section is to convert our problem into a canonical opti-
mal control one with an endpoint cost and inequality-
constrained trajectories (Polak, 1997). Such a transcrip-
tion will make it possible to employ existing software pac-
kages for numerical solving of dynamic optimization and
optimal control problems.

For notational convenience, define the function svec :
S

m → R
m(m+1)/2, where S

m denotes the subspace of all
symmetric matrices in R

m×m, that takes the lower trian-
gular part (the elements only on the main diagonal and

below) of a symmetric matrix A and stacks them into a
vector a:

a = svec(A)
= col[A11, A21, . . . , Am1, A22,

A32, . . . , Am2, . . . , Amm].
(31)

Similarly, let A = Smat(a) be the symmetric matrix such
that svec(Smat(a)) = a for any a ∈ R

m(m+1)/2.
Consider the matrix-valued function

Π(s(t), t) =
N∑

j=1

g(xj(t), t)gT(xj(t), t). (32)

Setting ζ : T → R
m(m+1)/2 as the solution of the diffe-

rential equations

ζ̇(t) = svec(Π(s(t), t)), r(0) = 0, (33)

we have
M(s) = Smat(ζ(tf )), (34)

i.e., the maximization of Ψ[M(s)] thus reduces to the ma-
ximization of a function of the terminal value of the solu-
tion to (33).

Introducing the augmented state vector

q(t) =
[
s(t)
ζ(t)

]
, (35)

we obtain

q0 = q(0) =
[
s0
0

]
. (36)

Then the equivalent canonical optimal control problem
consists in finding a pair (q0, u) ∈ P̄ which maximizes
the performance index

J̄(q0, u) = ψ(q(tf )) (37)

subject to
⎧
⎪⎨

⎪⎩

q̇(t) = ϕ(q(t), u(t), t),
q(0) = q0,

γ̄�(q(t)) ≤ 0, ∀ t ∈ T, � ∈ ν̄,
(38)

where

P̄ =
{
(q0, u) | u : T → R

r is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩN
ad

}
, (39)

and

ϕ(q, u, t) =
[
h(s(t), u(t))

svec(Π(s(t), t))

]
, (40)

ψ(q(t)) = Ψ[Smat(ζ(t))], (41)

γ̄�(q(t)) = γ�(s(t)). (42)
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The above problem in canonical form can be solved
using one of the existing packages for numerical solving
dynamic optimization problems, such as RIOTS_95
(Schwartz et al., 1997), DIRCOL (von Stryk, 1999), or
MISER (Jennings et al., 2002). In our implementation,
we employed the first one, i.e., RIOTS_95, which is de-
signed as a MATLAB toolbox written mostly in C, and
runs under Windows 98/2000/XP and Linux. It provides
an interactive environment for solving a very broad class
of optimal control problems. Users’ problems can be pre-
pared purely as M-files and no compiler is required to so-
lve them. To speed up the solution process, the functions
defining the problem can be coded in C and then com-
piled and linked with some pre-built linking libraries. The
implemented numerical methods are supported by the the-
ory outlined by Polak (1997), which uses the approach of
consistent approximations. Systems dynamics can be in-
tegrated with the fixed step-size Runge–Kutta integration,
a discrete-time solver or a variable step-size method. The
software automatically computes gradients for all func-
tions with respect to the controls and any free initial con-
ditions. The controls are represented as splines, which al-
lows a high-degree of function approximation accuracy
without requiring a large number of control parameters.
There are three main optimization routines, each suited
for different levels of generality, and the most general one
is based on sequential quadratic programming methods (it
was also used in our computations reported in Section 3).

2.5. Adaptive trajectory planning based on sequential
designs.

2.5.1. General idea. One of the main difficulties as-
sociated with the optimization of sensor locations is the
dependence of optimal solutions on the true values θtrue

of the parameters to be estimated (Uciński, 2005, p. 22).
Since these values are unknown, an obvious and common
approach is to construct locally optimal designs described
in the previous sections for some prior estimate θ0 of θtrue

in lieu of θtrue itself, cf. the definition of the sensitivity
coefficient (21). It can be, e.g., a nominal value for θ or
a result of a preliminary experiment. But θ0 may be far
from θtrue and, simultaneously, properties of locally opti-
mal designs can be very sensitive to changes in θ (Ford
et al., 1989). Such prior uncertainty on θ0 is not taken
into account by any optimization procedure to determine
local designs, and an experimental setting thus obtained
may consequently be far from optimal.

A very natural idea is to alternate experimentation
and estimation steps. Accordingly, the total time horizon
is divided into several contiguous parts and each of them
is related to the corresponding stage of the experiment.
At each stage, in turn, locally optimal sensor trajectories
are determined based on the available parameter estima-

Fig. 1. General scheme of adaptive sequential design.

tes (nominal parameter values can be assumed as initial
guesses for the first stage), measurements are taken at the
newly calculated sensor positions, and the data obtained
are then analyzed and used to update the parameter esti-
mates (see Fig. 1). In this general scheme, it is intuitively
supposed that each estimation phase improves our know-
ledge about the parameters and this knowledge can then
be used to improve the quality of the next experiment to
be performed.

