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The work treats the problem of fault detection for processes described by partial differential equations as that of maximizing
the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A simple
node activation strategy is discussed for the design of a sensor network deployed in a spatial domain that is supposed to
be used while detecting changes in the underlying parameters which govern the process evolution. The setting considered
relates to a situation where from among a finite set of potential sensor locations only a subset of them can be selected
because of the cost constraints. As a suitable performance measure, the Ds-optimality criterion defined on the Fisher
information matrix for the estimated parameters is applied. The problem is then formulated as the determination of the
density of gauged sites so as to maximize the adopted design criterion, subject to inequality constraints incorporating a
maximum allowable sensor density in a given spatial domain. The search for the optimal solution is performed using a
simplicial decomposition algorithm. The use of the proposed approach is illustrated by a numerical example involving
sensor selection for a two-dimensional diffusion process.
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1. Introduction

1.1. Distributed parameter systems and sensor net-
works. Strong demands made in modern process control
are frequently associated with using very accurate models
in which spatial dynamics have to be included in addition
to the temporal one. The processes in question are often
termed Distributed Parameter Systems (DPSs) and they
are described by Partial Differential Equations (PDEs).
One of the fundamental questions in DPSs is parameter
estimation, which refers to model calibration, i.e., the de-
termination from observed data of unknown parameters in
the system model such that the predicted response of the
model is close, in some well-defined sense, to the process
observations made by some suitable collection of sensors
forming the observation system. A major difficulty here is
related to the impossibility to measure process variables
over the entire spatial domain. Moreover, the measure-
ments are inexact by virtue of inherent errors of measure-
ment associated with transducing elements and also be-
cause of the measurement environment.

It goes without saying that the inability to take dis-
tributed measurements of process states leads to the ques-

tion of where to locate sensors so that the information con-
tent of the resulting signals with respect to the distributed
state and PDE model is as high as possible. This is an ap-
pealing problem since in most applications these locations
are not prespecified and therefore provide design param-
eters. The location of sensors is not necessarily dictated
by physical considerations or by intuition and, therefore,
some systematic approaches should still be developed in
order to reduce the cost of instrumentation and to increase
the efficiency of identifiers.

An example which is particularly stimulating in the
light of the results reported here constitutes the opti-
mization of air quality monitoring networks. One of the
tasks of environmental protection systems is to provide
expected levels of pollutant concentrations. But to pro-
duce such a forecast, a smog prediction model is neces-
sary, which is usually chosen in the form of an advection-
diffusion partial differential equation. Its calibration re-
quires parameter estimation, e.g., the unknown spatially
varying turbulent diffusivity tensor should be identified
based on the measurements from monitoring stations,
whose number can be quite large. Then designers must
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address the question of how to optimize sensor locations
in order to obtain the most accurate model.

In recent years, a revived interest in optimal sensor
location has been observed owing to advances in modern
observation systems. Sensor and networking technologies
now enable large-scale deployment of superior data acqui-
sition systems with adjustable resolutions, called sensor
networks (see Zhao and Guibas, 2004; Hirsch et al., 2008;
Jain and Agrawal, 2005; Sastry and Iyengar, 2005; Chong
and Kumar, 2003; Sinopoli et al., 2003; Cassandras and
Li, 2005; Bauer, 2008). Each sensor node has a sensing
capability, as well as limited energy supply, computing
power, memory and communication ability. These inex-
pensive, low-power communication devices can be placed
throughout the physical space, providing dense sensing
close to physical phenomena, processing and commu-
nicating this information, and coordinating actions with
other nodes. Sensor networks have recently come into
prominence because they hold the potential to revolution-
ize a wide spectrum of both civilian and military applica-
tions, including environmental monitoring, scene recon-
struction, motion tracking, motion detection, battlefield
surveillance, remote sensing, global awareness, etc. On
the one hand, this offers new possibilities for observation
systems. On the other, however, completely new design
problems have to be solved. In this paper, we wish to
demonstrate how the existing sensor placement techniques
can be adapted to solve the node activation problem for a
large-scale sensor network which is supposed to detect ab-
normal changes in the observed DPS.

1.2. Optimal sensor location for parameter identifi-
cation. The significance of sensor planning has already
been recognized in many application domains, e.g., air
quality monitoring systems, groundwater-resources man-
agement, recovery of valuable minerals and hydrocar-
bon, model calibration in meteorology and oceanography,
chemical engineering, hazardous environments and smart
materials (Nehorai et al., 1995; Porat and Nehorai, 1996;
Jeremić and Nehorai, 1998; Jeremić and Nehorai, 2000;
Navon, 1997; Daescu and Navon, 2004; Christofides,
2001; Banks et al., 1996; Sun, 1994; Uciński, 2005). The
operation and control of such systems usually require pre-
cise information on the parameters which condition the
accuracy of the underlying mathematical model, but that
information is only available through a limited number of
sensors. Over the past years, this has stimulated labori-
ous research on the development of strategies for efficient
sensor placement (for reviews, see the papers by Kubrusly
and Malebranche (1985), van de Wal and de Jager (2001)
and El Jai and Hamzaoui (2009) or comprehensive mono-
graphs by Uciński (2005; 1999)). Nevertheless, although
the need for systematic methods was widely recognized,
most techniques communicated by various authors usually
rely on exhaustive search over a predefined set of candi-

dates and the combinatorial nature of the design problem
is taken into account very occasionally (van de Wal and
de Jager, 2001). Needless to say that this approach, which
is feasible for a relatively small number of possible lo-
cations, soon becomes useless as the number of possible
location candidates increases.

Exceptions to this naive approach constitute the
works originating in statistical optimum experimen-
tal design (Fedorov and Hackl, 1997; Pázman, 1986;
Pukelsheim, 1993; Walter and Pronzato, 1997; Atkinson
and Donev, 1992; Uciński and Bogacka, 2005; Uciński
and Atkinson, 2004) and its extensions to models for dy-
namic systems, especially in the context of the optimal
choice of sampling instants and input signals (Goodwin
and Payne, 1977; Titterington, 1980; Ljung, 1999; Gev-
ers, 2005; Hjalmarsson, 2005). In this vein, various com-
putational schemes have been developed to attack di-
rectly the original problem or its convenient approxima-
tion. The adopted optimization criteria are essentially the
same, i.e., various scalar measures of performance based
on the Fisher Information Matrix (FIM) associated with
the parameters to be identified are maximized. The un-
derlying idea is to express the goodness of parameter es-
timates in terms of the covariance matrix of the estimates.
For sensor-location purposes, one assumes that an unbi-
ased and efficient (or minimum-variance) estimator is em-
ployed so that the optimal sensor placement can be deter-
mined independently of the estimator used. This leads to
a great simplification since the Cramér–Rao lower bound
for the aforementioned covariance matrix is merely the in-
verse of the FIM, which can be computed with relative
ease, even though the exact covariance matrix of a partic-
ular estimator is very difficult to obtain.

