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Abstract— This paper presents a strategy based on fault is a powerful tool for early determination of fault diagr®si
diagnosability maximization for optimally locating sens@s in  performances.
Fuel Cell Stack Systems. The goal is to characterize and = |, structural model based diagnosis, consistency may be

determine a sensor set that guarantees a maximum degree hecked b . t of redundant sub dels (i.e. Minimal
of diagnosability and does not exceeds a maximum sensor checked by using a set of redundant sub-models (i.e. Minima

set cost constraint. The strategy is based on the structural Structurally Overdetermined (MSO) sets of equations). A
model of the system in study. Structural analysis is a powedl  residual generator can be implemented from an MSO set

tool for dealing with complex nonlinear systems. The proposd by computing the internal unknown variables through a
approach is successfully applied to a Fuel Cell Stack System  ¢,nyenjent manipulation of the equations and later chegkin
consistency in a redundant equation. This concept is known
[7] as a causal interpretation of the computability. Thaultes
The problem of sensor placement for Fault Detection and 5 directed bi-partite graph, namedmputation sequence
Isolation (FDI) consists in determining the optimal set othat shows how internal values can be computed from the
instruments such that a predefined set of faults are detectgglations (value propagation) in every redundant sub-iode
and isolated. The usual objective to minimize in the sens@fowever, to guarantee that the residual is generated bg usin
placement problem is the sensor cost. The sensor placemggh.jinear equations, the structural model framework seed
problem can then be viewed as a combinatorial problem the§ pe adapted in order to handle causal computability. Few
consists in finding a sensor combination that fulfils diag;mosyorks focus this causal assignment in the fault diagnosis
specifications. field. For instance, in [8] causality is taken into account in
Solving the sensor placement for diagnosis can be treatggk computation of the set of redundant sub-models. In [9]
from many different points of view. Indeed, such a problengaysality is treated in derivative and integral computztioy
depends on the kind of system description, the requireghnsidering which solver tools are available, whereas @ [1
diagnosis specifications, as well as the technique used e causality of invertible function is fitted in the structl
implement the diagnosis system. Because of this, devadopignalysis. An MSO set of equations has the property of a
a sensor placement method, that works for all possible faibmplete matching in the unknown variable set, plus an extra
diagnosis systems, is unattainable. In this paper, faalj-di non-matched equation named the redundant equation. This
nosis systems are based on consistency checking by megagundant equation is used for checking consistency.
of structural models. The required diagnosis specification  This paper presents a new sensor placement algorithm
be fulfilled are fault detection and isolation for a predefine hased on an extension of the work done in [11] that takes into
set of faults under budget constraints. account maximum diagnosability specifications. The sensor
Some works devoted to sensor placement for diagnositacement methodology is applied to a fuel cell system. A
using graph tools can be found in [1], [2], [3], [4], [S] and[6 fuel cell system benchmark is used and some faults are
All these works use a structural model-based approach aggfined to be diagnosed. The goal consists in finding the
define different diagnosis specifications to solve the sensgest diagnosis performance that can be achieved by imstalli
placement problem. A structural model is a coarse modgl specific number of sensors under budget constraints. The
description, based on a bi-partite graph, that can be aainstrategy is based on the structural model of the Fuel Cell
early in the development process, without major engingerinstack system (FCS).
efforts. This kind of models is suitable to handle largescal Fyel cell systems are receiving much attention in the last
and complex systems since efficient graph-based tools candigcade as good candidates for clean electricity generation
used and do not have numerical problems. Structural asaly$h this work, a fuel cell system benchmark is used and

, _ - _ some faults are defined to be diagnosed. An FCS is a
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I. INTRODUCTION



strongly dependent on available sensor measurements. pairs of faults. Leff" : F x F be all fault pairs permutations
accurate measurements resulting from insufficient measufeom F, then 7;(S) C F denotes the set of isolable fault
ments or improper sensor placement can significantly detpairs when the sensor configuratiohC S is chosen for
riorate fault observability and process control. installation (i.e.,(f;, f;) € Fi(S) means that faultf; is

A reduced number of papers devoted to model-basésblable from f; when the sensor sef is installed in the
diagnosis for FCS system has been found. In [12], fowsystem).
faults related to several subsystems of the FCS system areBased on theF;(S) set, theisolability index I(S) is
diagnosed by using Bayesian networks. The faults concedefined as the number of isolability pairs when the sensor
the air-reactor blower, the refrigeration system, a fusklo configurationsS is installed, i.e.,
in the membrane (also known as fuel crossover) and the
hydrogen pressure. In [13], a set of relative residuals are I(S) = |F1(9)] 1)
designed to diagnose a set of fault scenarios. Residuardesi L

where| - | denotes the cardinality of the set.

