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Measurement

How important is measurement? Consider this: Every-
thing you buy in a grocery store is measured. A
pound of cherries, a gallon of milk, and a dozen eggs.

Just as eggs are measured by counting them, the cashier will
measure the money you hand him by counting it. Everything
is measured in this transaction.

Besides commerce, which is impossible without mea-
surement, we need measurement for numerous everyday
tasks. We measure our speed to avoid tickets (and acci-
dents), and we measure the gasoline in the fuel tank so we
don’t run out. Cooking without measurement usually does-
n’t work out very well. Carpentry is another example: Mea-
sure twice and cut once. Clocks for measuring time are
everywhere.

Engineering and science rely on measurement to an even
greater extent. Without measurement, engineering would be
impossible, and science would be philosophy. But, as al-
chemy shows, measurement alone doesn’t make good sci-
ence or engineering.

To make measurements, we need to recognize dimen-
sions. There are really only four physical dimensions, namely,
length, mass, time, and charge. We could argue that apples
are different from bananas and introduce dimensions such
as “pound of apples” or “pound of bananas.” Although this
distinction is useful if you’re eating dinner, it isn’t relevant to
dynamics where inertia is more important than chemical
composition.

In addition to dimensions, we need units. For length we
can choose inches, centimeters, miles, or some other unit.
Without units, measurement is meaningless, and no one, in-
cluding ourselves, will know what we’re talking about. Units
are usually set by agreement so that two people who have
never met can exchange measurement data. Although there
are many shoe sizes, there is only one foot.

A measurement is information about a physical quantity,
and to make measurements you need a sensor. A ruler is a
good example. By merely placing the ruler next to an object,
you can measure its length. Using your eye, you “read” the
ruler, and the measurement is transmitted into your brain,
where it is stored for as long as you can remember it or as long
as it takes to record it on a piece of paper or in a computer.

The role of a sensor is to facilitate the transfer of infor-
mation about a physical quantity into a display, computer
register, or onto a piece of paper where it can be accessed.

Data acquisition is the process of collecting and storing
measurements.

But measurement is never perfect. The ruler may be
slightly bent, the object may have a rough edge, the ruler
might slip, or the object’s edge might fall between two ruler
markings. These and other problems can contribute to mea-
surement errors.

A more subtle problem with measurement is that the in-
formation the sensor conveys about a physical quantity re-
quires a transfer of energy. This is not a problem in
measuring length by a ruler. In that case, you merely shine
light on the object, which heats it slightly and changes its
length by an inconsequential amount. When measuring the
flow rate of a gas or liquid, your sensor may disrupt the flow
and thereby obtain an erroneous reading with respect to the
undisturbed flow.

In control system engineering, sensors play a critical role
by providing measurements for feedback. The control sys-
tem engineer must determine which quantities must be
measured and how well they must be measured to achieve
desired control system performance. In the following sec-
tions I explain sensor specifications, which quantify the abil-
ity of a sensor to provide measurements of physical
variables. Sensor manufacturers typically provide informa-
tion about sensor specifications in the form of a “spec
sheet.” The concepts described here will help you interpret
the information on a spec sheet.

The concepts discussed below apply to all branches of
science and engineering, not just control systems. However,
the systems approach of control engineers provides a
unique perspective on these topics and associated issues.

Measured Variables
Before delving into sensor specifications, it is useful to keep
in mind the types of quantities that may be measured as well
as the physics that sensors exploit to obtain measurements.
Perhaps the most common measurement objective involves
length, as in the ruler example. Depending on the application
or context, length can be viewed as displacement, position,
strain, or gap. Area and volume are extensions of length. All of
these are time-independent translational notions in which
rate plays no role. When the rate of change of displacement is
of interest, we are concerned with time-dependent transla-
tion, which includes velocity and acceleration. Translational
motion may be either relative (between stationary or moving
points) or inertial (relative to the fixed stars).
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Many applications require measurement of angle, which is
a nondimensional quantity involving the ratio of arc length to
radius. An angle measurement can be viewed as a displace-
ment, position, attitude, orientation, or gap, which concern
time-independent rotation. Time-dependent rotation in-
cludes angular velocity and angular acceleration, which may
be relative to specified bodies or an inertial frame.

Force and pressure (force per unit area) are commonly
measured in many applications. Thermal properties (such
as temperature) are important, as are mass and volume flow
properties. Electrical properties such as charge, potential,
current, resistance, capacitance, and inductance are obvi-
ously important, as are magnetic properties. Electromag-
netic waves at optical or other frequencies are also relevant.
Finally, chemical and molecular properties such as concen-
tration require measurement.