As regards dynamic DPSs, the first treatment of this
type for the sensor-location problem was proposed by
Uspenskii and Fedorov (1975), who maximized the D-
optimality criterion, being the determinant of the FIM as-
sociated with the estimated parameters characterizing the
source term in a simple one-dimensional linear diffusion
equation. The authors observed that the linear dependence
of the observed outputs on these parameters makes it pos-
sible to directly apply the machinery of optimum exper-
imental design theory. The delineated approach was ex-
tended by Rafajłowicz (1981) to cover a class of DPSs de-
scribed by linear hyperbolic equations with known eigen-
functions and unknown eigenvalues. The aim was to find
conditions for the optimality of the measurement design
and the spectral density of the stochastic input. It was
indicated that common numerical procedures from classi-
cal experimental design for linear regression models could
be adopted to find optimal sensor location. Moreover, the
demonstrated optimality conditions imply that the optimal
input comprises a finite number of sinusoidal signals and
that optimal sensor positions are not difficult to find in
some cases. A similar problem was studied by Rafajłow-



Sensor network scheduling for identification of spatially distributed processes 27

icz (1983) in a more general framework of DPSs which
can be described in terms of Green’s functions.

Over the past two decades, this methodology has
been substantially refined to extend its applicability. A
comprehensive treatment of both theoretical and algorith-
mic aspects of the resulting sensor location strategies is
contained in the monograph by Uciński (2005). The po-
tential of the approach for generalizations was exploited,
e.g., by Munack (1984), who optimally located a given
number of stationary sensors using nonlinear program-
ming techniques for a biotechnological system consisting
of a bubble column loop fermenter. On the other hand,
Sun (1994) advocates using optimum experimental design
techniques to solve inverse problems in groundwater mod-
elling. How to monitor the water quality around a landfill
place is an example of such a network design. Nonlinear
programming techniques are also used there to find nu-
merical approximations to the respective exact solutions.

A similar approach was used by Kammer (1990;
1992) for on-orbit modal identification of large space
structures. Although the respective models are not PDEs
but their discretized versions obtained through the finite-
element method, the proposed solutions can still be of in-
terest owing to the striking similitude of both the formula-
tions. A fast and efficient approach was delineated for re-
ducing a relatively large initial candidate sensor-location
set to a much smaller optimum set which retains the lin-
ear independence of the target modes and maintains the
determinant of the FIM resulting in more accurate modal-
response estimates. Some improvements on this approach
by incorporating basic elements of tabu search were pro-
posed by Kincaid and Padula (2002).

A related optimality criterion was given by Point
et al. (1996), who investigated maximization of the Gram
determinant being a measure of the independence of the
sensitivity functions evaluated at sensor locations. The au-
thors argue that such a procedure guarantees that the pa-
rameters are identifiable and the correlation between the
sensor outputs is minimized. The form of the criterion it-
self resembles the D-optimality criterion, but the counter-
part of the FIM takes on much larger dimensions, which
suggests that the approach may involve more cumbersome
calculations. Nevertheless, the delineated technique was
successfully applied to a laboratory-scale, catalytic fixed-
bed reactor (cf. Vande Wouwer et al., 1999).

It should be noted that spatial design methods re-
lated to the design of monitoring networks are also of
great interest to statisticians and a vast amount of litera-
ture on the subject already exists (Müller, 2001; Nychka
et al., 1998; Nychka and Saltzman, 1998) contributing to
the research field of spatial statistics (Cressie, 1993) mo-
tivated by practical problems in agriculture, geology, me-
teorology, environmental sciences and economics. How-
ever, the models considered in the statistical literature are
quite different from the dynamic models described by

PDEs discussed here. Spatiotemporal data are not con-
sidered in this context and the main purpose is to model
the spatial process by a spatial random field, incorporate
prior knowledge and select the best subset of points of a
desired cardinality to best represent the field in question.
The motivation is a need to interpolate the observed be-
haviour of a process at unobserved spatial locations, as
well as to design a network of optimal observation loca-
tions which allows an accurate representation of the pro-
cess. The field itself is modelled by some multivariate
distribution, usually Gaussian (Armstrong, 1998). De-
signs for spatial trend and variogram estimation can be
considered. The basic theory of optimal design for spa-
tial random fields is outlined in the excellent monograph
by Müller (2001), which bridges the gap between spatial
statistics and classical optimum experimental design the-
ory. The optimal design problem can also be formulated
in terms of information-based criteria, whose application
amounts to maximizing the amount of information (of the
Kullback–Leibler type) to be gained from an experiment
(Caselton and Zidek, 1984; Caselton et al., 1992). How-
ever, the applicability of all those fine statistical results
in the engineering context discussed here is not clear for
now, and more detailed research into this direction should
be pursued in the near future (specifically, generalizations
regarding time dynamics are not obvious).

Let us remark that an appealing alternative to sta-
tionary sensors is to apply spatially movable ones, which
leads to the so-called continuous scanning observations.
The complexity of the resulting optimization problem is
compensated by a number of benefits. Specifically, sen-
sors are not assigned to fixed positions which are op-
timal only on the average, but are capable of tracking
points which provide at a given time moment the best in-
formation about the parameters to be identified. Conse-
quently, by actively reconfiguring a sensor system we can
expect the minimal value of an adopted design criterion
to be lower than the one for the stationary case. What is
more, technological advances in communication systems
and the growing ease in making small, low power and in-
expensive mobile systems now make it feasible to deploy
a group of networked vehicles in a number of environ-
ments (Ögren et al., 2004; Chong and Kumar, 2003; Si-
nopoli et al., 2003; Cassandras and Li, 2005; Martínez
and Bullo, 2006). Very prospective approaches in the
context of control and state estimation were set forth by
Demetriou (cf. Demetriou and Hussein, 2009; Demetriou,
2009; 2010) and Khapalov (2010). But some counterparts
exist for parameter estimation, too.

In his seminal article, Rafajłowicz (1986) consid-
ers the D-optimality criterion and seeks an optimal time-
dependent measure, rather than the trajectories them-
selves. On the other hand, Uciński (2005; 2000), apart
from generalizations of Rafajłowicz’s results, develops
some computational algorithms based on the FIM. He re-
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duces the problem to a state-constrained optimal-control
one for which solutions are obtained via the methods of
successive linearizations which is capable of handling var-
ious constraints imposed on sensor motions. Quite simi-
lar techniques were used in the works of Nehorai et al.
(1995), Porat and Nehorai (1996), Jeremić and Nehorai
(1998; 2000) as well as Zhao and Nehorai (2006) to detect
and estimate the chemical dispersion of possibly moving
sources using model-based integrated sensor array pro-
cessing. In turn, the work by Uciński and Chen (2005) was
intended as an attempt to properly formulate and solve the
time-optimal problem for moving sensors which observe
the state of a DPS so as to estimate some of its parameters.
Some possibilities of exploiting parallel computations on
clusters of PCs to reduce the time spent on determining
optimal sensor node trajectories were discussed by Zięba
and Uciński (2008). More applications in the area of sen-
sor networks can be found in the recent monograph by
Song et al. (2009).