techniques are also used in [14], where two test quantities_l_ ve th | bl din thi
are developed to detect hydrogen leaks in the anode side. 0 solve the sensor pacgment problem proposed in this
per, a system descriptiov is also required. Such descrip-

Finally, in [15], a set of structured residuals is obtaineirf paper, :
a bond-graph model of a FCS system. tion will allow the computation of the detectable faults and

The paper is organized as follows: In Section Il, the senséli]e isolability index for a given sensor configuration. Henc
placement problem tackled in this paper is presented.cﬁectiﬂ:et sdensofr I|I3Iace.ment for fault diagnosis can be formally
Il formally introduces the diagnosis framework based off acc s 10 OWSf' o
structural models. Section IV describes the algorithm used GIVEN @ candidate sensor s&f a system descriptioM,

to solve the aforementioned problem. In Section V, the a fault setF, and a maximum admissible sensor

sensor placement methodology is applied to a Fuel Cell Stack configuration cost.

System. Finally, some conclusions and remarks are given inFIND @ sensor configuratiof C S such that:

Section VI. 1) its cost does not exceeds the maximum ad-
missible cost,

Il. PROBLEM FORMULATION 2) all faults inF are detectable,
Usually, the sensor placement problem is presented as an 3) the number of isolable fault pairs is max-

optimization problem where the best sensor configuration imised, and

fulfiling some given diagnosis specifications is soughg se 4) its cost is minimal among all sensor configu-

e.g. [16] and [17]. Nevertheless, ensuring diagnosis speci rations satisfying conditions 1, 2 and 3.

fications may let to an optimal solution with a large cost |t is worth noting that other diagnosis performance in-
and thus not desirable for a practical implementation. I8 thdexes, also designed for sensor placement, could be used
paper, the optimal problem is slightly modified so that onlfhere, see for example [18] and [5]. However, these indexes
sensor configurations with a lower cost than a preestaldlishghay fail at representing maximum fault isolability.

value are considered as possible solutions. From this subse The objective of this paper is to derive an algorithm that
the sensor configuration with the best diagnosis perfor@angomputes a solution for the aforementioned problem. This

will be sought. _ B _ algorithm will perform a search through different sensors
Let S be the candidate sensor set afidthe maximum configurations until the solution is ensured.

admissible sensor cost. Then, the problem can be roughI){
stated as the choice of a sensor configurao@ S with I11. FAULT DIAGNOSIS BASED ON STRUCTURAL MODELS
a costC(S) < C such that the diagnosis performance is A structural model approach will be used to solve the
maximised. In addition, if several sensor configuratioristex sensor placement problem stated in the previous section.
that satisfy these conditions, the one with the lowest cdst w The analysis of the model structure has been widely used in
be chosen. the area of model-based diagnosis [7]. Therefore, comsiste
In model-based diagnosis, fault detectability and faultools exist in order to perform diagnosability analysis and
isolability are the main objectives. Fault detectabilgythe consequently compute the set of detectable and isolable
ability of monitoring a fault occurrence in a system, wheareafaults.
fault isolability concerns the capacity of distinguishibg- The structural model is often defined as a bipartite graph
tween two possible fault occurrences. Thus, the diagnosi$(M, X, A), where M is a set of model equationsy a
performance will be stated based on fault detectability anset of unknown variables and a set of edges, such that
isolability properties. In this work, the single fault asgo-  (e;,z;) € A as long as equatiofy € M depends on variable
tion will hold (i.e., multiple faults will not be covered) dn x; € X. A structural model is a graph representation of the
no candidate sensor fault will be considered. analytical model structure since only the relation between
Let F be the set of faults that must be monitored, thewariables and equations is taken into account, neglectiag t
Fp(S) C F denotes the detectable fault set when a sensarathematical expression of this relation.
configuration S C S is installed in the system. Fault Structural modelling is suitable for an early stage of the
isolability can be characterised in a similar way by means afystem design, when the precise model parameters are not



known yet, but it is possible to determine which variables arwhere&s is the causally computable part 6f U Mg, and
related to each equation. Furthermore, the diagnosis sisalyfrom Definition 2, F;(S) can be computed as

based on structural models is performed by means of graph- §) = F o+ 5
based methods which have no numerical problems and are Fr(S) ={(fi,fj) €F | ey, € ms} ®)
more ef_ﬂmept, in genera_ll, '_[han_analytlcal methods. Howevewheregf.|5 is the causally computable part 8fg U (M \
due to its simple description, it cannot be ensured that t !

