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Abstract—We present a mobile acoustic beacon based sensor
node localization method. Our technique is passive in that the
sensor nodes themselves do not need to generate an acoustic
signal for ranging. This saves cost, power and provides stealthy
operation. Furthermore, the beacon can generate much more
acoustic energy than a severely resource constrained sensor node,
thereby significantly increasing the range. The acoustic ranging
method uses a linear frequency modulated signal that can be
accurately detected by matched filtering. This provides longer
range and higher accuracy than the current state-of-the-art.
The localization algorithm was especially designed to work in
such acoustically reverberant environment, as urban terrain. The
algorithm presented handles non-Gaussian ranging errors caused
by echoes. Node locations are computed centrally by solving
a global non-linear optimization problem in an iterative and
incremental fashion.

I. INTRODUCTION

Localization is an essential tool for the deployment of low-

cost sensor networks for use in location-aware applications

[12], [13], [25] and ubiquitous networking [4], [26]. In a

typical sensor network application each sensor node monitors

and gathers local information. This local information has much

more significance if it can be tied to the physical location it

belongs to. In location-critical applications, such as shooter-

localization [24], sub-meter accuracy of 3D node locations is

an absolute necessity for the correct operation of the system.

Range-free localization techniques provide rough estimates

of node positions only. Ranging methods fall into two main

classes: acoustic and radio signal strength-based. The latter

requires extensive calibration, yet it still achieves low accu-

racy and limited range. Acoustic ranging has relatively high

accuracy, but short range. The main reasons are the limited

acoustic energy a sensor node can emit and the possibly high

environmental noise. Having a speaker or sounder on every

node adds size and cost also. When stealthy operation is

required, only ultrasound can be used. But ultrasonic ranging

has even more limited range and directionality constraints.

A sensor network deployment scenario with many favorable

characteristics in numerous application areas is the dispersal of

sensor nodes from a low-flying unmanned aerial vehicle (UAV)

platform. After deployment, an acoustic beacon mounted on

the aircraft can send a radio message followed by an acoustic

signal at random intervals. All the nearby sensor nodes can

estimate their distance from the beacon by measuring the

time-of-flight of the sound. As size and power are not as big

constraints on a UAV as on a sensor node, the maximum range

can be significantly increased. Furthermore, the nodes do not

reveal their positions since they are only passive listeners in

this scenario.

The self-localization problem in this case is to find the

sensor node locations given only the distance measurements

between unknown mobile beacon transmission locations and

the sensor nodes. Neither the mobile beacon positions nor the

sensor nodes themselves are located necessarily on a plane.

Therefore, the localization problem needs to be solved in

3D. Furthermore, to our knowledge, no solutions exist in the

literature that handle multipath effects satisfactorily. For urban

deployments both of these problems need to be addressed.

The main contributions of our work are (1) the acoustic

ranging method providing increased range and accuracy, (2)

the localization algorithm based on the novel idea of a mo-

bile acoustic beacon and (3) the ability to handle multipath

effects. The ranging method is based on the time-of-flight

measurement of an acoustic signals emitted by a single beacon

from multiple locations. The acoustic signal used is a linear

frequency modulated (chirp) signal, that can be identified with

high accuracy by matched filtering at the sensors even at low

SNR. Self localization is modeled as a non-linear optimization

problem where node locations are the optimization variable

and distance equations involving node locations are non-linear

objective functions. The localization algorithm is both iterative

and incremental. At each iteration a part of the sensor network

is selected, localized and evaluated. It is incremental because

at each iteration the part of sensor network selected will

grow around the previously localized nodes. This method is a

generalization of iterative localization algorithms where node

location is improved in each iteration.

The rest of the paper is organized as follows. Section II

summarizes related research in self localization. Section III

presents the novel acoustic ranging technique. Section IV

formulates the self localization problem. The main algorithm

is presented in section V while its implementation, results and

conclusions are provided in sections VI and VII.

II. RELATED RESEARCH

Self localization, due to its importance in sensor network

applications, has been an active research area for the past

few years. An early survey of some localization systems is

presented by Hightower and Boriello in [6]. Many of these

systems adopt a simple connectivity based approach, while

some of them further refine range estimates between node pairs
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by measuring the received radio signal strength. However, RSS

based ranging requires extensive calibration and still yields

inaccurate range estimates [7] resulting in coarse localization.