1.3. Design in the context of fault detection. In
spite of the rapid development of fault detection and lo-
calization methods for dynamic systems (Korbicz et al.,
2004; Isermann, 1997; Patton and Korbicz, 1999; Patton
et al., 2000; Chiang et al., 2001), there have been very
few attempts to devise techniques tailored to spatiotem-
poral systems. Patan and Patan (2005) developed a fault
detection scheme for DPSs based on the maximization
of the power of a parametric hypothesis test regarding
the nominal state of a given DPS. They exploited the
Ds-optimality criterion which is a standard tool in opti-
mum experimental design theory (Atkinson et al., 2007).

This line of research was further developed by Patan
and Uciński (2008), who proposed a practical approach
to sensor selection for fault detection which, while being
independent of a particular model of the dynamic DPS
in question, is versatile enough to cope with practical
monitoring networks consisting of many stationary sen-
sors. Specifically,N possible sites at which sensor resided
were considered, but only n of them (typically, n is much
smaller than N ) were supposed to be activated. Conse-
quently, the problem was to divide the N available sites
between n gauged sites and the remainingN−n ungauged
sites so as to maximize theDs-optimality criterion defined
on the Fisher information matrix associated with the pa-
rameters to be estimated. Since selecting the best subset
of sites to locate the sensors constitutes an inherently dis-
crete large-scale resource allocation problem whose so-
lution may be prohibitively time-consuming, an efficient
guided search algorithm based on the branch-and-bound
method was developed, which implicitly enumerates all
the feasible sensor configurations, using relaxed optimiza-
tion problems that involve no integer constraints (cf. also
Uciński and Patan, 2007).

The Ds-optimality criterion was also employed by

Uciński and Patan (2010) to determine mobile sensor
trajectories to detect and localize moving contamination
sources. A receding-horizon scheme was then used to
make this technique work on-line.

This overview would be by far incomplete without
passing reference to the works which attempt to adapt
the common fault detection approach based on observers
or Kalman filters, cf., e.g., the work by Demetriou et al.
(2007). The design problem aiming at optimizing the reli-
ability of the diagnosis has not been considered yet in this
setting.

1.4. Objective of this paper. The aim of the present
paper is to propose an alternative technique to that set
forth by Patan and Uciński (2008). It is going to alleviate
problems with the combinatorial nature of the node activa-
tion problem in large-scale sensor networks. It consists in
operating on the spatial density of sensors (i.e., the num-
ber of sensors per unit area), rather than on the sensor lo-
cations. It proved reasonable for a sufficiently large num-
ber of sensors as far as the reliability of model predictions
was the main focus of interest (cf. Uciński, 2010). The un-
derlying idea has its origins in the concept of replication-
free designs in spatial statistics, (cf. Fedorov, 1989), and
over the past few years successful attempts have been
made at adapting it for use in problems ranging from max-
imization of observability (Uciński, 2005) to optimiza-
tion of measurement strategies for scanning observations
(Uciński, 2005, Chapter 4.1.1). What is more, convenient
and efficient mathematical tools of convex programming
theory made it possible to derive interesting characteriza-
tions of Ds-optimal solutions.

In this paper, the original problem of optimal node
activation for fault detection is reduced to maximization of
theDs-optimality criterion over the set of all convex com-
binations of a finite number of nonnegative definite matri-
ces subject to additional box constraints on the weights
of those combinations. Then simplicial decomposition is
applied which is a simple and direct method for dealing
with large-scale convex optimization problems (von Ho-
henbalken, 1977; Patriksson, 2001). The decomposition
iterates by alternately solving a linear programming sub-
problem within the set of all feasible points and a non-
linear master problem within the convex hull of a subset
of previously generated points. The latter is solved by a
gradient projection type method. As a result, an uncom-
plicated computational scheme is obtained which can be
easily implemented without resorting to sophisticated nu-
merical software.

Notation. Throughout the paper, R+ and R++ stand for
the sets of nonnegative and positive real numbers, re-
spectively. We use S

m to denote the set of symmetric
m × m matrices, The curled inequality symbol � (resp.
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�) is used to denote generalized inequalities. More pre-
cisely, between vectors, it represents a componentwise in-
equality, and between symmetric matrices, it represents
the Löwner ordering: given A,B ∈ S

m, A � B means
that A − B is nonnegative definite (resp. positive defi-
nite). The symbols 1 and 0 denote vectors whose all com-
ponents are one and zero, respectively. We call a point of
the form α1a1 + · · · + α�a�, where α1 + · · · + α� = 1
and αi ≥ 0, i = 1, . . . , �, a convex combination of the
points a1, . . . ,a�. Given a set of points A, co(A) stands
for its convex hull, i.e., the set of all convex combinations
of elements of A. The probability (or canonical) simplex
in R

n is defined as Sn = co
({

e1, . . . , en

})
, where ej is

the usual unit vector along the j-th coordinate of R
n.

2. Sensor selection for fault detection

In what follows, we consider a bounded spatial domain
Ω ⊂ R

d with a sufficiently smooth boundary Γ, a bounded
time interval T = (0, tf ], and a distributed parameter sys-
tem whose scalar state at a spatial point x ∈ Ω̄ ⊂ R

d

and time instant t ∈ T̄ is denoted by y(x, t). Mathemati-
cally, the system state is governed by the partial differen-
tial equation

∂y

∂t
= F

(
x, t, y,θ

)
in Ω × T , (1)

where F is a well-posed, possibly nonlinear, differen-
tial operator which involves first- and second-order spatial
derivatives and may include terms accounting for forcing
inputs specified a priori. The PDE (1) is accompanied by
the appropriate boundary and initial conditions

B(x, t, y, θ) = 0 on Γ × T, (2)

y = y0 in Ω × {t = 0}, (3)

respectively, B being an operator acting on the boundary
Γ and y0 = y0(x) a given function. The conditions (2)
and (3) complement (1) such that the existence of a suffi-
ciently smooth and unique solution is guaranteed. We as-
sume that the forms of F and B are given explicitly up to
anm-dimensional vector of unknown constant parameters
θ which must inevitably be estimated using observations
of the system. The implicit dependence of the state y on
the parameter vector θ will be reflected by the notation
y(x, t; θ).

In the sequel, we consider the discrete-continuous
observations provided by N stationary pointwise sensors,
namely,

z�
m(t) = y(x�, t; θ) + ε(x�, t), t ∈ T, (4)

where z�
m(t) is the scalar output and x� ∈ X stands for

the location of the �-th sensor (� = 1, . . . , N ), X signifies
the part of the spatial domain Ω where the measurements
can be made and ε(x�, t) denotes the measurement noise.

