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Sensor Networks for
Emergency Response:
Challenges and
Opportunities

S
ensor networks, a new class of devices,

have the potential to revolutionize the

capture, processing, and communica-

tion of critical data for use by first

responders. Sensor networks consist of

small, low-power, and low-cost devices with lim-

ited computational and wireless communication

capabilities. They represent the next step in wire-

less communication’s miniaturization, and their

power and size make it feasible to embed them

into wearable vital sign moni-

tors, location-tracking tags in

buildings, and first responder

uniform gear.

Sensor nodes’ extreme re-

source limitations represent

new challenges in protocol de-

sign, application development,

and security models. We devel-

oped CodeBlue, a common

software infrastructure, to ad-

dress these challenges. Code-

Blue integrates sensor nodes and other wireless

devices into a disaster response setting and pro-

vides facilities for ad hoc network formation,

resource naming and discovery, security, and in-

network aggregation of sensor-produced data.

We designed CodeBlue for rapidly changing, crit-

ical care environments. To test it, we developed

two wireless vital sign monitors and a PDA-based

triage application for first responders.

Additionally, we developed MoteTrack, a ro-

bust radio frequency (RF)–based localization sys-

tem, which lets rescuers determine their location

within a building and track patients. Although

much of our work on CodeBlue is preliminary,

our initial experience with medical care sensor

networks raised many exciting opportunities and

challenges.

The CodeBlue infrastructure
Integrating a range of wireless devices with

varying capabilities into medical, disaster re-

sponse, and emergency care scenarios (see the

related sidebar) raises new challenges for the

devices’ interoperation. Sensor nodes’ extremely

limited communication and computational capa-

bilities exacerbate these challenges. Some specific

issues that arise include

• Discovery and naming. Establishing commu-

nication pathways between vital sign sensors

and receiving devices—for example, a PDA that

an emergency medical technician (EMT) car-

ries—requires flexible device discovery. Device

naming should also be application centric.

Rather than using low-level network addresses,

a device might want to request information on

all vital sign sensors of a certain type or only on

those devices emitting data in a certain range.

A common protocol and software framework could integrate devices

such as wearable vital sign sensors, handheld computers, and location-

tracking tags into disaster response scenarios. CodeBlue, a new

architecture, allows wireless monitoring and tracking of patients and

first responders.
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You must decentralize the discovery

process to avoid any single point of

failure; it would be inappropriate to

rely on a central directory server.

• Robust routing. Disaster scenario

devices might need to communicate

with other devices outside their imme-

diate radio range. For example, you

might have nodes distributed over a

large area and rescuers frequently

moving. Ad hoc routing techniques

extend the effective communication

range by having devices relay mes-

sages for one another. Notably, com-

munication patterns are typically mul-

ticast, so a given vital sign sensor

might need to report its data to multi-

ple receiving nodes.

• Prioritization of critical data. Com-

munications bandwidth is extremely

limited on low-power radios such as

those based on the IEEE 802.15.4 and

ZigBee standards. When many devices

share this bandwidth, you must give

critical data—such as vital signs from

an arresting patient or an SOS mes-

sage from a trapped firefighter—pri-

ority over other traffic.

• Security. Security is a major concern

for wireless communication systems

in general, and even more so in disas-

ter response. A dynamically changing

population of patients and rescuers at

a disaster site requires efficient estab-

lishment of security credentials. In ad-

dition, the security architecture can’t

assume a predeployed public key in-

frastructure (PKI) or that all devices

have sufficient computational power

to run expensive cryptographic pro-

tocols.

• Tracking device locations. Location

awareness is an important aspect of

disaster response: incident command

operations depend heavily on track-

ing rescuer and victim locations. Given

the many wireless devices in a disas-

ter site, you should be able to use GPS,

RF signals, ultrasound, or some other

technique to track patient and rescuer

device locations.

CodeBlue (see Figure 1) comprises a

suite of protocols and services that lets
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K nowing how to both monitor and deal with a large number

of casualties is key to disaster response scenarios. If first re-

sponders can’t rapidly triage the injured and severely injured in a

coordinated manner, the large numbers could quickly overwhelm

emergency field personnel and hospital staff and prevent them

from providing quality trauma care.1 Quickly identifying and strat-

ifying the most severely injured patients poses unique challenges,

as does efficiently monitoring and transporting victims.