The GPS-less system by Bulushu [1] employs a grid of

reference nodes with overlapping regions. Unknown nodes

localize themselves to the centroid of their proximate reference

nodes. Localization accuracy is about one third of separation

distance between reference nodes. Doherty [3] formulated self

localization as a geometric constraint feasibility problem based

on node connectivity that was solved using convex optimiza-

tion. Additionally, rectangular bounds on node locations were

used for tighter geometric constraints.

Other techniques that provide much better range esti-

mates involve time-of-flight measurements, particularly when

acoustic and RF signals are combined [2], [5], [20], [21],

[22]. Acoustic signals, however, require an unobstructed line-

of-sight. In an urban environment echoes present a significant

problem, thus any localization algorithm has to consider multi-

path propagation.

Savvides [22] solves for unknown node position estimates

by setting up a global non-linear optimization problem and

solving it using iterative least-squares. The method requires

the known beacons to surround the unknown nodes, which the

author calls beacon-unknown node convexity. However, this

topology constraint is hard to satisfy in real world deployment

scenarios.

Savarese [20] follows a two phase localization algorithm:

start-up and refinement. The start-up phase utilizes hop-

TERRAIN algorithm which is similar to DV-hop [15]. The

refinement phase is an iterative algorithm that uses the location

estimates from start-up phase. [20] also introduces a crude

notion of confidence value, a metric for the quality of location

estimate.

There are few approaches, that deal with multi-path propa-

gation. One such approach for two dimensions is presented by

Moore [14]. It identifies echoes as geometric impossibilities.

The idea can be extended to three dimensions but under

low connectivity or high measurement noise conditions the

algorithm may be unable to localize a useful number of nodes

[14]. Another case where the geometric constraint based echo

identification may fail is when the distributions of nodes in

the three dimensions are different. In a typical sensor network

the X and Y distribution of nodes is much higher than that

in Z which affects the performance of the algorithm above.

Recently some work has been done in localization using

mobile beacons. Sichitiu [23] uses a mobile beacon that is

aware of its location using GPS. Priyantha [17] describes

mobile-assisted localization where mobile beacon movement

and node localization is interlaced.

The presented localization algorithm models the problem as

global non-linear optimization as in [22], however it goes one

step further to deal with echoes and non-convexity of anchor-

unknown node topology.

III. RANGING

The concept of acoustic ranging is based on measuring the

time-of-flight of the sound signal between the source (beacon)

and the acoustic sensor. The range estimate can be trivially

calculated from the time measurement. However, the speed of

sound is temperature dependent. This problem can be resolved

by a single temperature measurement at the base station. An

appealing characteristic of the proposed ranging algorithm is

that this is the only calibration that is needed. That is the

sensors do not need individual calibration at all.

A. Hardware

The acoustic ranging application targets the MICA2 motes

developed at UC Berkeley [8]. The mote is equipped with

a custom acoustic sensor board, which was developed at

Vanderbilt University for a shooter localization application

[24]. The heart of the sensor board is the low-power fixed

point ADSP-2189 digital signal processor running at 50 MHz.

The availability of the DSP enables the implementation of

sophisticated digital signal processing algorithms.

There are two independent analog input channels on the

board, furnished with low-cost electret microphones and 2-

stage amplifiers with software programmable gain (0-54 dB).

The analog channels are sampled by A/D converters at up to

100 kSPS with 12-bit resolution. The board also has an analog

output channel capable of driving a 250 mW external loud-

speaker. The board is connected to the mote by programmable

interrupt and acknowledgment lines and a standard I2C bus.

In the current implementation the mobile beacon is based

on a MICA2 mote and the same sensor board with an

active loudspeaker attached to its analog output channel. The

maximum output power is 105 dB measured 10 cm away from

the loudspeaker.

B. Ranging algorithm

In order to calculate the range from the time-of-flight of the

acoustic signal, the departure and arrival times of the signal

have to be identified and measured precisely. The beginning

of the transmission can be measured at the beacon, while the

time of arrival is measured at the receiving sensors. The range

calculation is performed on the receivers, thus the beacon has

to send the starting time to the receivers in a radio message.

Employing a sophisticated time synchronization mecha-

nism is essential to accurately measure the time-of-flight.