This relatively simple conceptual framework involves no
loss of generality since it can be easily generalized to in-
corporate, e.g., multiresponse systems or inaccessibility
of state measurements, (cf. Uciński, 2005, p. 95).

It is customary to assume that the measurement
noise is zero-mean, Gaussian, spatial uncorrelated and
white (Quereshi et al., 1980; Omatu and Seinfeld, 1989;
Amouroux and Babary, 1988), i.e.,

E
{
ε(x�, t)ε(x�′ , t′)

}
= σ2δ��′δ(t− t′), (5)

where σ2 defines the intensity of the noise, δij and δ( · )
standing for the Kronecker and Dirac delta functions, re-
spectively. Although white noise is a physically impossi-
ble process, it constitutes a reasonable approximation to a
disturbance whose adjacent samples are uncorrelated at all
time instants for which the time increment exceeds some
value which is small compared with the time constants of
the DPS. A rigorous formulation for a time-correlated set-
ting (cf. Uciński, 2005, Appendix C1) is well beyond the
mathematical framework of this paper, but the attendant
difficulties are mainly technical and do not substantially
affect the basic results to be obtained. What is more, the
white-noise assumption is consistent with most of the lit-
erature on the subject.

The most widely used formulation of the parameter
estimation problem is as follows: Given the model (1)–
(3) and the outcomes of the measurements z�

m( · ), � =
1, . . . , N , estimate θ by θ̂, a global minimizer of the out-
put least-squares error criterion

J (ϑ) =
N∑

�=1

∫

T

{
z�
m(t) − y(x�, t; ϑ)

}2
dt, (6)

where y( · , · ; ϑ) denotes the solution to (1)–(3) for a
given value of the parameter vector ϑ.

The basic idea of fault detection is to compare the re-
sulting parameter estimates with the corresponding known
nominal values, treating possible differences as resid-
uals which contain information about potential faults.
Based on some thresholding techniques, the appropri-
ate decision making system could be constructed to de-
tect abnormal situations in system functioning (Patan and
Patan, 2005; Patan and Uciński, 2008).

Note, however, that only some parameters can be
useful for the diagnosis. This accounts for partitioning
the parameter vector into two subsets. With no loss of
generality, we may write

θ =
[
θ1 . . . θs θs+1 . . . θm

]T
=
[

αT βT

]
, (7)

where α is a vector of s parameters which are essential
for a proper fault detection and β is the vector of m − s
unknown parameters which are a part of the model but are
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useless for fault detection. Based on the observations, it is
possible to test the simple null hypothesis

H0 : α = α0, (8)

where α0 is the nominal value for the vector α corre-
sponding to the normal system performance.

For a fixed significance level (i.e., fixed prob-
ability of rejecting H0 when it is true), the power
of the likelihood ratio test for the alternative hy-
pothesis of the form HA : α �= α∗ (i.e.,
1 − ‘the probability of acceptingH0 when HA is true’)
can be made large by maximizing theDs-optimality crite-
rion (for details, see Goodwin and Payne, 1977; Patan and
Patan, 2005)

Ψ[M ] = log det[Mαα − MαβM−1
ββMT

αβ], (9)

where M ∈ R
m×m stands for the so-called Fisher infor-

mation matrix which is decomposed as

M =

⎡

⎣
Mαα Mαβ

MT
αβ Mββ

⎤

⎦ , (10)

such that Mαα ∈ R
s×s, Mαβ ∈ R

s×(m−s), Mββ ∈
R

(m−s)×(m−s). The FIM is widely used in optimum ex-
perimental design theory for lumped systems (Fedorov
and Hackl, 1997; Pázman, 1986; Pukelsheim, 1993; Wal-
ter and Pronzato, 1997; Atkinson et al., 2007). In our set-
ting, the FIM is given by (Quereshi et al., 1980)

M(x1, . . . ,xN ) =
N∑

�=1

∫

T

g(x�, t)gT(x�, t) dt, (11)

where

g(x, t) =
[
∂y(x, t; ϑ)

∂ϑ1
, . . . ,

∂y(x, t; ϑ)
∂ϑm

]T

ϑ=θ0

(12)
stands for the so-called sensitivity vector, θ0 being the
nominal value of the parameter vector θ (Uciński, 2005;
Sun, 1994; Rafajłowicz, 1981; 1983). Up to a constant
scalar multiplier, the inverse of the FIM constitutes a good
approximation of cov(θ̂) provided that the time horizon
is large, the nonlinearity of the model with respect to its
parameters is mild, and the measurement errors are inde-
pendently distributed and have small magnitudes (Walter
and Pronzato, 1997; Fedorov and Hackl, 1997).

Observe that, for the partition

M−1 =

⎡

⎣
Dαα Dαβ

DT
αβ Dββ

⎤

⎦ , (13)

where Dαα ∈ R
s×s, Dαβ ∈ R

s×(m−s), Dββ ∈
R

(m−s)×(m−s), we have (Bernstein, 2005, Fact 2.8.7,
p. 44)

Dαα =
(
Mαα − MαβM−1

ββMT
αβ

)−1
(14)

and further (Bernstein, 2005, Fact 2.15.8, p. 73)

det(Dαα) =
det(Mββ)
det(M)

. (15)

Consequently, maximization of the Ds-optimality
criterion amounts to minimization of det(Dαα), which is
proportional to the determinant of the covariance matrix
for α.

It can be demonstrated (Patan and Uciński, 2008) that
the Ds-optimality criterion is concave over the cone of
symmetric and positive definite m×m matrices. What is
more, its matrix derivative is

◦
Ψ(M ) =

∂Ψ(M)
∂M

=

⎡

⎣
Dαα Dαβ

DT
αβ Dββ − M−1

ββ

⎤

⎦ , (16)

which results from the representation

Ψ[M ] = log det(M ) − log det(Mββ)

= log det(M ) − log det(ATMA),
(17)

where

A =

⎡

⎣ 0

I

⎤

⎦ ∈ R
m×(m−s), (18)

and Proposition 10.6.2 of Bernstein (2005, p. 410).
The introduction of an optimality criterion renders it

possible to formulate the sensor location problem as an
optimization one:

Problem 1 Find locations x��, � = 1, . . . , N , belonging
to the admissible set X to maximize

Υ(x1, . . . ,xN ) = Ψ
[
M (x1, . . . ,xN )

]
. (19)

3. Reformulation in terms of Ds-optimal
sensor densities

As far as the number of sensors N is large, which be-
comes a common situation in applications involving sen-
sor networks, the optimal sensor location problem be-
comes extremely difficult from a computational point of
view due to its combinatorial nature. A way to overcome
this predicament is to operate on the spatial density of sen-
sors (i.e., the number of sensors per unit area), rather than
on the sensor locations. The density of sensors over X
can be approximately described by a probability measure
ξ(dx) on the space (X,B), where B is the σ-algebra of all
Borel subsets of X . Feasible solutions of this form make
it possible to apply convenient and efficient mathematical
tools of convex programming theory.