The triage process has traditionally occurred at the hospital gate

(typically at the entrance to the Emergency Department). There,

an emergency physician or experienced trauma care surgeon strat-

ifies patients with one or more triage tools based on mechanism of

injury, physiologic criteria, injury site and severity, preexisting dis-

ease, age, and survival expectation. Overtriage, a common prob-

lem, ties up valuable resources that would otherwise go to more

severely injured patients. Emergency personnel must decide as

early as possible which patients will benefit most from transport to

a dedicated trauma center and which patients require less im-

mediate attention.

We envision sensor network nodes playing a variety of disaster

response roles:

• In-field patient triage and tracking

• Temporary storage of individual patient information, including

on-scene physical exam findings, treatment types, and

treatment response

• Simultaneous physical environment monitoring

• Tracking first responders’ and patients’ location and status

The most compelling application is wireless vital sign monitoring

of multiple victims at a disaster scene. First responders would place

wireless, low-power vital sign sensors on each patient. These sen-

sors would relay continuous data to nearby paramedics and emer-

gency medical technicians, who would use mobile computers or

PC-based systems (for example, in ambulances) to capture addi-

tional patient data. Field personnel could therefore monitor and

care for several patients at once, yet still be alert to sudden

changes in any particular patient’s physiologic status.

Using decision support to guide trauma care is another sensor net-

working opportunity in disaster response settings. The quality of dis-

aster-related trauma care is inversely proportional to its caseload. By

continuously feeding patient information from the field into a cen-

tralized decision support system, responders could gain a global

view of a mass casualty situation and establish a greater semblance

of order. This would make triage in the field and at the hospital

gates interactive, allowing better coordination of the out-of-hospital

caseload with critical, hospital-based trauma facilities and resources.

In a December 1999 fire in Worcester, Massachusetts, six fire-

fighters died after they became lost in a six-floor warehouse; four

of the firefighters were attempting to locate the first two victims,

who might have already died.2 Equipping first responders with

vital sign monitors would avoid placing additional rescuers at risk

because they’d know if victims were beyond medical help. Addi-

tionally, location-tracking systems based on radio frequency, ultra-

sound, or another technology could aid rescuers in determining

their own location as well as that of others.
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many types of devices (wireless sensors,

location beacons, handheld computers,

laptops, and so forth) coordinate their

activities. We think of CodeBlue as an

“information plane,” which lets these de-

vices discover each other, report events,

and establish communication channels.

CodeBlue incorporates a flexible naming

scheme; robust publish and subscribe

routing framework; authentication and

encryption provisions; and services for

credential establishment and handoff,

location tracking, and in-network filter-

ing and aggregation.

The pervasive systems community has

worked toward the seamless integration

of many computational devices for some

time, but integrating low-power, low-

capability wireless sensors into emer-

gency and disaster response demands

new approaches. For example, unlike

traditional middleware architectures,

CodeBlue must run on sensor network

devices with extremely limited resources.

Traditional approaches based on Re-

mote Procedure Call (RPC), Java virtual

machines, or mobile agents are generally

inappropriate for this domain.

Several projects share similar goals to

CodeBlue’s. The Patient Centric Net-

work project (http://nms.lcs.mit.edu/

projects/pcn) is developing a common

architecture for sensors in hospitals, such

as those found in operating rooms. This

work isn’t specifically focused on low-

power, wireless sensors in a disaster re-

sponse environment. Several projects,

including Agent Based Casualty Care

(www.cs.dartmouth.edu/~afiske/

abccare), are developing wearable phys-

iological sensors. Many of these projects

focus on a particular application and

sensor suite, rather than a more general

framework for wireless medical sensing.

Additionally, most of these systems use

PDA-class systems with 802.11b, which

have very different power and band-

width characteristics than the low-power

sensor nodes that we envision.

We’ve completed some promising

early designs of several CodeBlue com-

ponents.

Wireless vital sign monitors
Wireless sensor networks are typified

by small, low-power, and low-capability

devices, often called motes, a term refer-

ring to a speck of dust. The Mica2 mote,

developed at UC Berkeley,1 is one of the

most popular sensor node designs. It’s

based on a 7.3-MHz Atmel ATmega128L

embedded controller with 4 Kbytes of

RAM and 128 Kbytes of ROM. The

Mica2 includes a low-power, single-chip

radio—the Chipcon CC1000—capable

of operating at 76.8 kbps with a practi-

cal indoor range of approximately 20–30

meters. The Mica2 measures 5.7 cm × 3.2

cm × 2.2 cm and uses two AA batteries

that will last for up to a week if the device

is powered continuously. However, you

can extend its lifetime to months or years

through careful duty cycling. The Mica2

runs a specialized operating system, called

TinyOS, that addresses the sensor nodes’

concurrency and resource management.