Owing to its simplicity, sequential design is com-
monly considered a universal panaceum for the short-
comings of local designs. Let us note, however, that
the following important questions are to be faced (Ford
et al., 1989), and the answers to them are by no means
straightforward:

1. How many subintervals should be chosen?

2. How do the initial estimates of parameters influence
the design?

3. What are the asymptotic properties of sequential pro-
cedures, i.e., does the generated design ‘tend’ in any
sense to a design which would be optimal in terms of
the true θ?

Some developments regarding a theoretical justifica-
tion for the sequential approach and its convergence pro-
perties can be found, e.g., in the works of Ford et al.
(1989) or Walter and Pronzato (1990; 1997). Sequential
designs have been employed in our work to incorporate
the hitherto collected measurements into the process of
constructing optimized sensor node trajectories.

2.6. Reliability measure for source detection. Ha-
ving outlined a general idea of model-based source iden-
tification, we now turn our attention to implementation
details. Assume that the sensors collect measurements of
the contaminant concentration at discrete time moments
tq = qΔt, i.e., the observations made by the j-th sensor
are of the form

zj(tq) = y(xj(tq), tq; θ) + εj(xj(tq), tq),
j = 1, . . . , N, q = 1, . . . , QT , (43)
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where εj(xj(tq), tq) can be interpreted as realizations of
independent, identically distributed Gaussian random va-
rables with zero mean and variance σ2. Accordingly, the
estimate θ̂ of the unknown parameter vector θ is then de-
termined as a global minimizer of the least-squares crite-
rion

J (ϑ) =
N∑

j=1

QT∑

q=1

[
zj(tq)− ŷ(xj(tq), tq;ϑ)

]2
, (44)

where ŷ( · , · ;ϑ) denotes the solution of (1)–(3) for a gi-
ven value of the parameter vector ϑ.

An elementary idea of source detection is to compare
the resulting parameter estimates with the corresponding
known nominal values, treating possible differences as re-
siduals which contain information about potential conta-
mination sources. Based on some thresholding techniqu-
es, the appropriate decision making system could be con-
structed to detect abnormal situations in system functio-
ning (Patan and Uciński, 2005; 2008; Patan and Patan,
2005).

Basically, only a subset of system parameters descri-
bes the properties of contamination sources. Furthermore,
only some of the parameters characterizing the source are
useful for source detection. This accounts for partitioning
the parameter vector into two subsets. With no loss of ge-
nerality, we may write

θ =
[
θ1 . . . θ� θ�+1 . . . θm

]T
=

[
αT βT

]
, (45)

where α is a vector of � parameters which are essential
for a proper source detection and/or localization. Vector
β contains some unknown parameters which are an im-
portant part of the model but are useless for detection (or
localization in a further stage). Based on the observations,
it is possible to test the simple null hypothesis

H0 : α = α0, (46)

where α0 is the nominal value for the vector α correspon-
ding to the system performance when the contamination
source is absent.

The generalization of the log-likelihood function
for the experiment considered takes the following
form (Goodwin and Payne, 1977):

L(z; θ) = ln
(
2πσ2

)−QT N/2

− 1
2σ2

N∑

j=1

QT∑

q=1

|zj(tq)− ŷ(xj(tq), tq; θ)|2.

(47)

Setting Θ0 = {θ ∈ Θ : α = α0}, we can define the
following generalized log-likelihood ratio:

λ(z) =
supϑ∈Θ L(z;ϑ)
supϑ∈Θ0

L(z;ϑ)
=

1
2σ2

(
J(θ̃)− J(θ̂)

)
, (48)

where

θ̂ = arg min
ϑ∈Θ

J(ϑ), θ̃ = arg min
ϑ∈Θ0

J(ϑ). (49)

The likelihood ratio test is widely used in statistics.
This is because even in the cases where a theoretical justi-
fication of its optimality is missing the likelihood ratio can
still be shown to be very good in practice (Lehmann and
Romano, 2005). Furthermore, it can be shown that, assu-
ming the validity of the null hypothesis H0, the sequence
{2λ(z)} for QTN → ∞ is weakly convergent to a χ2

random variable on � degrees of freedom (Goodwin and
Payne, 1977, Theorem 3.6.1, p. 55). The meaning of this
fact is that we can compare the observed value of 2λ(z)
with some threshold kγ obtained from the cumulative χ2

distribution on � degrees of freedom, where kγ is such that
100(1− γ)% of the distribution lies to the left of kγ . The
decision rule for a given significance level γ, which repre-
sents a fixed range of model uncertainty, takes the follo-
wing form:

S =

{
reject H0 if 2λ(z) � kγ (source is present),
accept H0 if 2λ(z) < kγ (source is absent ).