Sensor Physics
Engineers and scientists have used amazing ingenuity to de-
velop a vast array of sensors. These sensors exploit the laws
of physics and exotic materials to measure physical vari-
ables. Since no sensor is ideal for all applications, many dif-
ferent sensors have been developed to measure the same
physical variable. The selection of an appropriate sensor
depends on cost, weight, power requirements, the need for
tethering (for power and signal transmission), contacting or
mounting requirements, environmental conditions (me-
dium, temperature, electromagnetic fields, shock, and vi-
bration), as well as performance issues.

The following are some of the physics exploited by sensors:
• Resistive: a voltage potential produces current

(Ohm’s law);
• Inductive: an inductance changes due to the position

or velocity of a conducting target (Faraday’s and
Lenz’s laws);

• Capacitive: a capacitance changes due to a conduct-
ing or insulating target;

• Piezoelectric: a strain produces a charge (PZT: zirco-
nium titanate, PVDF: polyvinylidene fluoride);

• Hall effect: a magnetic field induces a potential;
• Thermoelectric: a thermal gradient induces a poten-

tial (Seebeck effect);
• Optical: a variety of techniques exploit intensity, inter-

ferometry, Doppler, triangulation, holography, modu-
lation, and reflection;

• Ultrasonic: a reflected acoustic wave provides an image.
These physical phenomena are used in various ways to

measure physical quantities. For example, translational po-
sition can be measured by various devices:

• Linear or rotary potentiometer
• Ultrasonic time of flight;
• Linear encoder tape
• Strain gauge (resistive, piezoelectric);

• Inductive (LVDT: linear variable displacement trans-
ducer);

• Capacitive (gap);
• Hall effect (gap);
• Optical (optical fiber reflection intensity, interferome-

try, holography, imaging);
• Radio frequency (time of flight, GPS).
Translational velocity is more difficult to measure. Some

devices are:
• Linear velocity transducer (inductive);
• Laser scanning vibrometer (Doppler).
Translational acceleration is measured using an acceler-

ometer, which measures inertial acceleration, including
gravitational acceleration. Mechanical accelerometers are
based on the equation

( )m q q kq&& &&
base rel rel+ + =0,

where qrel is the relative displacement between a mass m
mounted on a stiffness k relative to a base moving with dis-
placement qbase. This sensor provides an approximate mea-
sure of base acceleration given by

&& ( / )q k m qbase rel≈− ,

which is valid for low-frequency acceleration. A more so-
phisticated approach is based on the force rebalanced or
servo accelerometer, which applies a force u to the system

mq kq f u&&+ = +

to makeq =0. Quartz and piezo accelerometers measure the
charge induced by a strain but otherwise involve no moving
parts. Since charge is induced by changes in acceleration
only, this is an example of a non-dc response sensor, a con-
cept discussed below. Piezoresistive and variable-capaci-
tance accelerometers are accelerometer realizations having
dc response.

Rotational displacement is measured by a variety of de-
vices. Terrestrial attitude can be determined by means of a
magnetometer, which senses the direction of the earth’s
magnetic field. This device uses three sensors to determine
two of the three angles that characterize attitude. The third
angle can be determined by using three dc accelerometers
to determine the direction of the earth’s gravity vector. In
this case, each accelerometer serves as an inclinometer or
tilt sensor.

Relative attitude and angles can be measured by a variety
of techniques, including:

• Variable potentiometer (restricted rotation);
• Encoder (incremental or absolute, unrestricted ro-

tation);
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• Resolver (sine and cosine signals, unrestricted ro-
tation);

• RVDT (rotational variable displacement transducer,
inductive, restricted rotation);

• RCDT (rotational capacitive displacement transducer,
capacitive, restricted rotation);

• Hall-effect angle sensor (restricted rotation).
A limitation of some of these sensors is the restriction to

less than full rotation.
Angular velocity is measured by means of a gyro. A me-

chanical rate gyro measures inertial angular velocity and is
based on a spinning rotor or vibrating crystal, which ex-
ploits the Coriolis effect as well as the fundamental law
“torque equals change in angular momentum.” An optical
ring laser rate gyro uses a fiber-optic cable and measures
the differential time of travel, which is the Sagnac effect. An-
gular acceleration can be measured by using a pair of
translational accelerometers or a device based on the fact
that torque is proportional to angular acceleration.