As regards the practical interpretation of the so pro-
duced results (provided that we are in a position to cal-
culate at least their approximations), one possibility is to
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partition X into non-overlapping subdomains Xi of rela-
tively small areas and then to allocate to each of them the
number

Ni =
⌈
N

∫

Xi

ξ(dx)
⌉

(20)

of sensors (here �ρ	 is the smallest integer greater than or
equal to ρ).

Accordingly, we define the class of admissible de-
signs as all probability measures ξ over X which are ab-
solutely continuous with respect to the Lebesgue measure
and satisfy by definition the condition

∫

X

ξ(dx) = 1. (21)

Consequently, slightly abusing the notation, we re-
place (11) by

M (ξ) =
∫

X

G(x) ξ(dx), (22)

where

G(x) =
∫ tf

0

g(x, t)gT(x, t) dt.

The integration in (21) and (22) is to be understood
in the Lebesgue–Stieltjes sense. This leads to the so-
called continuous designs, which constitute the basis of
the modern theory of optimal experiments (Fedorov and
Hackl, 1997; Walter and Pronzato, 1997).

We impose the crucial restriction that the density of
sensor allocation must not exceed some prescribed level.
For a design measure ξ(dx) this amounts to the condition

ξ(dx) ≤ ω(dx), (23)

where ω(dx) signifies the maximal possible ‘number’ of
sensors per dx (Fedorov and Hackl, 1997; Uciński, 1999;
2005). Logically, this bounding measure must satisfy the
condition ∫

X

ω(dx) ≥ 1. (24)

Consequently we are faced with the following opti-
mization problem:

Problem 2 Find a measure ξ� ∈ Ξ(X) to maximize

Λ(ξ) = Ψ(M(ξ)) (25)

subject to

ξ(dx) ≤ ω(dx), (26)

where Ξ(X) denotes the set of all probability measures on
X .

The design ξ� above is then said to be a (Ψ, ω)-
optimal design (Fedorov and Hackl, 1997).

Let us now make the following assumptions:

(A1) X is compact.

(A2) g ∈ C(X × T ; Rm).

(A3) There exists a finite real α such that
{
ξ : Ψ[M(ξ)] < α

}
= Ξ̃(X) �= ∅.

(A4) ω(dx) is atomless, i.e., for any ΔX ⊂ X there exists
a ΔX ′ ⊂ ΔX such that

∫

ΔX′
ω(dx) <

∫

ΔX

ω(dx). (27)

In what follows, we write Ξ̄(X) for the collection
of all the design measures which are specific in that they
coincide with ω within their supports, i.e., they satisfy the
requirement

ξ(ΔX) =

{
ω(ΔX) for ΔX ⊂ supp ξ,
0 for ΔX ⊂ X \ supp ξ.

(28)

(Recall that the support of a measure ξ is defined as the
closed set supp ξ = X \

⋃
{G : ξ(G) = 0, G – open}

(cf. Rao, 1987, p. 80).)
Given a design ξ, we will say that the function

ψ( · , ξ) defined by

ψ(x, ξ) =
1
tf

∫ tf

0

gT(x, t)
◦
Ψ(M(ξ))g(x, t) dt (29)

separates sets X1 andX2 with respect to ω(dx) if for any
two sets ΔX1 ⊂ X1 and ΔX2 ⊂ X2 with equal non-zero
measures we have
∫

ΔX1

ψ(x, ξ)ω(dx) ≥
∫

ΔX2

ψ(x, ξ)ω(dx). (30)

We can now formulate the following characterization
of (Ψ, ω)-optimal designs.

Theorem 1. (Uciński, 1999; 2005) Let Assumptions (A1)–
(A4) hold. Then

(i) there exists an optimal design ξ� ∈ Ξ̄(X), and

(ii) a necessary and sufficient condition for ξ� ∈ Ξ̄(X)
to be (Ψ, ω)-optimal is thatψ( · , ξ�) separatesX� =
supp ξ� and its complement X \X� with respect to
the measure ω(dx).

From a practical point of view, the above result
means that at all the support points of an optimal design
ξ� the values of the mapping ψ( · , ξ�) should be greater
than anywhere else, i.e., preferably supp ξ� should coin-
cide with maximum points of ψ( · , ξ�). In practice, this
amounts to allocating observations to the points which
provide the most valuable information about the vector α.

Theorem 1 is a valuable tool to check whether or not
a given design is (Ψ, ω)-optimal, but the question of how
to construct an approximation to this optimal solution is
still open. It constitutes the main topic of the next section.
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4. Conversion to a weight optimization
problem

We are now interested in the question of how to dis-
cretize Problem 2 to make it tractable by a computer. In
what follows, the basic idea is to make use of the parti-
tion of X into a union of small disjoint subdomains Xi,
i = 1, . . . , n, i.e., X =

⋃n
i=1Xi, as discussed in Sec-

tion 3. Observe that a measure ξ ∈ Ξ(X) assigns each
subdomain Xi a weight pi = ξ(X). Owing to (20), the
knowledge of the pi’s suffices to determine an optimal dis-
tribution of sensor nodes. Assuming that the variation of
G( · ) over each Xi is negligible (this can be achieved by
constructing a sufficiently fine partition of X), we have

M(ξ) ≈ M (p) :=
n∑

i=1

piM i, (31)

where p = [p1, . . . , pn]T, M i = G(xi), xi being an arbi-
trary point in Xi (e.g., its centre of gravity). Thus, setting
b = [ω(X1), . . . , ω(Xn)]T, we arrive at the following ap-
proximation to Problem 2.

Problem 3 Find a vector of weights p to maximize

Φ(p) = Ψ[M(p)] (32)

subject to

0  p  b, (33)

1Tp = 1. (34)

In what follows, we let P be the bounded polyhedral
set of feasible weights defined by (33) and (34). More-
over, without restriction of generality, we shall further as-
sume that b � 0.

Note that the performance index Φ is concave over
the canonical simplex Sn =

{
p ∈ R

n
+ | 1Tp = 1

}
.

What is more, it is differentiable at points in Sn yielding
nonsingular FIMs, with φ(p) := ∇Φ(p) given by

φ(p) =

⎡

⎢
⎢
⎣

trace
{ ◦
Ψ(M (p))M 1

}

...

trace
{ ◦
Ψ(M (p))Mn

}

⎤

⎥
⎥
⎦ . (35)

Accordingly, numerous computational methods can po-
tentially be employed for solving Problem 3, e.g., the con-
ditional gradient method or a gradient projection method.
Unfortunately, for large n, these algorithms may lead to
unsatisfactory computational times. In what follows, it
will be shown how simplicial decomposition can be em-
ployed to build a very simple and efficient computational
scheme for solving Problem 3.

Algorithm 1 Algorithm model for solving Problem 3 via
simplicial decomposition.