These devices represent a very different

design point from other mobile technolo-

gies, such as PDAs, which have far greater

CPU speeds, memory sizes, and commu-

nication capabilities. Sensor motes’ lim-

ited bandwidth and computational power

precludes the use of common Internet pro-

tocols and services such as the TCP/IP,

DNS, and Address Resolution Protocol

(ARP). Additionally, very different tech-

nology trends drive these devices’ size,

cost, and power consumption than those

in the handheld or wearable computer

space. Sensor nodes already exist that inte-

grate all of Mica2’s capabilities onto a sin-

gle 5 mm2 chip.2

Wireless sensing and communication

have the potential for broad applica-

tions in medicine. Today, it’s possible to

obtain heart rate, oxygen saturation,
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Figure 1. The CodeBlue infrastructure.



end-tidal CO2, and serum chemistries

measurements, including serum glucose,

with small, noninvasive sensors. We

expect that, over time, an increasing ar-

ray of sensors with sophisticated capa-

bilities will become available. Compa-

nies such as Nonin and Numed have

wireless vital sign sensors based on Blue-

tooth technology, while Radianse devel-

oped an RF-based location-tracking sys-

tem for hospital use. Other research

projects include the European Commis-

sion’s wide-ranging Mobi-Health Pro-

ject, which provides continuous moni-

toring of patients outside the hospital

environment by developing the concept

of a 3G (third-generation)-enabled

“Body-Area Network.” The potential

applications will save lives, create valu-

able medical research data, and cut

medical services costs.

To demonstrate wireless sensor nodes’

use in disaster response, we’ve developed

two mote-based vital sign monitors (see

Figure 2): a pulse oximeter and a two-

lead electrocardiogram (EKG) monitor.3

The pulse oximeter captures a patient’s

heart rate and blood oxygen saturation

(SpO2) by measuring the amount of light

transmitted through a noninvasive sen-

sor attached to the patient’s finger. EMTs

use these standard vital signs to deter-

mine a patient’s general circulatory and

respiratory status, which are among the

first vital signs taken. We based our

mote-based pulse oximeter on Smith-

BCI’s commercially available daughter-

board that attaches to the Mica2 mote,

which transmits the heart rate and SpO2

data periodically (about once a second).

Our mote-based EKG continually

monitors the heart’s electrical activity in

more severely injured patients. For ex-

ample, a patient with internal bleeding

might require cardiac monitoring to de-

termine that the heart rate and rhythm

are within acceptable limits. You can use

EKG signals to detect arrhythmia (abnor-

mal heartbeat rhythm) or ischemia (lack

of blood flow and oxygen to the heart),

both of which point to potentially seri-

ous conditions. A custom-built circuit

board attached to the Mica2 mote cap-

tures a trace of the heart’s electrical sig-

nals through a set of leads attached to a

patient’s chest. The circuit board captures

information at a rate of 120 Hz, com-

presses it using a differential encoding

scheme, and transmits it via the mote’s

radio.

Handheld computers carried by first

responders can receive and visualize mul-

tiple patients’ vital signs. Figure 3 shows

our PDA-based triage application, which

displays real-time data from multiple

patients and can report a combination

of audible and visible alerts should a

patient’s vital signs exceed a predeter-

mined range. Additionally, the real-time

data collected by our PDA-based appli-

cation can be passed on to a patient care

record application such as 10Blade’s iRe-

vive. iRevive provides a PDA-based

patient care record that EMTs can use

for recording patient history, identifica-

tion, and other observations, as well as

any interventions such as intubation,

medications, or fluid resuscitation. We’re

currently working with 10Blade to inte-

grate our two PDA-based applications.