Our approach employs the message time-stamping primitives

introduced in [11]. The synchronization between the source

and the sensor nodes is implemented as follows.

The source queries its local time t0 and decides that it will

emit an acoustic signal at time tsend = t0 + δ. The source

sends the value tsend to all the sensors in a radio message.

Therefore, the value of δ is chosen such that it is greater

than the time required by the sensors to process the radio

message and to prepare for receiving. The sensors schedule

their acoustic board for sampling when the beacon starts the

transmission of the acoustic signal.



We assume that the skew of the local clocks is negligible

during the short time of the measurement, but we allow

arbitrary clock offsets. Since neither the source nor the sensors

have knowledge of a global time, the sensors need to convert

tsend included in the message from the local time of the source

to their own local times. This is achieved by timestamping the

radio message at transmission and at reception as well. The

timestamping of the radio message is done in the MAC layer

just before transmission and just after reception respectively.

Since the radio signal is traveling at the speed of light, the

difference between the transmit time instant and the receive

time instant is negligible, hence the transmit timestamp (given

by the local clock of the beacon) and the receive timestamps

(in the local time of the receivers) are assumed to represent

the same global time instance. Thus, a sensor can use the

difference of the transmit timestamp and its receive timestamp

to calculate the offset of its local clock from the local clock

of the beacon. This offset is added to the received tsend to

convert it to the local time of the receiver.
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Fig. 1. The emitted acoustic signal

The sensor node also has to measure the time of arrival of

the acoustic signal. The accurate detection of the signal is not

trivial in a noisy environment, as it is difficult to emit sharp

rising edges or pulses with general purpose loudspeakers. Ad-

ditionally, the signal has to be emitted with the highest power

available in order to maximize the range of the measurement.

These requirements are analogous to the problems of radar

signals, a well researched area [10], [18]. The problem arises

as the limited bandwidth of the analog output channel restricts

the emission of rising edges with arbitrarily steep slope. The

contradiction is resolved by long duration signals with short

duration correlation functions, so when the received signal

goes through an appropriate matched filter, the output will

be a sharp pulse. The emitted signal is therefore a Gaussian-

windowed linear frequency modulated (chirp) signal shown

in Fig.1, that is commonly used in radar applications. The

windowing is needed due to the limited bandwidth of the

acoustic channel.

A similar solution is presented in [5], where the emitted

signal is a binary phase shift keying (BPSK) spread spectrum

signal. Since our method does not require to distinguish

multiple sources, the use of linear frequency modulated signal

is more natural.

The frequency span of this signal is spread in the whole

acoustic band of the analog channels. The matched filter is

realized as an FIR filter on the DSP. The matched filtering

essentially means the correlation of the expected signature

with the measured data, therefore the length of the FIR

filter is the same as the length of the expected signature. To

avoid a high order FIR filter which would be computationally

expensive, either the length of the chirp signal or the sampling

rate has to be decreased. However, as the length of the chirp

signal can not be arbitrarily short due to the limited bandwidth

of the physical hardware, the sample rate has to be decreased.

Thus, the raw data is decimated to a lower sampling frequency

before the matched filtering.

In order to increase the signal-to-noise ratio (SNR), one

range measurement consists of a series of time-of-arrival mea-

surements. As the delays between the consecutive chirps are

known a-priori, an accurate combined result can be calculated

by averaging these measurements. In the averaged signal the

chirp signature component is preserved as it is added up at the

same phase, but the noise which is assumed to be independent

Gaussian white noise is decreased by
√

N where N is the

number of chirps added. Currently we use 8 chirps, thus the

SNR of the averaged signal is 9 dB higher than the SNR of a

single chirp.

Delays between consecutive chirps are varied to avoid a

situation when multiple runs have the same noise pattern at

the same offset, which is a common phenomenon caused by

acoustic multipath effects. Hence the independent nature of

the disturbances is preserved.

The decimation filtering runs online on the DSP, and the

decimated signal is stored in a RAM buffer. The consecutive

measurements are added together in the same buffer. After all

the chirps are received, the matched filtering and the peak-

detection algorithm is performed offline. The peak-detection

algorithm is simply a maximum finder above a threshold level,

as the output of the matched filter has distinctive peaks at

chirps. The time of arrival of the chirp signal can easily be

identified based on the location of the peak.