Force and torque can be measured indirectly by a load
cell, which measures the strain due to force and torque.
Pressure and stress are measured by a manometer, a micro-
phone, and various other devices. Flow rate can be mea-
sured by a hot-wire anemometer, which is based on
thermoresistive effects.

Connecting Systems and Sensors
Ideally, the connection between a sensor and a system is a
perfect cascade, wherein the sensor does not affect the mea-
sured system. As discussed above, however, a sensor can
disrupt or alter the physical variable it is being used to mea-
sure. To demonstrate how this occurs, let us consider a cir-
cuit configuration in which information is transferred in the
form of a voltage. Analogous principles apply to noncircuit
interconnections.

Consider two impedances as in Fig. 1. The load imped-
ance ZL represents the sensor and the source impedance Z S

represents the system to which the sensor is connected.

The source voltage VS is the sensor input, and the load
voltage VL is the output measurement. Consequently, the
voltage drop across the load is

V
Z

Z Z
VL

L

S L
S=

+
.

Clearly, the output measurementVL is not generally equal
to the sensor input VS. However, it can be seen that V VL S= if
and only if Z S =0 or ZL =∞, which correspond to the ideal
cases of zero output impedance and infinite input imped-
ance, respectively. In practice, however, nonideal output or
input impedances affect the measured voltage input VL so
that V VL S≠ .

Redrawing Fig. 1 as Fig. 2, it can be seen that nonideal im-
pedances give rise to a feedback interconnection rather
than a cascade interconnection. Since true cascade does not
occur in practice, sensor/system interconnections must be
modeled as feedback when this effect is significant.

Static and Dynamic Sensor Response
A sensor is truly a dynamic system, and thus a good under-
standing of sensor performance requires that we under-
stand its dynamic response. The dynamics of a sensor are
relevant when the sensor input is a time-dependent signal.
On the other hand, many applications involve sensor inputs
that are constant over long time periods, in which case the
dynamics of the sensor are less critical and static sensor
performance is of interest.

The dynamic structure of a sensor can have almost any
form, the most general being

& ( , )

( , ),

q f q x

V g q x

=
=

where q is the internal sensor state (possibly a vector), x is
the physical input to the sensor, andV is the sensor output,
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Figure 1. The source impedance represents the system with
output voltageVS, whereas the load impedance represents the sensor
with measurement VL .
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Figure 2. A nonideal input or output impedance gives rise to a
feedback loop involving the system and sensor.
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usually in volts. The feedback effects
due to nonideal impedances (or their
analogue for the particular application)
are assumed to be included in this
model.

A more structured, but less general,
sensor model can be constructed by in-
terconnecting static nonlinear blocks
and dynamic linear blocks. The
Hammerstein-Wiener nonlinear feed-
back model shown in Fig. 3 involves a
linear dynamic block surrounded by
three static nonlinear blocks.

The dc (static) response of a sensor can be determined
by assuming that the sensor input is constant and by ignor-
ing the sensor dynamics. The resulting static response map
characterizes the output of the sensor after all transients
have settled and the output has converged to a steady-state
response. A dc sensor is one that responds to constant in-
puts, whereas a non-dc sensor is unable to distinguish con-
stant inputs. A non-dc sensor with linear dynamics has a
zero at the origin so that its frequency response rolls off at
dc, whereas the frequency response of a dc sensor does not.
At high frequencies, the sensor frequency response will roll
off, which limits the ability of the sensor to respond to
high-frequency sensor inputs.

As an example, a piezo accelerometer can sense changing
acceleration but is not able to sense constant acceleration.
Similarly, some gyros are unable to measure constant angular
velocity. On the other hand, there are dc accelerometers that
can measure constant acceleration and dc gyros that can
measure constant angular rates. In choosing a sensor, it is im-
portant to determine whether it is dc or non-dc in accordance
with your application requirements. The same distinction ap-
plies to the choice of signal and power amplifiers.

It is important to keep in mind that the ability of a sensor
to respond to changing inputs does not change the type of
sensor that it is. For example, the speedometer in your car
can respond to changing speeds, but that does not make it an
accelerometer, although it may be possible to infer accelera-
tion information from the velocity measurements.

Henceforth we consider only dc sensors, and we are con-
cerned with their static performance; that is, their
steady-state response to constant inputs.

Static Response Curve
The steady-state response of a dc sensor to constant inputs is
characterized by its static response curve. For convenience,
we assume that the sensor outputV is given in volts, whereas
the sensor input x can have arbitrary physical dimensions.