Security implications
Security is an important factor to wire-

less sensor networks’ success and accep-

tance in medical and disaster response

applications because patients’ medical

records must remain private. In hospi-

tals and other clinical settings, medical

devices must ensure the privacy of

patients’ medical data in accordance

with the Health Insurance Portability

and Accountability Act of 1996. For in-
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Figure 2. Mote-based (a) pulse oximeter and (b) two-lead electrocardiogram.
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Figure 3. PDA-based multiple-patient

triage application. The screen shows real-

time vital sign (heart rate and blood oxy-

gen saturation) data from three patients.



field use, devices must also defend against

adversaries bent on capturing, spoofing,

or inducing denial-of-service against the

system. A large disaster scenario will

involve rescue workers and ambulances

from many organizations. It’s unreason-

able to assume that all organizations

have exchanged security or configura-

tion information (keys, certificates, and

so forth) ahead of time. It’s also imprac-

tical to require that rescue personnel

arriving on the scene spend time typing

in passwords, logging into databases, or

any typical authentication methods used

for conventional computing. Therefore,

we need an architecture that supports an

ad hoc network security model that

doesn’t require manual configuration

and that self-organizes based on the set

of participating devices. The system must

cope with nodes joining and leaving the

system—for example, as EMTs arrive on

the scene and patients are transported

off-site to a hospital. The security model

must also provide seamless credential

handoff, allowing one first responder to

give access rights to another, without

relying on preexisting relationships

between the two.

In traditional distributed security, you

authenticate principals by contacting a

trusted authority that’s responsible for

maintaining up-to-date information on

what each principal’s access rights are.

However, in a disaster response sce-

nario, it might be impossible to access

an outside authority due to lack of pre-

existing infrastructure or inability to

contact off-site systems. In life-threat-

ening situations, it’s never acceptable to

deny a legitimate user data that might

save someone’s life. In such situations,

a best-effort security model might be

appropriate, making strong guarantees

when external authorities can be con-

tacted and making weaker guarantees

during periods of poor connectivity or

infrastructure loss.

Although public key cryptography can

address many of these problems, em-

ploying such an approach can introduce

several technical difficulties. Sensor

nodes’ limited resources are ill-suited for

most straightforward implementations

of public key cryptography. For exam-

ple, with only 4 Kbytes of memory, the

Mica2 can store no more than a few

1,024-bit RSA keys.

We’ve been exploring Elliptic Curve

Cryptography as an alternate public key

cryptography scheme.4 ECC uses smaller

keys and is more computationally effi-

cient than RSA. An ECC key size of 163

bits is computationally equivalent to a

768-bit RSA key, and we can implement

ECC using only integer arithmetic, which

is much more feasible on low-power

microcontrollers without hardware float-

ing-point support. Our implementation

of ECC on the Mica2 can generate a key

in 35 seconds, which, while far from neg-

ligible, is still acceptable if we perform

key generation infrequently. You can use

this approach to generate symmetric keys

for symmetric-key encryption schemes

such as TinySec,5 thereby amortizing the

overhead over many transmissions.

In the future, we’d like to explore tak-

ing advantage of the diversity of device

capabilities in a disaster setting. It might

be possible to develop schemes in which

the PDAs and laptops on the scene per-

form expensive security computations.

This approach doesn’t completely ad-

dress the problem, however, because sen-

sor nodes will still need to determine

which devices to trust for offloading

these computations.

RF-based location tracking
Tracking patients and rescue person-

nel is another important wireless tech-
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Figure 4. The MoteTrack location system.

B1, B2, and B3 are beacon nodes, which

broadcast beacon messages at various

transmission powers (p1, p2, and so

forth.). Each beacon node stores a subset

of all reference signatures. M is a mobile

node that can hear from all three beacon

nodes. It aggregates beacon messages

received over some time period into a 

signature. The circular areas marked by

red perimeters indicate the areas in which

messages can be received from the 

corresponding beacon node.



nologies application in disaster response.

For example, in a mass casualty incident,

you can place tractable vital sign sensors

on many patients. This lets you quickly

locate a patient who suddenly requires

immediate attention—an essential part

of a successful triage. Firefighters enter-

ing a large building often cannot see

because of heavy smoke coverage and

have no a priori notion of building lay-

out. By installing wireless, battery-

operated RF beacons in a building in

advance of a fire, firefighters and res-

cuers could use a heads-up display to

track their location and monitor safe exit

routes.6 Likewise, an incident comman-

der could track multiple rescuers’ loca-

tions in the building from the command

post. Such capabilities would have

greatly improved FDNY rescue opera-

tions on 11 September 2001, according

to the McKinsey reports.7

We’re developing an RF-based loca-

tion tracking system, called MoteTrack,

specifically designed for disaster re-

sponse.8 It operates using the low-power,

single-chip radio transceivers found in

sensor network nodes, which rescue per-

sonnel can easily wear or embed in wear-

able vital sign sensors. MoteTrack oper-

ates in an entirely decentralized, robust

fashion, providing good location accu-

racy despite partial failures of the loca-

tion-tracking infrastructure.