C. Results

The above algorithm was tested on a grassy field with a

single beacon and multiple receivers. In Fig. 2 the ranging

results are presented, and in Fig. 3 the standard deviation

of the measurements is shown, after outlier rejection. Outlier
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Fig. 3. Standard deviation of ranging

rejection is done by a simple median filter, where the values

greatly differing from the median of the measurements are

rejected. Note that since it is statistical filtering, multiple

measurements are needed for each beacon position to perform

the rejection algorithm.

The effective range of the presented implementation is 30

meters, as the number of outliers and the standard deviation



(a) (b)

Fig. 2. Ranging measurement results (a) without outlier rejection, (b) with outlier rejection

of the measurements are getting significantly high above

this value. Below 30 meters the standard deviation grows

approximately linearly with

STD ∼= k1d + k2 (1)

where k1 = 0.011 and k2 = 0.024 and d denotes the actual

distance.

The effective range of the measurements are more than two

times larger than in previous acoustic ranging experiments

[19], [9], where the reliable range was 10 m on asphalt

and 15 m on grass, respectively. The standard deviation is

also significantly improved. In [19], the output power of the

sounder was limited (88 dB at 10 cm from source) and the no

custom DSP board was used. In [9] the power of the beacon is

approximately the same as in the presented solution (105 dB

at 10 cm from source), however our use of the DSP board

and the linear frequency modulated signal provides better

performance.

These experimental results are very promising and justify

the presented approach. Moreover, the current limits on range

and precision are primarily caused by issues with the current

implementation. First, the power of the emitted acoustic signal

is still constrained by the gain on the output channel of the

board. Second, the analog input channels of the DSP board

also limit the range, as they were designed for a shooter

detection application [24], where even the maximum gain is

relatively low.

IV. SELF LOCALIZATION

Formally, a generalized self localization problem can be

defined as follows. Given node IDs and their ranges from

each other conjecture the relative physical location of each

node in the network. A few anchor nodes can be provided to

transform relative positions to absolute locations. There are

many challenges to be addressed in this problem. First let us

define some terminology.

DISTANCE MATRIX D is a matrix such that dij is

the range measurement between node i and node

j. Distance is negative for node pairs for which

range measurement is not known. Number of positive

entries in row i represents the number of neighbors

of node i.

NECESSARY CONDITION FOR LOCALIZATION in 3-

dimensions states that a node should have distance

measurements with at least four non-coplanar neigh-

bor nodes.

In a typical urban environment many sensor nodes might

not have line-of-sight with mobile beacon positions, but they

can receive the acoustic signal via multipath. These multipath

ranges or echoes, when used for localization, produce false

or infeasible results. The amount of echoes present in range

measurements heavily depends on the environment and the

maximum range of the applied ranging method. In typical ur-

ban environments, low network connectivity and non-uniform

node distribution in the Z-direction further deteriorate the

localization accuracy, that is even more critical at boundary

nodes.

A. Self Localization As Distance Optimization

The self localization problem in its most basic form can be

modeled as a distance optimization problem. Here the inde-

pendent optimization variables are node locations and the non-

linear objective functions are the differences between distances

computed from node locations and range measurements for all

node pairs for which range measurements exist (Equation 2).

It can be observed that the distance optimization is actually

a function-fitting problem where distances are the non-linear

functions of node locations. Least square optimization is

known to work best for function-fitting problems [16]. The

mathematical formulation of distance optimization problem is

presented below.

Find x
∗, a global minimizer for

F (x) =
1

2

N
∑

i=1

N,d̂ij≥0
∑

j=1

(

dij − d̂ij

)2

(2)

where dij = {(xi − xj)
2

+ (yi − yj)
2

+ (zi − zj)
2
}1/2 is

the computed distance between nodes i and j, and d̂ij is

the measured distance. x = [x1y1z1 . . . xnynzn]
T
is the

optimization variable where [xiyizi] is the 3D coordinate

of node i. The non-linear objective function F (x) is the



square sum of distance errors for all pairs (i, j) for which
range measurements exist (d̂ij ≥ 0). The components of the
optimization variable x are subjected to the boundary value

constraints.

xmin ≤ xi ≤ xmax

ymin ≤ yi ≤ ymax (3)

zmin ≤ zi ≤ zmax

V. SELF LOCALIZATION ALGORITHM

An obvious and straightforward algorithm would be to solve

for all unknown node locations simultaneously (Algorithm 1).