(50)
The potential rejection of H0 indicates an essential

deviation of the vector α from the nominal value of this
parameter and is a base for the detection of abnormal sta-
tes in the system.

For a fixed significance level (i.e., fixed probability
of false alarms), the power of the likelihood ratio test for
the alternative hypothesis of the form H1 : α �= α0, i.e.,

1− the probability of accepting H0 when H1 is true,
(51)

can be made large by maximizing theDs-optimality crite-
rion (see the work of Patan and Patan (2005) for details):

Ψs[M ] = log det[Mαα −MαβM
−1
ββ M

T
αβ ], (52)

where M ∈ R
m×m stands for the Fisher information ma-

trix decomposed as

M =

⎡

⎣
Mαα Mαβ

MT
αβ Mββ

⎤

⎦ , (53)

such that Mαα ∈ R
�×�, Mαβ ∈ R

�×(m−�), Mββ ∈
R

(m−�)×(m−�).
In our settings, the FIM is given by

M =
N∑

j=1

QT∑

q=1

g(xj(tq), tq)gT(xj(tq), tq), (54)

where

g(x, t) =
(
∂y(x, t;ϑ)

∂ϑ

)T

ϑ=θ0

, (55)
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Algorithm 1 Sequential detection procedure.
Input variables: y0, u, x are initial conditions, controls and initial sensor coordinates for the first subinterval, respectively,
ΔTp is a fixed prediction horizon, K is a prescribed upper limit of experimental phases, γ is a fixed probability of false
detection alarms

1: procedure DETECTIONBLOCK(y0, u, x,ΔTp,K, γ)
2: k ← 1 � Initialization of sequential design counter
3: Zmeas ← ∅ � Initialize set of observations
4: yk ← y0 � Setting initial conditions for first subinterval
5: repeat
6: T ← Tk = (tk−1, tk]; T̃k ← (tk−1, tk−1 + ΔTp] � Current design subinterval and prediction horizon
7: for q ← 1 to QTk

do
8: Zmeas ← Zmeas∪ COLLECTMEAS(x,tq) � EXPERIMENT PHASE
9: if GLRTEST(Zmeas, y0, γ) then � Generalized log-likelihood ratio test

10: return
11: end if
12: end for
13: θ̂k ← ESTIMATEPARAMS(Zmeas, y0) � ESTIMATION PHASE
14: ypred ← SOLVEPDES(θ̂k, T̃k, yk) � Prediction of PDE system evolution
15: [u, x]← SOLVEOCP(u, x, ypred) � TRAJECTORY DESIGN PHASE
16: k ← k + 1
17: yk ← ypred(tk) � Update the initial conditions for prediction
18: until k ≤ K
19: end procedure

θ0 being a prior estimate to the unknown parameter vec-
tor θ.

The trajectories providing the most informative ob-
servations for the detection and localization of a moving
contamination source strongly depend on the true vector
of parameters θ describing the source, which is obviously
unknown. In the case when initial information about the
parameters is missing, the only solution is to conduct an
additional analysis for the predetermination of the initial
estimates of the parameters of interest. Nevertheless, it
is impossible to construct an optimal design for such an
experiment without sufficient knowledge about parame-
ters, because most often optimal sensor locations depend
on θ. This leads directly to a very reasonable idea of the
repetition of the measurement collection, estimation, pre-
diction and design steps several times. This is equivalent
to the division of the resources (e.g., the time horizon) into
small parts which are related to the corresponding conse-
cutive stages of the experiment. More precisely, for the
purpose of adaptive estimation and analysis, the total ob-
servation horizon T = (0, tf ] is divided using time mo-
ments 0 = t0 < t1 < · · · < tK = tf forming its arbitra-
ry partition into a collection of consecutive subintervals
Tk = [tk−1, tk], k = 1, . . . ,K . Based on the observa-
tional data collected chronologically in previous subinte-
rvals, we are able to make a proper analysis and efficiently
design the sensor network to update estimates of the sys-
tem parameters depending on the particular purpose such
as the detection or/and localization of the pollution source.

2.6.1. Detection block. An algorithmic scheme of de-
tection block is provided in Algorithm 1. The operators
involved in this implementation are as follows:

• COLLECTMEAS(x,tq) returns the system response
measured by sensor nodes at specified time instant tq .

• GLRTEST(Zmeas, y0, γ) is an implementation of
(50). It returns true only if a log-likelihood ratio (48)
calculated for the observations included in Zmeas and
initial conditions in y0 exceeds the threshold for the
probability of false alarms fixed at γ.

• ESTIMATEPARAMS(Zmeas, y0) determines the esti-
mate of the system parameters for the current design
interval. The GLRTEST procedure also estimates the
system parameters but for detection purposes, so the-
ir accuracy is not adequate for the design purposes.

• SOLVEPDES(θ̂k, T̃k, yk) generates the forecast of
the system response and its sensitivities on the in-
terval T̃k based on the estimated system parameters
and initial conditions yk estimated in the previous de-
sign interval.