With MoteTrack, you populate a

building or other area with a number of

beacon nodes, which can operate off

battery power or use main power with

a battery backup. These beacon nodes

can replace existing smoke detectors and

serve as both wireless smoke detectors

and location trackers. If the nodes track

location infrequently, such as only in an

emergency, and with careful duty cyc-

ling, the operation lifetime of beacon

nodes running off batteries will resem-

ble that of a battery-operated smoke

detector. MoteTrack doesn’t require ad-

ditional hardware beyond the sensor

node’s radio and microprocessor. Bea-

con nodes, represented as stars in Fig-

ure 4, broadcast periodic beacon mes-

sages that consist of a tuple of the

format {sourceID, powerLevel}.

sourceID is the unique identifier of the

beacon node, and powerLevel is the

transmission power level used to broad-

cast the message.

Each mobile node that wants to use

MoteTrack to determine its location lis-

tens for some period of time to acquire

a signature. A signature consists of the

beacon messages received over some

time interval along with the received

signal strength indication (RSSI) for each

transmission power level. Finally, we

define a reference signature as a signa-

ture combined with a known 3D loca-

tion (x, y, z).

MoteTrack uses a two-phase process

to estimate locations: an offline collec-

tion of reference signatures followed by

online location estimation. Once you’ve

installed the beacon nodes, you use a

mobile node to acquire a reference sig-

nature set at known, fixed locations

throughout the building (shown as green

dots in Figure 4). Afterwards, a mobile

node can obtain a signature and send it

to the beacon node from which it

received the strongest RSSI to estimate

its location. This approach resembles

802.11-based location-tracking systems,

such as RADAR.9 However, unlike RADAR,

MoteTrack is completely decentral-

ized—that is, it runs entirely on small,

low-power sensor nodes and doesn’t re-

quire a back-end database to store ref-

erence signatures or perform location

calculations. MoteTrack carefully repli-

cates its reference signature set across

beacon nodes such that each beacon

node stores only a subset of all reference

signatures. The beacon nodes themselves

perform all data storage and computa-

tion using only the locally stored refer-

ence signatures. MoteTrack achieves a

high level of robustness to beacon node
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failure through its distributed architec-

ture and by using an adaptive algorithm

for estimating locations that is a func-

tion of the percent of locally failed bea-

con nodes. The high level of robustness

to failure is an important factor for dis-

aster response applications.

In an experiment consisting of 20 bea-

con nodes distributed throughout one

floor of Harvard University’s computer

science building measuring 1742 m2

(that is, a density of 0.011 (beacon

nodes/m2)), MoteTrack achieved an

80th-percentile location accuracy of 3

meters over 74 separate location esti-

mates and tolerated a failure of up to 40

percent of the beacon nodes with negli-

gible increase in error. Figure 5 shows

the distribution of location-tracking

error. This accuracy is roughly equiva-

lent to that of research and commercial

802.11-based location-tracking systems

(www.radianse.com/products.htm),9 but

doesn’t require a powered infrastructure

or connection to a network to track loca-

tions, is entirely decentralized, and is

robust to failure. Ultrasound-based sys-

tems, such as Cricket,10 yield a higher

degree of accuracy but need very dense

beacon placement and line-of-sight bea-

con exposure. This might require you to

carefully orient the receivers and is im-

practical for rescue operations.

W
ireless sensor networks

have the potential for

enormous impact on many

aspects of disaster re-

sponse and emergency care. However, the

medical community is large, diverse, and

sophisticated, and federating these sys-

tems will require addressing a range of

technical, scientific, social, financial, and

legal issues.

Moreover, a host of technical chal-

lenges remain for integrating these devices

into disaster settings. Power, computa-

tional capabilities, and communication

bandwidth limitations demand new ap-

proaches to software design in this

regime. We’re currently developing Code-

Blue, which will integrate device discov-

ery, robust routing, traffic prioritization,

security, and RF-based location tracking.

Our initial prototypes of these services

show promise, and we’re planning sev-

eral deployments in simulated and real

clinical settings. 
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