The static response curve may be linear or affine (pro-
nounced uh-finé) or nonaffine (not necessarily affine). A lin-
ear static response curve is a line segment with the property
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Figure 3. This block-structured Hammerstein-Wiener nonlinear feedback dynamic sensor
model involves a linear dynamic block surrounded by three static nonlinear blocks.
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that if the input is zero, the sensor output is also zero. In
practice, this situation rarely occurs since zero values are
usually arbitrary, and it is more common to encounter an af-
fine static response curve, which is a line segment with a
zero-input voltage offset. More generally, a nonaffine static
response curve need not be a line segment. These static re-
sponse curves are illustrated in Fig. 4.

In our discussion of the static response curve, we are
mainly interested in dc sensors. Since a non-dc sensor is un-
able to distinguish constant inputs, its static response curve
is merely a horizontal line.

A static response curve is valid for a range of sensor in-
puts. This is the sensor input range given by[ , ]x xmin max . Over
this range of inputs, the sensor output range is denoted by
[ , ]V Vmin max .

A static response curve is one-to-one if each sensor out-
put is produced by exactly one sensor input. A quadratic or
V-shaped static response curve is not one-to-one. To elimi-
nate the ambiguity in determining the sensor input for a
given sensor output, it is necessary to restrict the sensor in-
put range so that the static sensor curve is one-to-one over
the restricted range. This technique is used for some optical
position sensors. In the remainder of this article we assume
that the static response curve is one-to-one.

Quality of the Static Response Curve
The static response curve can be used to determine the sen-
sor input once the sensor output has been measured. In real-
ity, the static response curve is a theoretical idealization,
and the true situation is more complex. We can identify
three factors that undermine our ability to determine and
work with the static response curve. These factors are drift,
noise, and hysteresis.

Drift is the change in the static response curve over time.
This change may be due to short-term environmental condi-
tions, such as temperature change or humidity, or it may be
due to long-term effects, such as aging, wear, fatigue, or oxi-
dation. The most common type of drift is an output bias drift
wherein the static response curve shifts by a constant volt-
age across the input range (see Fig. 5).

The usefulness of the static response curve is also under-
mined by the presence of noise that is superimposed on the
measurement. Noise can arise from external disturbances act-
ing on the system, or it may be inherent in the electrical cir-
cuits that are used to measure the sensor output voltage. In
any event, the presence of noise effectively replaces the static
response curve by an envelope of static response curves, so
that the “true” static response curve cannot be distinguished.

The description of the noise may be either deterministic,
that is, described by bounds on its size, or it may be stochas-
tic, that is, described by a probability distribution. The pre-
cision of the sensor is determined by the noise; that is, a
sensor has good precision if the noise level is low relative to

the magnitude of the measurement. For a given sensor in-
put, the noise resolution is the width of the possible sensor
outputs due to the noise.

The static response curve can also be adversely affected
if the sensor has hysteretic behavior. Hysteresis occurs when
the input variable moves away from a given value and then
returns to it, with the second measurement different from
the first. In this case, as shown in Fig. 6, the static response
curve is effectively multivalued.

The repeatability of a sensor is determined by the hyster-
esis of the static response curve. A sensor has good repeat-
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Figure 6. A hysteretic static response curve arises when the
sensor input moves away from a given value and then returns to it,
with the second measurement different from the first.
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ability if two measurements of the same input are close
despite interim changes in the input. Noise also degrades re-
peatability. Hence, if a sensor has good repeatability, the
noise and hysteresis are necessarily both small. We thus
have the important relation

Good Repeatability Good Precision⇒ .

Quantization and Resolution
An additional impediment to determining the static re-
sponse curve is quantization, which is discretization of the
output range. Most sensors provide an analog (continu-
ously variable) output, which is quantized by the data acqui-
sition system. Other sensors, such as encoders, provide
digital output, which is inherently quantized.

Quantization involves partitioning the sensor output
range into bins, which are usually of equal size. The bin size,
or quantization resolution, is determined by

quantization resolution
output width

number of bin
=

s
,

where the output width is equal to V Vmax min− .
The value associated with a bin is determined by its cen-

ter, whereas the quantization error is the error in the sensor
output due to quantization. It can be seen from Fig. 7 that the
largest quantization error is half of the bin size. By combin-
ing the effect of quantization with the sensor response
curve, we obtain the quantized sensor response curve illus-
trated in Fig. 8.
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Once quantization has occurred, the output is effectively
measured by counting bins. In principle, quantized quantities
are less prone to error. As an example, money is quantized into
pennies,which iswhymoney is“counted”whenit ismeasured.