• SOLVEOCP(u, x, ypred) solves the corresponding
optimal control problem and determines updates of
the controls for sensor nodes using the predicted so-
lution ypred of the PDE system.

2.6.2. Identification (localization) block. Once the
source has been detected, we are able to provide a simi-
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Algorithm 2 Sequential identification (localization) procedure.
Input variables: y0, u, x are initial conditions, controls and initial sensor coordinates for the first subinterval, respectively,
ΔTp is a fixed prediction horizon,K is a prescribed upper limit of experimental phases, θ̂0 is an initial estimate of system
parameters

1: procedure IDENTIFICATIONBLOCK(y0, u, x,ΔTp,K, θ̂0)
2: k ← 1 � Initialization of sequential design counter
3: yk ← y0 � Setting initial conditions for first subinterval
4: repeat
5: Zmeas ← ∅ � Initialize set of observations
6: T ← Tk = (tk−1, tk]; T̃k ← (tk−1, tk−1 + ΔTp] � Current design subinterval and prediction horizon
7: for q ← 1 to QTk

do
8: Zmeas ← Zmeas∪ COLLECTMEAS(x,tq) � EXPERIMENT PHASE
9: end for

10: θ̂k ← ESTIMATEPARAMS(Zmeas, yk) � ESTIMATION PHASE
11: ypred ← SOLVEPDES(θ̂k, T̃k, yk) � Prediction of PDE system evolution
12: [u, x]← SOLVEOCP(u, x, ypred) � TRAJECTORY DESIGN PHASE
13: k ← k + 1
14: yk ← ypred(tk) � Update the initial conditions for prediction
15: until k ≤ K
16: end procedure

lar sequential scheme for source parameter identification
starting with some parameter estimates (from the detec-
tion stage or previous experiments). A heuristic scheme of
the identification block is embodied in Algorithm 2. The
operators used here have the same meaning as those from
the detection block.

3. Results and discussion

3.1. Source localization. As an illustration of the pro-
posed approach, consider the following example, which
consists in the localization of a moving contamination so-
urce within a bounded area using a sensor network with
mobile nodes equipped with concentration sensors.

3.1.1. Process description. The spatial domain consi-
dered in our simulations is a square with side length of 1
km (see Fig. 2). An active source of a toxic pollutant mo-
ves within this domain and emits the polluting substance
to the atmosphere. Emission is assumed to start at the ini-
tial time of the simulation. The size of the domain is close-
ly related to a physical model of the mesoscale atmosphe-
ric motion (Jacobson, 1999). Therefore, the changes in the
spatial concentration y(x, t) of this substance over the di-
scussed observation interval T = [0, 600] (in seconds) can
be mathematically described by the following advection-
diffusion equation:

∂y(x, t)
∂t

+∇ ·
(
υ(x, t)y(x, t)

)

= ∇ ·
(
κ∇y(x, t)

)
+ f(x, t), (x, t) ∈ Ω× T,

(56)

subject to the boundary and initial conditions:

⎧
⎨

⎩

∂y(x, t)
∂n

= 0, (x, t) ∈ Γ× T,
y(x, 0) = y0, x ∈ Ω,

(57)

where the term f(x, t) = μ exp(−100‖x − ξ(t)‖2) con-
stitutes the model of an active source of the pollutant with
the emission intensity coefficient μ and the instantaneous
location given by trajectory ξ(t). Furthermore, κ denotes
a turbulent diffusion coefficient and ∂y/∂n stands for the
partial derivative of y with respect to the outward normal
to the boundary Γ. As for prior estimates of the unknown
parameters μ and κ, the values of 10 kg/s and 60 m2/s
were used, respectively.

3.1.2. Experiment settings. In our simulation, the pol-
lution source is assumed to start at t = 0 from the point
(0.5, 0.75), then move at a constant pace along the arc of
the circle with radius ρ =

√
5/4 and center at (0.0, 0.5),

and finally terminate at point (0.5, 0.25) at t = 600, i.e.,
its trajectory is given by

ξ1 = ρ sin
(
ω1t

600
+ ω0

)
,

ξ2 = 0.5 + ρ cos
(
ω1t

600
+ ω0

)
,

(58)

where ω1 = 2 arc sin(0.2
√

5) and ω0 = arc sin(0.4
√

5).
The velocity field v(x, t) varies in space and time ac-



472 D. Uciński and M. Patan

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

(a) t = 6 s (b) t = 90 s

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

(c) t = 180 s (d) t = 270 s

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

(e) t = 360 s (f) t = 450 s

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x
1

x 2
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Fig. 2. Evolution of the wind velocity field versus the pollutant
concentration and the actual position of the pollutant so-
urce (marked with asterisks).

cording to the following model (cf. Fig. 2):

υ(x, t) =
(
12

(
x2 − x1 −

t

600

)
,

12
(t(2x1 − 1)

600
+ x2 − 1

))
[km/h]. (59)

The solution to (56)–(57) with simulated additive measu-
rement noise with standard deviation σ = 10−4 kg/m3

constitutes the reference output signal for our simulations.