Step 0: (Initialization)
Guess an initial solution p(0) ∈ P such that M(p(0))
is nonsingular. Set I =

{
1, . . . , n

}
, Q(0) =

{
p(0)
}

and k = 0.

Step 1: (Termination check)
Set

I
(k)
ub =

{
i ∈ I | p(k)

i = bi
}
, (36)

I
(k)
im =

{
i ∈ I | 0 < p

(k)
i < bi

}
, (37)

I
(k)
lb =

{
i ∈ I | p(k)

i = 0
}
. (38)

If

φi(p(k))

⎧
⎪⎨

⎪⎩

≥ λ if i ∈ I
(k)
ub ,

= λ if i ∈ I
(k)
im ,

≤ λ if i ∈ I
(k)
lb

(39)

for some λ ∈ R+, then STOP and p(k) is optimal.

Step 2: (Solution of the column generation problem)
Compute

q(k+1) = arg max
p∈P

φ(p(k))Tp (40)

and set
Q(k+1) = Q(k) ∪

{
q(k+1)

}
. (41)

Step 3: (Solution of the restricted master problem)
Find

p(k+1) = arg max
p∈co(Q(k+1))

Φ(p) (42)

and purge Q(k+1) of all extreme points with zero
weights in the resulting expression of p(k+1) as a
convex combination of elements in Q(k+1). Incre-
ment k by one and go back to Step 1.

5. Simplicial decomposition for Problem 3

5.1. Algorithm model. Simplicial Decomposition
(SD) proved extremely useful for large-scale pseudocon-
cave programming problems encountered, e.g., in traffic
assignment or other network flow problems (Patriksson,
2001). In its basic form, it proceeds by alternately solving
linear and nonlinear programming subproblems, called
the Column Generation Problem (CGP) and the restricted
Master Problem (RMP), respectively. In the RMP, the
original problem is relaxed by replacing the original con-
straint set P with its inner approximation being the convex
hull of a finite set of feasible solutions. In the CGP, this
inner approximation is improved by incorporating a point
in the original constraint set that lies furthest along the
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gradient direction computed at the solution of the RMP.
This basic strategy has been discussed in numerous ref-
erences (von Hohenbalken, 1977; Hearn et al., 1985; Pa-
triksson, 2001), where possible extensions have also been
proposed. A marked characteristic of the SD method is
that the sequence of solutions to the RMP tends to a solu-
tion to the original problem in such a way that the objec-
tive function strictly monotonically approaches its optimal
value.

The SD algorithm may be viewed as a form of mod-
ular nonlinear programming, provided that one has an ef-
fective computer code for solving the RMP, as well as
access to a code which can take advantage of the linear-
ity of the CGP. A principal aim of this paper is to show
that this is the case within the framework of Problem 3.
What is more, since we deal with maximization of the
concave function Φ over a bounded polyhedral set P , this
will automatically imply the convergence of the resulting
SD scheme in a finite number of RMP steps (von Hohen-
balken, 1977).

Tailoring the SD scheme to our needs, we obtain Al-
gorithm 1. In the sequel, its consecutive steps will be dis-
cussed in turn.

5.2. Termination criterion for Algorithm 1. In the
original SD setting, the criterion for terminating the iter-
ations is checked only after solving the column genera-
tion problem. The computation is then stopped if the cur-
rent point p(k) satisfies the “basic” optimality condition
of nonincrease, to first order, in the performance measure
value in the whole constraint set, i.e.,

max
p∈P

φ(p(k))T(p − p(k)) ≤ 0. (43)

Note, however, that the condition (39) is less costly in
terms of the number of floating-point operations. It results
from the following characterization of p�, which has the
property that Φ(p�) = maxp∈P Φ(p).

Proposition 1. Suppose that the matrix M (p�) is non-
singular for some p� ∈ P . The vector p� constitutes a
global minimum of Φ over P if, and only if, there exists a
number λ� such that

φi(p�)

⎧
⎪⎨

⎪⎩

≤ λ� if p�
i = bi,

= λ� if 0 < p�
i < bi,

≥ λ� if p�
i = 0

(44)

for i = 1, . . . , n.
This result follows from direct application of

Lemma 1 (see Appendix) after setting f(p) = Φ(M (p)).

5.3. Solution of the column generation subproblem.
Setting c = φ(p(k)), in Step 2 we deal with the linear

Algorithm 2 Algorithm model for solving the column
generation subproblem.

Step 0: (Initialization)
Set j = 0 and v(0) = 0.

Step 1: (Sorting)
Sort the elements of c in nonincreasing order, i.e.,
find a permutation π on the index set I =

{
1, . . . , n

}

such that

cπ(i) ≥ cπ(i+1), i = 1, . . . , n− 1. (45)

Step 2: (Identification of nonzero weights)

Step 2.1: If v(j) + bπ(j+1) < 1, then set

v(j+1) = v(j) + bπ(j+1). (46)

Otherwise, go to Step 3.

Step 2.2: Increment j by one and go to
Step 2.1.

Step 3: (Form the ultimate solution)
Set

qπ(i) =

⎧
⎪⎨

⎪⎩

bπ(i) for i = 1, . . . , j,
1 − v(j) for i = j + 1,
0 for i = j + 2, . . . , n.

(47)

programming problem

maximize cTp

subject to p ∈ P.
(48)

The following assertion is a direct consequence of
Lemma 1 in Appendix.

Proposition 2. A vector q ∈ P constitutes a global
solution to the problem (48) if, and only if, there exists a
scalar ρ such that

ci

⎧
⎪⎨

⎪⎩

≥ ρ if qi = bi,

= ρ if 0 < qi < bi,

≤ ρ if qi = 0
(49)

for i = 1, . . . , n.
We thus see that, in order to solve (48), it is suffi-

cient to pick the consecutive smallest components ci of c
and set the corresponding weights qi as their maximal al-
lowable values bi. The process is repeated until the sum
of the assigned weights exceeds one. Then the value of
the last weight which was set in this manner should be
corrected so as to satisfy the constraint (34) and the re-
maining (i.e., unassigned) weights are set as zeros. This
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straightforward scheme is implemented as Algorithm 2.
Note that its correctness requires satisfaction of the condi-
tion b  1, which is by no means restrictive.

Algorithm 3 Algorithm model for solving the restricted
master problem.

Step 0: (Initialization)
Choose an initial point w(0) ∈ Sr and set κ = 0.

Step 1: (Determination of a feasible direction and ter-
mination check)
Find

v(κ) = D(w(κ), φ(w(κ)) (50)

a(κ) = φT(w(κ))v(κ). (51)

If a(κ) = 0, then STOP and w(κ) is optimal.