As another example, a ruler is quantized by its markings.
Since the human eye can usually interpolate a point be-
tween two markings with an accuracy of ±10%, the
quantization resolution of a ruler marked in intervals of size
1/16 in is approximately 1/5 × 1/16 in = 1/80 in.

The effect of quantization on sensor specifications is re-
lated to the output resolution, which is defined by

output resolution

max quantization resolution, noi= { }se resolution ,

which is the smallest distinguishable output variation. Output
resolution determines the ability to distinguish close outputs.

Output and Input Dynamic Range
An important aspect of a sensor is its ability to respond to
signals having both large and small amplitude variation. The
ratio of the largest measurable output variation to the small-
est distinguishable output variation (assumed to be con-
stant over the output range) is the output dynamic range.
This quantity is illustrated by Fig. 9, which contrasts the dif-
ference between the magnitudes of these quantities. It can
be seen that the output dynamic range is given by

output dynamic range
output width

output resolution
= .

Dynamic range can be expressed in bits by

output dynamic range in bits log
output width

outpu2=
t resolution

or in decibels by

output dynamic range in decibels

20log
output wid

10= th
output resolution

.

As an example, an output width of 8 V with a quantization
resolution of 0.23 mV has an output dynamic range of 11.8
bits or 70.8 dB. Note that each bit corresponds to 6 dB.

The input resolution of a sensor is the smallest distin-
guishable input variation. In analogy with output dynamic
range, the sensor’s input dynamic range is the ratio of the
largest measurable input variation to the smallest distin-
guishable input variation (assumed constant over the input
range), as illustrated in Fig. 9. The input dynamic range is
thus given by

input dynamic range
input width

input resolution
= ,

where the input width is equal to x xmax min− , which can be ex-
pressed in bits or decibels. The input dynamic range is de-
graded by noise and hysteresis.

Sensitivity and Sensitivity Tradeoffs
Another important aspect of sensor performance is the
amount that the sensor output changes due to a change in
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the sensor input. The ratio of these quantities is the sensor
sensitivity, which is the slope of the static response curve.

For an affine static response curve (see Fig. 10), the sensi-
tivity is constant and can be determined by

sensitivity
output width
input width

= .

For a nonaffine static response curve, the sensitivity de-
pends on the sensor input as determined by the slope of the
static response curve for a given sensor input. A fundamental
feature of the sensitivity is the fact that it relates the input res-
olution and the output resolution (see Fig. 11) according to

sensitivity
output resolution
input resolution

= .

Sensitivity is an important quantity since it affects fun-
damental sensor tradeoffs. To illustrate these tradeoffs,
assume for the moment that the output width is fixed. In
practice, the output width is constrained by the data ac-
quisition system, which can operate over only a limited
range of voltages. It can then be seen from Fig. 12 that a
static response curve with high sensitivity will have a
small input width, whereas a static response curve with
low sensitivity will have a large input width; that is, for
fixed output width

High Sensitivity Small Input Width⇒

and

Low Sensitivity Large Input Width⇒ .

Alternatively, assume that the output resolution is fixed.
In practice, the output width is constrained by the noise and
quantization of the data acquisition system. It can then be
seen from Fig. 13 that a static response curve with high sen-
sitivity will have good input resolution, whereas a static re-
sponse curve with low sensitivity will have poor input
resolution; that is, for fixed output resolution

High Sensitivity Good Input Resolution⇒

and

Low Sensitivity Poor Input Resolution⇒ .

Consequently, for a sensor and data acquisition system
with fixed output width and fixed output resolution, there
is a tradeoff between input width (the ability to measure in-
puts with large amplitude variation) and input resolution
(the ability to distinguish between close inputs). This
tradeoff is determined by the sensitivity of the static re-
sponse curve.

Finally, for an affine static response curve

output dynamic range
output width

output resolution
=

= ×

=

sensitivity input width
output resolution
input width

input resolution
input dynamic range.=

Hence, for an affine static response curve, the output
dynamic range and the input dynamic range are equal
and are called the dynamic range. For a nonaffine static
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response curve, this equality is valid over a range of in-
puts within which the static response curve is approxi-
mately affine.

Static Calibration Curve
Since the static response curve of a sensor is generally un-
known, one of the most important tasks that engineers face
is determining an approximation of it. This process is known
as calibration, and the approximation of the static response
curve is the static calibration curve. Using the sensor output,
the static calibration curve is used to obtain an estimate of
the sensor input.