Algorithm 1 Self localization algorithm

1: Consider 3D coordinates of all unknown

nodes in optimization variable.

2: Construct and solve non-linear

least-square optimization problem with

objective function in eqn. (2).

This approach has some serious disadvantages. Convergence

of the optimization problem strongly depends upon the initial

guess given to the solver. A close-to-optimum initial guess

would converge to global optimum relatively fast, while a

bad initial guess for the same problem might lead to a local

optimum. Initial estimates for node locations can be computed

by using an extension of the bounding box technique described

in [22]. But due to the large size of the sensor network and

relatively few randomly distributed anchor nodes, it is possible

that we do not have good initial estimates for the whole

network, but only for the part close to the anchors.

An iterative incremental approach wherein a part of the

network near anchor nodes is localized first and then the node

locations are propagated further seems suitable. The idea is

to iteratively select and localize a part of the network (a sub-

system) for which a good initial estimate is available. At each

iteration the part of the network selected for localization will

grow, consisting of nodes that are already localized and few

unknown neighboring nodes that have better estimates in the

current iteration. In each iteration ranges that are believed

to be echoes are identified and removed from computation.

The algorithm is presented below (Algorithm 2). Symbol x

represents the 3D location vector of nodes, x
est and x

sol

denote estimated and localized node location vectors respec-

tively. N denotes the set of nodes in the network and η denotes

the confidence value for the localization (an estimate of the

accuracy of the current location described in section V-C).

There are two levels of looping in the algorithm. The outer

loop starts with an estimate, x
est for the whole network.

The first run of the outer loop starts with a random (or

user given) estimate. Each run afterwards starts with the final

estimate of the previous run. The inner loop corresponds to the

incremental selection and localization of a sub-system Ñ , that

we will call an iteration. At each iteration, the selected sub-

system will increase in size, more nodes will be localized with

Algorithm 2 Incremental iterative self localization algorithm

1: x
est ← 0, x

sol ← 0

2: for run = 1 to runmax do

3: Configure parameters, read distance

matrix D, set sub-system Ñ ← ∅
4: repeat

5: Ñold ← Ñ

6: Estimate bounding-box Bi ∀i ∈ N

7: Choose xest

i ← x ∈ Bi ∀i ∈ N − Ñold

based on neighbor polling

8: Select Ñ ⊆ N such that xest

i

satisfies goodness ∀i ∈ Ñ

9: Optimize x for sub-system Ñ

10: x
est ← x

11: for all i ∈ Ñ do

12: Compute ηi

13: Ñsol ← ∅
14: if ηi acceptable then

15: x
sol

i
← xi

16: Ñsol ← Ñsol ∪ {i}
17: end if

18: end for

19: until Ñsol − Ñold = ∅
20: end for

21: Output x
sol

higher accuracy until there are no more nodes to be localized

or no more nodes can be localized (i.e. the necessary condition

for localization does not hold). Later sections describe each

step of the algorithm in detail.

A. Sub-System Selection

Each node is represented by a bounded-box with lower and

upper bounds (xlb,xub). The node coordinates can take any

value in the closed interval [xlb xub]. Since anchor nodes are
known with high accuracy, their bounding-box is very small.

Initially, the bounding-boxes for all unknown nodes can be

set to the size of the field and can be updated using range

measurements d̂ij between node i and its neighbors j.

xlb,i = min
j

{(xlb,j − d̂ij),xlb,i} (4)

xub,i = min
j

{(xub,j + d̂ij),xub,i} (5)

The order in which bounding-box update should be done is

also important. Considering the sensor network as a graph it

turns out that a variant of the topological sort (Algorithm 3)

will provide the required node ordering.