Step 2: (Line search)
Determine

γmax = max
{
γ ∈ R+ | w(κ) + γv(κ) ∈ Sr

}

= min
v
(κ)
i <0

{

−w
(κ)
i

v
(κ)
i

}
(52)

and find

γ(κ) = arg max
γ∈[0,γmax]

Φ(w(κ) + γv(κ)). (53)

Step 3: (Updates for the next iteration)
Set w(κ+1) = w(κ) + γ(κ)v(κ), increment k by one
and go back to Step 1.

5.4. Solution of the restricted master subproblem.
Suppose that in the (k + 1)-th iteration of Algorithm 1,
we have

Q(k+1) =
{
q1, . . . , qr

}
, (54)

possibly with r < k + 1 owing to the built-in deletion
mechanism of points in Q(j), 1 ≤ j ≤ k, which did not
contribute to the convex combinations yielding the corre-
sponding iterates p(j). Step 3 involves maximization of
Φ( · ) over

co(Q(k+1)) =

⎧
⎨

⎩

r∑

j=1

wjqj

∣
∣
∣w � 0, 1Tw = 1

⎫
⎬

⎭
. (55)

From the representation of any p ∈ co(Q(k+1)) as

p =
r∑

j=1

wjqj , (56)

or, in component-wise form,

pi =
r∑

j=1

wjqj,i, i = 1, . . . , n, (57)

qj,i being the i-th component of qj , it follows that

M(p) =
n∑

i=1

piM i

=
r∑

j=1

wj

( n∑

i=1

qj,iM i

)
=

r∑

j=1

wjM(qj).

(58)

From this, we see that the RMP can equivalently be for-
mulated as the following problem:

Problem 4 Find a sequence of weights w ∈ R
r to maxi-

mize
Φ(w) = Ψ[H(w)] (59)

subject to the constraints

1Tw = 1, (60)

w � 0, (61)

where

H(w) =
r∑

j=1

wjHj , (62)

Hj = M(qj), j = 1, . . . , r. (63)

Note that the above RMP is much simpler than Prob-
lem 3, since the number of decision variables is usually
substantially smaller here and there are no upper bounds
to the weights. Instead, we maximize a concave function
on the convex hull of a finite set of points. This formula-
tion has captured close attention in optimum experimental
design and, basically, the well-known first-order Wynn–
Fedorov algorithm could be employed here (cf. Fedorov
and Hackl, 1997).

In lieu of this option, a gradient projection type
method was applied here due to its slightly faster oper-
ation. Specifically, defining for any arbitrary w ∈ Sr ={
w ∈ R+ | 1Tw = 1

}
the set of feasible directions

D(w,h) = arg max
v∈V (w)

hTv, (64)

where

V (w) =
{
v ∈ R

r | ‖v‖ ≤ 1,

∃γ > 0 : w + γv ∈ Sr

}
, (65)

we can represent this scheme in its most basic form as
Algorithm 3

In order to increase its efficiency, numerous improve-
ments can be made. That is why, while implementing
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this part of the SD scheme, Algorithm 2 of Botkin and
Stoer (2005) was used, which accounts for several sub-
stantial alterations. Nevertheless, the basic structure of
Algorithm 3 is preserved in it. What is more, Botkin
and Stoer (2005) proposed an extremely fast procedure for
computingD(w,h) (it uses only O(r log(r)) operations),
which was also implemented here. As for the line search,
a modified Brent method using derivatives was adopted
(cf. Press et al., 2007).

6. Simulation example

Consider the two-dimensional diffusion equation

∂y

∂t
= ∇ · (μ∇y) in Ω × T , (66)

where Ω ⊂ R
2 is the spatial domain with boundary Γ

shown in Fig. 1 and T = (0, 1). The assumed form of the
diffusion coefficient is

μ(x) = θ1 + θ2x1 + θ3x2, (67)

where θ1, θ2 and θ3 are unknown parameters. We as-
sume that only θ2 and θ3 are crucial for fault detection,
i.e., α = col[θ2, θ3] and β = [θ1]. The parameter vec-
tor θ = col[θ1, θ2, θ3] is supposed to be estimated based
on the measurements from a large-scale sensor network.
Throughout the design, θ01 = 0.1 and θ02 = θ03 = 0.3 are
to be used as nominal values of θ1, θ2 and θ3, respectively.

The PDE (66) is supplemented with the initial and
boundary conditions

y(x, 0) = 5 in Ω, (68)

y(x, t) = 5(1 − t) on Γ × T . (69)

The upper bound in (23) is given by ω(A) =
c|A|/|X | for any Borel subset of X̄ , where c ≥ 1 is fixed,
i.e., ω corresponds to a uniform distribution on X̄ , and |A|
stands for the area (i.e., the Lebesgue measure) of A.

The MATLAB PDE toolbox (COMSOL AB, 1995)
was used to generate the triangular mesh T of 646 nodes
and n = 1196 triangles shown in Fig. 1. The values of the
sensitivities g = col[g1, g2, g3] are defined as solutions to
the following system of PDEs (Uciński, 2005; 1999):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
= ∇ · (μ∇y) ,

∂g1
∂t

= ∇ · ∇y + ∇ · (μ∇g1),
∂g2
∂t

= ∇ · (x1∇y) + ∇ · (μ∇g2),
∂g3
∂t

= ∇ · (x2∇y) + ∇ · (μ∇g3),

(70)

in which the first equation constitutes the original state
equation and the second and third equations result from

its differentiation with regard θ1, θ2 and θ3, respectively.
The initial and Dirichlet boundary conditions for the sen-
sitivity equations are homogeneous.

We numerically solved (70) using some routines of
the MATLAB PDE toolbox and stored matrices G(xi)
computed based on g1, g2 and g3 interpolated at the
gravity centres of individual triangles, cf. Appendix I of
Uciński (2005) for details.

The triangular mesh T was also used when solv-
ing Problem 3. All computations were performed within
several seconds on a low-cost laptop (Intel Centrino Duo
T9300, 3 GB RAM) running Windows Vista Home Pre-
mium and Matlab 7 (R2008a).

Simplicial decomposition implemented in accor-
dance with Algorithm 1 lead to solutions in which the
weights pi associated with the respective triangles approx-
imately satisfy the ‘bang-bang’ principle formulated in
Theorem 1: they are either zero, or equal to the corre-
sponding upper bound bi = c|Xi|/|X |. Thus, the support
of the optimal measure ξ covers approximately c−1 ·100%
of the area of |X |, cf. Fig. 1. Observe that both the sym-
metry of the solution imposed by the form of the diffusion
coefficient, as well as that of the boundary and initial con-
ditions, are virtually retained (some imprecisions results
from a non-symmetric triangular mesh).

7. Conclusions

The paper has been focused on a design problem a moni-
toring sensor network which is supposed to provide proper
diagnostic information about the functioning of a dis-
tributed parameter system. Fault detection is accom-
plished here based on monitoring the values of the pa-
rameters which govern the dynamics of the spatiotemporal
system. One of the important issues related to this task is
the choice of a suitable criterion to quantify the quality
of the detection of an abnormal state indicating potential
faults. Here the problem is formulated as maximization of
the power for a parametric hypothesis test which verifies
the nominal values of the system parameters. To this end,
theDs-optimality criterion defined on the Fisher informa-
tion matrix is proposed. Although this criterion is well
known in optimum design theory, there exist only few at-
tempts to exploit it in the context of fault detection for
DPSs.