Any discrepancy between the static response curve and
the static calibration curve gives rise to calibration error. As
discussed above, drift, noise, hysteresis, and quantization
corrupt the static response curve and make it difficult to ob-
tain a static calibration curve with a satisfactory calibration
error. Since the static response curve is unknown, it is also
important to have uncertainty specifications that quantify
the size of the calibration error.

When you purchase a sensor, the manufacturer usually
provides specifications on a spec sheet. Sometimes these
specifications are incomplete or questionable, and thus it
may be necessary to verify them. To perform the calibration,
you will need instrumentation that allows you to control the
sensor input in a precise manner, or at least measure it accu-
rately. This process may require extensive analysis, as well as
a more expensive, precalibrated “truth” sensor, which you
can use to determine the sensor input. The main point here is
that determining a good static calibration curve and quantify-
ing the calibration error in terms of uncertainty specifica-
tions may require substantial engineering effort.

A static calibration curve is accurate if it is a good approxi-
mation of the sensor response curve. The accuracy of a static
calibration curve can be quantified in terms of the input and
output calibration errors. For each value of the sensor input,
the difference between the sensor output determined by the
static response curve and the value given by the static cali-
bration curve is the output calibration error; that is,

output calibration error sensor output calibrated= − output,

where the calibrated output is the output determined by the
static calibration curve for the given sensor input. Similarly,
the input calibration error is defined by

input calibration error sensor input calibrated in= − put,

where the calibrated input is the estimate of the sensor input
determined by the static calibration curve for the given sen-
sor output. Since the sensor input is not known, neither of
these quantities can be evaluated in practice. Therefore, it is

important to determine uncertainty specifications in the
form of bounds on the calibration errors.

If a sensor has an accurate static calibration curve, then
it has good accuracy. It is easy to see that if a sensor has good
accuracy, then it must have both good repeatability and
thus good precision; that is,

Good Accuracy Good Repeatability Good Precision⇒ ⇒ .

I leave it to the reader to construct counterexamples to
show that the converse of these implications is not true.

The output and input errors may vary arbitrarily over the
output and input ranges. However, it sometimes occurs that
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Figure 16. For an affine static response curve and an affine static
calibration curve, a mismatch between the sensitivity of the static
response curve and the scale factor of the static calibration curve
results in output and input calibration errors that increase or
decrease over the output and input ranges.
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Figure 17. Nonlinearity refers to the input or output calibration
error that arises when an affine static calibration curve is used to
approximate a nonaffine static response curve.
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the static calibration curve is determined with good accu-
racy, but there is a subsequent output bias drift. In this case,
as can be seen from Fig. 14, the output calibration error is
constant over the output range. Similarly, environmental
factors can affect the sensor in such a way that there is an in-
put bias drift. In this case, Fig. 15 shows that the input calibra-
tion error is constant over the input range.

Another source of calibration error, which often occurs in
practice, is a mismatch between the slope of an affine static re-
sponse curve (i.e., its sensitivity) and the slope of the static cali-
bration curve (i.e., its scale factor). In this case, Fig. 16 shows
that a scale factor error results in output and input calibration er-
rors that increaseordecreaseover theoutputandinputranges.

In practice, it is desirable to use an affine static calibra-
tion curve even if the static response curve is known to not
be affine. In this case, the sensor accuracy is limited. How-
ever, an affine static calibration curve is easy to store in a
computer, requiring only a single point value and slope. The
output nonlinearity is the worst-case output calibration error
associated with an affine static calibration curve; that is,

output nonlinearity

max
affine outpu

[output range]
= t calibration error

sensor output
,

whereas the input nonlinearity is the worst-case input cali-
bration error associated with an affine static calibration
curve; that is,

input nonlinearity max
affine input

[input range]
= calibration error

sensor input
.

Nonlinearity is illustrated by Fig. 17, where an affine
static calibration curve is used to approximate a static re-
sponse curve that is not affine.

Conclusions
Measurement is one of the most fundamental activities of sci-
ence and engineering since it is the process by which data
about the real world are obtained. Sensors are needed for mea-
surement, and the quality of the data depends on the sensor
performance specifications. In this column, I have explained
the concepts that quantify sensor performance specifications.
It is my hope that this tutorial will be of value to students and
engineers in working with technology and will increase appre-
ciation for sensors as crucial components of virtually every
engineering system.
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