For node i that already has an estimate x
est

i and confidence

value ηi, the bounds are reset as follows. Confidence values

for node location estimates are computed in the sub-system

evaluation section and described later.

xlb,i = max{(xest

i − ηi),xlb,i} (6)

xub,i = min{(xest

i + ηi),xub,i} (7)



Algorithm 3 Topological sort

1: Set known neighbor index, κ = ∞ for

anchors and κ = 0 for all other

vertices

2: while Graph not empty do

3: Find a vertex u with highest κ[u]
4: Output u

5: Delete all edges e = (u, v) of u,

increment κ[v] by 1
6: Delete u from graph

7: end while

For all other nodes a location estimate is picked from the

bounding-box. The most obvious way would be to pick the

center of the box, but a heuristic method involving bounding-

box partitioning is used instead. The bounding-box of a node,

if larger than some critical size, is partitioned into smaller

boxes and neighbors are polled for the partition in which the

node is most likely to be present. The center of the winning

partition is assumed to be the estimated location for that node.

A polling index Cp is computed for each partition p, which is

essentially a weighted sum of distance errors for all neighbors

j of node i.

Cp =
∑

j∈Neigh(i)

∣

∣

∣

∥

∥xp − x
est

j

∥

∥ − d̂ij

∣

∣

∣
· ηj (8)

where xp is the center point of partition p. The center point

of the partition with minimum polling index is chosen as the

estimated location for that node.

A part of the network is selected based the following

notion of goodness of estimated node locations. An estimated

location for node i is considered good if the node has at least

three neighbors and its bounding-box satisfies two properties.

First, its volume Vi is smaller than some critical volume V

and second, its aspect ratio αi is greater than some critical

ᾱadaptive. Aspect ratio αi is a measure of cubeness of the

bounding-box. αi is expressed in terms of bounding-box

volume Vi, space diagonal di and surface area Ai,

αi =
6
√

3 · Vi

Ai · di
(9)

Notice that for a node with a small bounding-box an

estimate is acceptable even if it has a smaller aspect ratio.

For this reason the critical aspect ratio is made adaptive,

quadratically depending on the bounding-box volume.

B. Sub-System Localization

The distance optimization problem for the selected sub-

system is solved in multiple stages. At each stage the solution

is moved closer to the optimum. First, let us define an operator

min and two optimization problem formulations.

Operator min:

DEFINITION 1. Let fi be a list of N function

evaluations (or numbers), then minp fi is the list of

⌈pN⌉-many smallest function evaluations (or num-
bers) where ⌈ ⌉ is ceiling operator and 0 ≤ p ≤ 1.
DEFINITION 2. Let

∑N
i fi be a series sum of N

function evaluations (or numbers), then
∑N

i minp fi

is the series sum of ⌈pN⌉-many smallest function
evaluations where ⌈ ⌉ is ceiling operator and 0 ≤
p ≤ 1.

1) Pruned Distance Optimization Problem.: As mentioned

in section IV we have non-Gaussian error as echoes in range

measurements. In least-square optimization terminology, these

echo ranges are outliers that tend to shift the least-square

model from the actual model. It is desirable not to consider

these outliers in optimization. The outlier rejection in section

III-C is statistical and requires multiple ranging measurements.

The outlier rejection in this section identifies and removes

consistent echoes.

Find x
∗, a global minimizer for

F (x) =
1

2

N
∑

i=1

N,d̂ij≥0
∑

j=1

min
p

(

dij − d̂ij

)2

(10)

where d̂ij and dij are the range measurement and distance

computed from localized nodes i and j respectively and

optimization variable x = [x1y1z1 . . . xnynzn]
T
.

If the optimizer x is close to global optimizer x
∗ then all

function evaluations but those corresponding to echoes will be

close to zero. We can say that near the global optimizer large

function evaluations correspond to echoes. Least-square opti-

mization works best if the errors have Gaussian distribution.

When we discard the top few function evaluations using the

min operator, we are discarding the most significant outliers in

the distribution and hence obtaining an approximate Gaussian

distribution.

2) Distance Penalty Optimization Problem.: The optimiza-

tion solver used in this work are for unconstrained opti-

mization. The bounded-value constraints on the optimization

variables are incorporated by modeling them as penalty func-

tions in the objective function. Penalty functions incorporate

a penalty value if variables go out of bound.

The most intuitive form of a penalty function is a rectan-

gular penalty wherein a constant high penalty is incorporated

if the variable goes out of bounds. For optimization purposes

rectangular penalty does not provide motivation (descent di-

rection) for the variable to fall within bounds. Another forms

of penalty functions are linear or quadratic growing linearly

or quadratically with the offset from the bounds. Logarithmic

penalty functions are most suitable for bounded-value con-

straints because of their sudden descent near boundary values.