The combinatorial nature of the design problem has
been circumvented here by replacing the original problem,
which operates directly on the sensor positions, by another
one which operates on the spatial density of the sensors. In
much the same way as is done in stochastic optimization,
an approximated solution is then sought in the form of a
constrained probability mass function concentrated at a fi-
nite number of given support points. The computational
tool to effectively solve the resulting weight optimization
problem is simplicial decomposition, which alternates be-
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Fig. 1. Support of the Ds-optimal design measure: c = 2, 50%
coverage of X (a), c = 4, 25% coverage of X (b), c =
10, 10% coverage of X (c).

tween a simple linear programming problem and a nice
convex programming problem being solved by a gradient
projection type method.

Observe that some refinements may still improve the
algorithm performance. First of all, the basic simplicial
decomposition scheme outlined here can be replaced by
the so-called restricted simplicial decomposition (Hearn
et al., 1985), which is based on the fact that a partic-
ular feasible solution, such as the optimal one, can be
represented as a convex combination of an often much
smaller number of extreme points than that implied by
Carathéodory’s theorem. Apart from that, some improve-
ments aimed at removing nonoptimal support points can
be incorporated in the restricted master problem to speed
up its solution. But even the basic scheme proposed here
performs well in practice and the aforementioned refine-
ments may be necessary only when the time of computa-
tions is a truly critical factor. Clearly, an extremely impor-
tant issue regarding the technique outlined here is a thor-
ough analysis of its computational efficiency and, specif-
ically, a comparison with alternative approaches (e.g., the
speed up, the potential for parallelization, etc.). This
topic, however, is beyond the scope of this introductory
paper and a detailed discussion of all these issues will ap-
pear elsewhere.

Although the approach has been presented in the
form which conforms to off-line design, it can be rela-
tively easily adapted to a setting where the computations
are dynamic data driven, i.e., the current measurements
from the sensor network nodes serve as a basis for the up-
date of parameter estimates and these, in turn, can be used
to correct the node activation schedule. To this end, a non-
linear model-predictive-control-like approach can be used
in much the same way as described by Uciński and Patan
(2010).

The application of the Ds-optimality criterion is in-
herently related to splitting the set of all unknown param-
eters into the disjoint subsets of the parameters which are
and are not relevant to fault detection. Such a clear dis-
tinction may be neither obvious nor practical in real world
applications. Therefore, an alternative approach consists
in arbitrarily weighing the influence of individual param-
eters based on some a priori knowledge gained, e.g., from
previous experiments. But the implementation of this sim-
ple idea presents a more delicate problem and, therefore,
will appear in a forthcoming publication.
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Jeremić, A. and Nehorai, A. (2000). Landmine detection and
localization using chemical sensor array processing, IEEE
Transactions on Signal Processing 48(5): 1295–1305.

Kammer, D.C. (1990). Sensor placement for on-orbit modal
identification and correlation of large space structures, Pro-
ceedings of the American Control Conference, San Diego,
CA, USA, Vol. 3, pp. 2984–2990.



38 D. Uciński
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Appendix

Maximization of a concave function over the
intersection of a canonical simplex and a box

Given a vector b ∈ R
n
++ such that 1Tb ≥ 1, consider the

problem

maximize f(p)
subject to p ∈ P,

(71)

where we assume throughout that

(a) P = Sn ∩B for Sn being the probability simplex in
R

n and B =
{
p ∈ R

n | 0  p  b
}

, and

(b) the function f : Sn → R is concave and continu-
ously differentiable over P .

We have the following.

Lemma 1. A vector p� constitutes a global maximum of
the constrained problem (71) if, and only if, there exists a
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number λ� such that

∂f(p�)
∂pi

⎧
⎪⎨

⎪⎩

≥ λ� if p�
i = bi,

= λ� if 0 < p�
i < bi,

≤ λ� if p�
i = 0

(72)

for i = 1, . . . , n.
This characterization can be interpreted as separa-

bility of the components of p� in terms of the gradi-
ent ∇f(p�). Specifically, the values of ∂f(p�)/∂pi for
the components p�

i of p� which are interior points of
the closed intervals [0, bi] must equal some constant λ�,
whereas for the components p�

i coinciding with endpoints
0 or bi, the values of ∂f(p�)/∂pi must be no larger and
no smaller than λ�, respectively.

Proof. The problem (71) can be reformulated as that of
finding p� ∈ R

n to minimize

f̃(p) = −f(p) (73)

subject to the constraints

1Tp − 1 = 0, (74)

−p  0, (75)

p − b  0. (76)

Introducing the dual variables λ ∈ R, μ ∈ R
n
+ and

ν ∈ R
n
+, we define the Lagrangian of (73)–(76) as

L(p, λ,μ,ν) = −f(p)+λ(1Tp−1)−μTp+νT(p−b).
(77)

The first-order Karush–Kuhn–Tucker (KKT) conditions
for our problem are

−∇f(p) + λ1− μ + ν = 0, (78)

μ · p = 0, (79)

ν · (p − b) = 0, (80)

μ � 0, (81)

ν � 0, (82)

0  p  b, (83)

1Tp = 1. (84)

The independence of 2n+1 linear constraints defined
by (74)–(76) implies that (78)–(84) are necessary for opti-
mality. But they are also sufficient since the performance
measure (73) is convex. Consequently, the optimality of
p� amounts to the existence of some values of λ, μ and
ν, denoted by λ�, μ� and ν�, respectively, such that (78)–
(84) are satisfied.

Suppose that p�
i = bi for some index i. Then from

(79) it follows that μ�
i = 0 and, therefore, (78) reduces to

∂f(p�)
∂pi

= λ� + ν�
i ≥ λ�, (85)

the last inequality owing to (82). In turn, on account of
(80), the assumption p�

i = 0 yields ν�
i = 0, and then (78)

simplifies to

∂f(p�)
∂pi

= λ� − μ�
i ≤ λ�, (86)

which is owing to (81). Finally, by (79) and (80), the as-
sumption 0 < p�

i < bi clearly forces μ�
i = ν�

i = 0, for
which (78) gives

∂f(p�)
∂pi

= λ�, (87)

Conversely, having found p� ∈ P and λ� ∈ R for
which (72) is fulfilled, we can define

μ�
i = max

(
λ� − ∂f(p�)

∂pi
, 0
)
, (88)

ν�
i = max

(
∂f(p�)
∂pi

− λ�, 0
)
, (89)

for i = 1, . . . , n, which guarantees the satisfaction of
(78)–(84). This means that p� is a KKT point and this is
equivalent to its global optimality. �
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