Our purpose is to determine the evolution of the so-
urce, i.e., an estimate of its trajectory ξ(t) over the time
interval T using a sensor network with mobile nodes. Sin-

ce vapor measurements cannot be taken continuously due
to technical limitations, we assume that the consecutive
observations are taken at discrete times every Δt = 15 s.
Then, we divide the observation interval into 20 equal sub-
intervals

Tk =
(
tk, tk + 2Δt

]
, tk = 2(k − 1)Δt,

k = 1, . . . , 20 (60)

and approximate the source trajectory ξ(t) by linear spli-
nes

ξ(t) ≈ ξk +vk(t− tk), t ∈ Tk, k = 1, . . . , 20, (61)

where vk = (xk+1 − xk)/(2Δt) is the average source
velocity in the interval Tk and ξk denotes the location of
the source at time tk. The ξk’s become the parameters of
interest in our source localization problem.

Since, usually, it is not possible to freely deploy sen-
sors within the domain considered, in our simulation sce-
nario the sensors are assumed to approach the contamina-
ted area starting from arbitrary points on the left boundary
and their initial positions are fixed (i.e., they are not opti-
mized). For the first 150 s, i.e., within the first five time
subintervals, the sensors move with the maximum speed
to the center of the area simultaneously collecting the me-
asurements. Based on those observations, the first estimate
of the system parameters is determined which is used as
an a priori value to design the sensor trajectories for the
next consecutive observation subinterval.

Then, for every Tk, k = 6, . . . , 20 we have to update
the controls for the sensor network nodes in order to accu-
rately find the current location of the source. From among
the system parameters θk = (ξk,1, ξk,2, vk,1, vk,2, μ, κ),
the localization of the pollution source is based on the
knowledge of the first four. Thus, the maximization of the
reliability for the localization of the contamination sour-
ce is equivalent to the determination ofDs-optimal sensor
trajectories (Patan and Patan, 2005). In order to somewhat
simplify the identification process of source coordinates
and solve this problem in an on-line manner, we have ap-
plied a computational scheme similar to that used by the
optimal predictive control technique. Roughly speaking,
for each consecutive time subinterval Tk the following
steps are applied:

• First, the estimate θ̂k of the current parameter vector
θk is determined based on measurements collected
on subinterval Tk. The position ξk is updated and sto-
red as the source position at time tk and vk is used for
the prediction of the source location and initial con-
ditions for the system state at the next time instant
tk+1.

• The model equations (56) and (57) are solved using
(61) and the current vector θ̂k on the interval T̃k =
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Fig. 3. Optimal sensor trajectories (starting and final positions are marked with open circles and triangles, respectively) for two (a),
three (b) and four (c) sensors.
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Fig. 4. Estimated trajectory of the pollution source for two (a), three (b) and four (c) sensors (starting from time t = 150 s indicated
with a square). For comparison, the actual trajectory of the moving source is marked with an open circle.

(tk, tk +600] as well as the initial conditions estima-
ted from the solution for T̃k−1.

• Once we have the predicted response of our system,
the Ds-optimal controls for the sensor nodes on the
interval T̃k are determined and applied on the interval
Tk.

As regards the sensors dynamics, the model

ṡ(t) = u(t), s(0) = s0, (62)

was applied, focusing on the direct control of sensor velo-
cities. The following bounds for u were used:

− 4.2 ≤ ui(t) ≤ 4.2 [km/h] , ∀t ∈ T. (63)

To slightly simplify computations, the constraints regar-
ding collision avoidance were neglected. However, in
practice, any sensor network platform possesses some
amount of autonomy allowing avoiding such critical si-
tuations.

3.1.3. Implementation details. In order to verify the
proposed approach, a MATLAB program was written
using a PC equipped with a Pentium M740 processor
(1.73GHz, 1 GB RAM) running Windows XP and MA-
TLAB 7 (R14). First, the system of PDEs was solved using
the UMFPACK solver from the COMSOL 3.4 environ-
ment based on the finite-element method. Each time cal-
culations were performed for a spatial mesh composed
of 3912 triangles and 2017 nodes and evenly partitioned
time interval (100 subintervals) using quadratic Lagran-
ge elements. The sensitivity coefficients were then linear-
ly interpolated and stored. In each consecutive time sub-
interval the system parameters were estimated using the
nlinfit function from the MATLAB Statistics Toolbox.
Finally, for determining the optimal trajectories, the pac-
kage RIOTS_95 was employed. From among its three
main optimization procedures, the routine riots was
used, which is based on the SQP algorithm.

In order to avoid convergence to local optima, the
simulations at each time step were restarted several times
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Fig. 5. Estimated standard deviation for the source coordinates
in the case of four sensors (solid and dashed lines for
ξk,1 and ξk,2, respectively).

from different initial starting points. Each simulation run
took on average about 60 minutes.