Find x
∗, a global minimizer for

F (x) =
1

2

N
∑

i=1

{κ · ln(1 + ∆xoff,i)}
2

(11)

where κ is penalty constant and ∆xoff,i is the offset from



feasible boundary,

∆xoff,i =







|xi − xmin| if xi < xmin

0 if xmin ≤ xi ≤ xmax

|xi − xmax| if xi > xmax

(12)

and optimization variable x = [x1y1z1 . . . xnynzn]
T
.

3) Composition Of Least-Square Optimization Problems.:

Two or more least-square optimization problems can be

composed as follows. Consider two least-square optimization

problems P1 and P2 on optimization variable x and objec-

tive functions
∑N

i fi(x) and
∑M

j gj(x), then the combined
least-square optimization problem P on variable x have the

objection function

FP (x) =
N

∑

i

fi(x) +
M
∑

j

gj(x) (13)

Now we describe the stages of optimization. We solve

problem V-B.1 or the combination of problems V-B.1 and V-

B.2 at each stage. The solution from the previous stage is used

as a starting point for the current stage. At the end of each

stage some range measurements that are believed to have non-

Gaussian errors (echoes) are identified and removed from the

distance matrix.

• STAGE I. At this stage echo ranges are identified and dis-

carded based on the evaluation of the objective function

in Equation 10 at the current optimizer x
est.

• STAGE II. At this stage the optimization problem V-B.1

is optimized in a fixed number of iterations. The solver

is stopped even if the optimizer has not converged. Lets

visualize this stage as a 3D earth terrain optimization

problem where x and y directions are optimization vari-

ables and altitude from sea-level, i.e. z, is the optimiza-

tion function. The global optimization in this problem

is looking for the deepest trench on earth. Optimizing

for fixed number of iterations can be visualized as going

downwards a local trench but not going all the way down

because that may take unbounded time.

• STAGE III. At the previous stage we did not consider

bounded-value constraints on the optimization variable.

The variable might go out of the feasible region as guided

by the objective function. In this stage the combination of

the optimization problems V-B.1 and V-B.2 are optimized

in a fixed number of iterations. The objective function in

Equation 11 ensures that the variable will fall within the

feasible region. The reason for having stage II separate

from stage III is that sometimes the path to the global

optimizer goes through a region that might not be part of

the feasible region.

• STAGE IV. This final stage is similar to stage III except

parameter p in Equation 10 is set to 1.0, i.e. no pruning
of the distance matrix is done. It is expected that by the

end of stage III we would have discarded most significant

echo measurements.

C. Sub-System Evaluation

The quality of computed locations produced by the solver is

evaluated using a measure called confidence value. Confidence

value is an indicator of uncertainty in node location around the

current location estimate.

The algorithm to compute the confidence value is following.

Compute the ranges between node locations and the deviation

of these computed ranges from measured ranges. Now for each

node i we have a deviation vector ∆i whose elements are

the deviations of computed ranges from measured ranges for

all its neighbors. A large value in ∆i indicate that either (1)

the node location is incorrect or (2) the corresponding range

measurement is incorrect. If the node location is incorrect

then most of the elements of ∆i should be large. If only a

few range measurements are incorrect then the mean and the

variance of∆i should be small except for those incorrect range

measurements. Practically, all node locations are categorized

based on mean µi and standard deviation σi in ∆i. Confidence

value ηi is equal to |µi| + σi.

1) If both µi and σi are close to zero then the node location

is correct.

2) If µi is close to zero but σi is large then either the

range deviations are spread around zero or few large

deviations caused σi to be large. We say that the node

location may be affected by echo. In this case we strike

out a few large deviations and re-categorize the location

based on a recomputed mean and standard deviation.

3) If |µi| is large but σi is small then all elements of ∆i

are large i.e. the node location is definitely incorrect.

4) If both |µi| and σi are large then again location might

be affected by echo and we follow the same procedure

as in case 2 above.

5) If |µi| and σi are neither large nor small then location

correctness is undecided. We follow the same procedure

here as in cases 2 and 4.

Node locations categorized as incorrect or potentially echo-

affected are considered not localized.

VI. IMPLEMENTATION AND RESULTS

We have implemented the proposed localization algorithm

in MATLAB and ran it on simulated sensor network topologies

and ranging data. The Levenberg-Marquardt solver was used

for optimization.