3.1.4. Results. The optimal trajectories are shown in
Fig. 3, where the sensor paths are shown for different
numbers of nodes. The behavior of sensors is not that in-
tuitive, since the concentration changes are quite complex
due to a combination of different mass transport proces-
ses. It is clear that sensors attempt to reach the areas with
high pollutant concentrations as quickly as possible using
their maximum speed in the first part of trajectories. Then
the trajectories strongly depend on the number of sensors,
since the vehicles tend to cover the area trying to provide
the most informative measurements and converge to the
source location to terminate in its vicinity. The effects of
the presented localization technique are shown in Fig. 4,
where we can easily compare the quality of localization
for different numbers of sensors (the last point in the esti-
mated source trajectory is obtained via velocity projection
from the starting point from the last subinterval). It beco-
mes clear that an increased number of sensors substantial-
ly improves the quality of localization. However, we can
also observe the influence of the trajectory modeling error
arising from the linearization of the source movements,
as the estimated trajectory is located clearly on the right-
hand side of the real trajectory. This is due to the linear
velocity projection leading to an overestimated pollutant
concentration on the right-hand side of the domain.

Figure 5 shows the slow improvement in the quali-
ty of source localization with the consecutive time steps.
This can be explained in terms of better sensor locations at
the end of the observation interval (i.e., in a closer vicinity
of the moving pollution source) providing more informa-
tive measurements.
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Fig. 6. Evolution of the wind velocity field versus the pollutant
concentration and the actual position of the pollutant so-
urce (marked with asterisks).

3.2. Source detection and identification. In this
example, the detection and identification of a moving con-
tamination source using information collected with a mo-
bile sensor network will be illustrated via a simulated sce-
nario of pollution expansion over a two-dimensional spa-
tial domain.

3.2.1. Process description. The physical model in our
example consists of one source of a pollutant moving
inside the spatial domain being a unit square (1 km ×
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1 km). The changes in the spatial concentration y(x, t) of
the emitted pollutant over the time interval T = [0, 400]
(in seconds) are described by the following advection-
diffusion equation:

∂y(x, t)
∂t

+∇ ·
(
υ(x, t)y(x, t)

)

= ∇ ·
(
κ∇y(x, t)

)
+ f(x, t), (x, t) ∈ Ω× T, (64)

subject to the boundary and initial conditions:
⎧
⎨

⎩

∂y(x, t)
∂n

= 0, (x, t) ∈ Γ× T,
y(x, 0) = y0, x ∈ Ω,

(65)

where κ denotes a turbulent diffusion coefficient and
∂y/∂n stands for the partial derivative of y with respect
to the outward normal to the boundary Γ. The term

f(x) = 1(t− ts)μ exp(−100‖x− ξ(t)‖2), (66)

where 1( · ) denotes the unit step function, represents our
model of an active source of the pollutant starting emit-
ting the toxic substance at time ts with intensity μ and the
temporal location given by trajectory ξ(t). As for prior es-
timates of the unknown parameters μ and κ, the values 10
kg/s and 90 m2/s were used, respectively.

3.2.2. Experiment settings. In our simulation scena-
rio, the pollution source is assumed to start the emission
at ts = 80 s from the point (0.2, 0.8) and then move along
a curve at a time-varying speed to the point (0.5, 0.2) at-
tained at t = 400 s. More precisely, its trajectory is given
by

ξs,1 =
1

3200
(3t+ 400) [km],

ξs,2 = 5
(
t− 720
1600

)2

[km].
(67)

The wind velocity field υ(x, t) is given by the following
model (cf. Fig. 6):

υ(x, t) =
(
9
(
x1 − x2 +

t

400
)
, 9

(
x1 −

t

400
))

[km/h].
(68)

The solution to (64)–(65) with simulated additive measu-
rement noise with standard deviation σ = 10−2 kg/m3

constitutes the reference output signal for our simulations.
Our primary purpose here is to detect the presence of the
pollution source using a sensor network with N = 4 mo-
bile nodes. Then, after the detection, we are interested
in accurate identification of crucial parameters characte-
rizing the source, e.g., the initial time of the emission,
as well as the intensity and current location of the sour-
ce. Therefore, we have to design the sensor trajectories in

such a way as to provide the most informative observa-
tions in this context.

Due to technical limitations, the measurements are
assumed to be taken at multiples of Δt = 10 s. Taking
this into account, the observation interval is divided into
20 equal design subintervals:

Tk =
(
tk, tk+2Δt

]
, tk = 2(k−1)Δt, k = 1, . . . , 20.

(69)
In such a way, two new observations per sensor are col-
lected in each subinterval.

The detection problem considered here comprises the
verification of the null hypothesis H0 : μ = 0 related to
the zero intensity of the source, which is physically equ-
ivalent to its absence. To this end, a log-likelihood ratio
based technique can be applied (see the work of Patan and
Patan (2005) for details). In our simulation scenario, the
sensors are assumed to approach the contaminated area
starting from the corners of the square domain with half
of their maximum velocities in the direction of the center
of the area (this time their initial positions are not opti-
mized). Based on the collected measurements, hypothesis
H0 is verified. Until the source is undetected, the sensors
follow paths given a priori.

Under the validity of the alternative hypothesis H1 :
μ > 0 (i.e., the presence of a source), the other source pa-
rameters become identifiable. Thus, once the source has
been detected, our goal is to properly design the sensor
network node movements in order to accurately estima-
te the source characteristics. In order to slightly simplify
parameter estimation, the source trajectory ξ(t) is appro-
ximated using linear splines:

ξ(t) ≈ ξk + vk(t− tk), t ∈ Tk, k = r, . . . , 20,
(70)

where vk = (ξk+1 − ξk)/(2Δt) is the average veloci-
ty of the source in the interval Tk, ξk denotes the sour-
ce location at time tk and tr ≥ ts. Then, for each Tk,
k = r, . . . , 20, we have to update the controls for the sen-
sor network nodes in order to accurately find the current
parameters of the source. From among the system parame-
ters θk = (μ, ts, ξk,1, ξk,2, vk,1, vk,2, κ), we are interested
in the first four, describing the current source location and
intensity. Thus, the maximization of the estimation accu-
racy for those parameters can be achieved via the determi-
nation of Ds-optimal sensor trajectories.

To reduce the complexity of parameter estimation, a
sequential technique was applied to determine the estima-
tes, which can be reflected by the following steps:

• First, the estimate θ̂k of the current system parameter
vector θk is determined based on all measurements
hitherto collected. The parameters μ and ts are upda-
ted, ξk is stored as the source position at time tk, vk

is used for the prediction of the source location and
initial conditions for the system state at the next time
instant tk+1.
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• The model equations (64) and (65) are solved using
(70) and the current estimate θ̂k on the interval T̃k =
(tk, tk +600] as well as the initial conditions estima-
ted from the solution for T̃k−1.

• Once we have the predicted response of our system,
Ds-optimal controls for the sensor nodes on the in-
terval T̃k are determined and applied on the interval
Tk.

As regards the sensors dynamics, the model

ṡ(t) = u(t), s(0) = s0, (71)

was employed, focusing on the direct control of sensor
velocities. The following bounds for u were used:

− 11.0 ≤ ui(t) ≤ 11.0 [km/h] , ∀t ∈ T. (72)

3.2.3. Implementation details. In order to verify the
proposed approach, a MATLAB program was written
using a PC equipped with a Pentium M740 processor
(1.73GHz, 1 GB RAM) running Windows XP and MA-
TLAB 7 (R14). First, the system of PDEs was solved using
the UMFPACK solver from the COMSOL 3.4 environ-
ment exploiting the finite-element method. Each time cal-
culations were performed for a spatial mesh composed
of 3912 triangles and 2017 nodes and an evenly parti-
tioned time interval (100 subintervals) using quintic La-
grange elements. The sensitivity coefficients were then li-
nearly interpolated and stored. In each consecutive time
subinterval the system parameters were estimated using
the nlinfit function from the MATLAB Statistics To-
olbox. Finally, for determining the optimal trajectories,
the package RIOTS_95 was employed. From among its
three main optimization procedures, the routine riots
was used, which is based on the SQP algorithm. In order
to avoid getting stuck in a local optimum, the simulations
were restarted several times from different starting points.

3.2.4. Results. The phase of source detection is pre-
sented in Fig. 7, where the test statistic is calculated for
each consecutive observation from sensors and compared
with a threshold representing a constant false-alarm pro-
bability. Because in our scenario we assumed that there
is no significant pollutant concentration before the source
activation, a likelihood ratio increases in a rather abrupt
manner, as soon as one of the sensors measures a reasona-
bly high concentration of the toxic substance. Therefore,
for a 5% false alarm level, we observe almost immediate
detection of the source after 20 s, i.e., within two conse-
cutive measurements. Thus, starting from t = 100 s, the
identification phase begins when the sensors trajectories
are designed sequentially to accurately estimate the sour-
ce characteristic parameters.
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Fig. 7. Log-likelihood test for source detection (indicated thre-
sholds for 5% and 1% false alarm levels).
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Fig. 8. Optimal sensor trajectories (starting and final positions
marked with open circles and triangles, respectively).

The optimal sensor trajectories are shown in Fig. 8.
In order to explain the behavior of the sensor network in
question we have to compare the sensor paths with Fig. 6
to see that sensors attempt to follow the areas with the
greatest temporal concentration changes, which seems to
be quite complex due to the combination of different mass
transport processes.

The identification results are presented in Figs. 9 and
10, where we can easily compare the estimation quality of
the source parameters as well as localization effects.