A topology of 50 sensor node locations was generated

randomly in a 100 × 100 × 20 m field with at least half of

the nodes on ground level. 80 sound sources were generated
on random paths such that the separation between successive

sound sources was bounded (0−8 m). Also, the Z variation of

the sources was limited to 2 m to simulate a mobile beacon,

which is moving on the ground in the sensor field. Ranging

data was generated with 30 m maximum range. Gaussian

noise with zero mean and range dependent standard deviation

(Equation 1 in section III) was added to the ranging data.

This matches the results from our ranging experiments. Echoes

were also introduced to ranging data based on our previous
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Fig. 4. Comparison of computed node locations to their true values in (a) XY and (b) XZ plane for ranging data w/ echoes. ‘ +′
s without a ‘◦′ indicate

unlocalized nodes.

ranging measurements in urban environments. Approximately

1000 range estimates were gathered using the 80 beacon

positions. 10% of these had added non Gaussian error (echo).

Five sensor nodes were assumed to be known anchor locations.

Two different ranging data sets, one with echoes and another

one without echoes, were generated for the topology.

In the presence of ground truth, the performance of the

algorithm can be evaluated by the localization error which

is the difference between computed locations and the ground

truth. Localization error for node i is,

σ2
p,i = (xi − x̃i)

2 + (yi − ỹi)
2 + (zi − z̃i)

2 (14)

where xi, yi and zi are the computed coordinates of node i,

and x̃i, ỹi and z̃i are the true location coordinates of the same

node.

Figure 4 compares the computed node locations to their true

values in XY and XZ views for ranging data with echoes.

Solid lines show the paths of the mobile beacon. Solid arrows

in Figure 4(a) indicate the sensor nodes that has the highest

localization errors. Notice that all such motes are very far from

their nearest sound source.

Figures 5(a) and 5(b) show the histograms of localization

error with and without simulated echoes. Table I summarizes

the localization results.

Ranges w/o
echoes

Ranges w/
echoes

Unlocalized sensors 7 9
Mean error [m] 0.8962 1.0664
Max error [m] 4.3252 4.5119

TABLE I

LOCALIZATION RESULTS

Notice that the distribution of localization error is very steep

in case (a) while its more flat in case (b). More nodes were

localized with better accuracy when we did not have echoes

in ranging data as expected.

From Figure 5 we can see that the computed locations of

sound sources are more accurate than that for sensor nodes.

This high accuracy can be attributed to the topological fact

that sensor nodes are uniformly distributed around the sound

sources. For node localization application we are actually not

concerned about the computed beacon locations. However, it

is an important observation that if we distribute the sound

sources uniformly around sensor nodes, then we can get higher

localization accuracy for the sensors.

VII. CONCLUSIONS

The presented sensor node localization technique has several

contributions. The method is passive since only the mobile

beacon needs to emit acoustic signals. This saves energy, size

and cost on the sensor nodes and provides stealthy operation.

Furthermore, the mobile beacon can emit much higher-energy

sound than the sensor nodes thereby increasing the effective

range. To the best of our knowledge our acoustic ranging

method has the longest range even when normalized by the

emitted sound energy. This is due to the signal processing

algorithms implemented on the sensor board.

The iterative and incremental non-linear optimization tech-

nique provides an effective way to deal with acoustic multipath

effects and works well for 3D localization. There is little work

in the wireless sensor network literature that addresses these

problems.

We put special emphasis on making our experi-

ments/simulation as realistic as possible. Our setup strongly

resemble a feasible real world deployment. Node density was

relatively low. The technique needed to deal with both echoes

and 3D locations. There were a relatively low number of

beacon positions. Beacon positions varied very little in the

Z dimension. We had only a few anchor nodes. Therefore, we

believe that the results are realistic.

Approximately half of the nodes were localized with sub-

meter accuracy. That is very good when compared to the

current state-of-the-art, but unfortunately still not good enough

for such location-critical applications as shooter localization.

However, many other application domains have much less

strict requirements. Finally, to put the results into perspective,
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Fig. 5. Histograms of localization error for all sensor nodes and sound sources without (a) and with (b) echoes in ranging data.

(non-differential) GPS-based localization would have much

less accuracy than these results.
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