4. Conclusions

In this report we presented results related to the interpre-
tation and use of data in sensor networks with mobile no-
des. Specifically, we carried out theoretical research and
developed computationally efficient methods and algori-
thms to determine optimal configurations of mobile sensor
networks for contaminating source detection and estima-
tion. What is more, we implemented and tested computer
code for the verification of the proposed approach based
on simulations. The key assumption made here was that
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Fig. 9. Estimated trajectory of the pollution source (dashed li-
ne) and the actual trajectory (solid line). Their initial po-
sitions are indicated with a square and a circle, respecti-
vely.

the paths of the moving sources were unknown, but they
were sufficiently smooth to be approximated by combi-
nations of given basis functions. The parametrization of
the source trajectories made it possible to reduce the sour-
ce detection and estimation problem to that of parameter
identification. In order to estimate the source and medium
parameters, the maximum-likelihood estimation was used.
Based on a scalar measure of performance defined on the
Fisher information matrix related to the unknown parame-
ters, which is commonly used in optimum experimental
design, the problem was formulated as an optimal control
one with state-variable inequality constraints representing
geometric constraints induced by the admissible measure-
ment regions and allowable distances between the sensors.
Taking account of the dynamic models of the vehicles car-
rying the sensors, the problem was reduced to the determi-
nation of both the control forces of the sensors and initial
sensor positions. This, in turn, was shown to be equiva-
lent to a classical Mayer one, which is thoroughly treated
in optimal control theory. The resulting problem involved
dynamic constraints in the form of a large-scale system
of ordinary differential equations of which some are func-
tionally dependent on the solution of the sensitivity equ-
ations associated with the PDE modeling the distributed
parameter system in question. Accordingly, numerical so-
lvers of algorithmic optimal control can be employed to
solve it. In our approach, we used RIOTS_95, an extre-
mely efficient solver implemented in MATLAB.

The above approach was primarily aimed at off-line
design of sensor trajectories. From a practical point of
view, it is desirable to have the computations dynamic da-
ta driven, i.e., the current measurements from the mobile
sensors must serve as a basis for the update of parame-
ter estimates and these, in turn, can be used to correct the
sensor movements. This, however, gives rise to a high-
ly nonlinear dynamic optimization problem. Thus, in the

proposed research, an attempt was also made at applying
a nonlinear receding-horizon approach to attack this issue.

The following is a concise summary of the potential
contributions provided by our work to the state-of-the-art
in optimal sensor location for source identification in di-
stributed parameter systems:

• The aim of the present work was to develop computa-
tionally efficient methods and algorithms to determi-
ne optimal trajectories of mobile sensor nodes for so-
urce identification in distributed parameter systems.
In contrast to conventional approaches commonly
used in distributed sensor networks, the knowledge
of the mathematical model of the DPS in question is
incorporated to form a basis for optimization. Con-
sequently, the important information about the mo-
del governing the physical phenomenon in question
is not lost and will be to the profit of early detection
of potential chemical or biological threats. In nume-
rical examples we used two-dimensional advection-
diffusion partial differential equations, which makes
the proposed approach closer to practical applica-
tions than most situations considered in the literature.

• Intuitively, we feel that the accuracy of the sour-
ce identification problem must depend in a way on
sensor locations. Numerical experience indicates that
this influence is even more dramatic in the case of
moving sources and sensors. This fact suggests that
we may attempt to select these locations so as to ob-
tain the best estimates of the source positions and in-
tensities. But to form a basis for the comparison of
different locations, a quantitative measure of the ‘go-
odness’ of particular locations is required. Unfortu-
nately, no measure of this type has been proposed yet.
A principal aim of the work was to demonstrate that
criteria extensively applied in optimum experimental
design and defined on the Fisher information matrix
associated with the unknown parameters governing
the source motions can be employed for that purpo-
se. Specifically, we employed D and Ds-optimality
criteria, which yield minimal volumes of the uncerta-
inty ellipsoids for the estimated parameters. But this
does not impose any loss of generality and numerous
other criteria can also be used.

• An online version of the proposed method for the de-
sign of optimal sensor trajectories could be of para-
mount importance in the fields of security, environ-
mental and industrial monitoring, pollution control,
etc. Motivating examples here include the detection
of potential biochemical attacks and detecting leaka-
ges of dangerous biochemical materials. To deal with
this issue, we have made an attempt at applying a
nonlinear approach similar to that used in model pre-
dictive control. Simulation results demonstrate that
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Fig. 10. Estimated standard deviation for the source parameters: intensity μ (a), emission starting time ts (b), coordinate ξ1 (c), coor-
dinate ξ2 (d).

the resulting scheme behaves well in practice, but a
more thorough analysis is required to formally prove
its convergence. Unfortunately, this problem is high-
ly nontrivial and seeking its solution is left for future
research.

We believe that the ideas presented here are widely
applicable to a large number of applications. Basically, the
framework can be applied to any problem where there is
a spatiotemporal process for which there is an interest in
prediction and control and where there is a limited number
of sample points available.
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