diagnosis performance obtained from structural models wil' ;s worth noting that testing different sensor configura-

hold for the real system. Thus, only best case results can Bg,s involves different sensor equation set, in (4) and
computgd. . ) . (5) while the other sets remain unchanged.
To mitigate this problem, one possible approach involves Remark that isolability index/(S) is directly computed

taking_into account how unkno_wn quel variables are cons the number of elements ¥ (S), according to (1).
puted in order to perform the diagnosis. Here, the framework

proposed in [19] is adopted. In this framework, a causal IV. OPTIMAL SENSOR PLACEMENT ALGORITHM
relation for each variable-equation pair is defined. Theltes  1he sensor placement problem stated in Section Il is

is a structural sub-model, known esusally computablsub-  gqyed by Algorithm 1, which is based on a depth-first branch
model, where the computation of all unknown variables iS4 pound search.

ensured by straightforward value propagation, i.e., nicakr
solvers are not required. For further information on thig|gorithm 1 S* = searchOp,. (node, S*)
framework, the reader is refereed to the aforementioned— ;- ~ 7 —"—" 75

refergnce. , for all s € node.R ordered in decreasing codb
It is well-known that the over-determined part of the childNode.S = node.S \ {s}
model is the only useful part for system monitoring [7]. childNode.R := childNode.R \ {s}

The Dulmage-Mendelsohn (DM) decomposition [20] is a if C(childNode.S \ childNode.R) > C then
bipartite graph decomposition that defines a partition @n th ' '

set of model equation&/. It turns out that one of these parts enrdeti?rn S
is the over-determined part of the model and is represented if I(childNode.S) = I(S*) then
asM¥. o if C(childNode.S\ childNode.R) < C(S*) then

The diagnosis analysis is next performed based on the if Fp(childNode.S) = F then
structural model properties under the causal computable if C(childNode.S) < C(S*) then
framework. Specifically, fault detectability and isolatyilare S* := childNode.S % update best solution
defined as properties of the over-determined part of the mode end if
[2]. First, it is assumed that a single faylte F can only S* := searchOp(childNode, S*)
violate one equation (known dault equation, denoted by end if
ef € M. else

Definition 1: A fault f € F is (causally structurally) if I(childNode.S) = I(Node.S) then
detectable in a model described by the set of equatidns return S*
i end if

ep €& (2) end if
else

wheref is the causally computable part 8f. Remark that

the procedure to computg from M is described in [19].
Definition 2: A fault f; is (causally structurally) isolable

from f; in a model described by the set of equatiddsif

if I(childNode.S) > I(S*) and
Fp(childNode.S) = F then
if C(childNode.S) < C then
S* := childNode.S % update best solution

e, €EF () end if
! S* := searchOp (childNode, S*)
where&y, is the causally computable part 8f \ {ey, }. end if

Without loss of generality, it is assumed that a sensor end if
s; € S can only measure one single unknown variable end for
z; € X. In the structural framework, such sensor will be  return S*
represented by one single equation denoted,g&nown as
sensor equation Given a set of sensors, the set of sensor . .

. : . : Every node in the search tree consists of two sensor sets
equations is denoted dds. Thus, given a candidate sensor_ .
configurationS and a modelM, the updated system model '
corresponds td// U Msg. *

From Definition 1,Fp(S) can be computed as

node.S, the sensor configuration that the node repre-
sents.

« node.R, the set of sensors that are allowed to be
Fp(S)={f€F |ese&d} (4) removed in its child nodes.



Throughout the search, the best solution is updated in

S* whenever a feasible sensor configuratiés found that pude i |
satisfies one of the following two conditions: Stack |—> MR"‘.”’”
: . . let Magic Static anfod
« This sensor configuration has a cost not greater thamompressofﬁ M;Tﬂfold cer |72 | amter | =
the maximum admissible sensor set cost and the fault
isolability index of the current best sensor configuration
is improved.
o The fault isolability index of the current best sensor Fig. 1. Fuel Cell System scheme
configuration is matched but its cost is greater than that
of this sensor configuration.
A branch operation is initiatédvhenever a feasible sensor current best sensor configuration cost have been
configuration is found that satisfies one of the following two already visited.
conditions: Condition C1B occurs when the lowest reachable sensor

« The lowest reachable sensor configuration cost in @onfiguration cost in a branch exploration exceeds the max-
branch exploration does not exceed the maximum admum admissible sensor set cost. Then, visiting the rest of
missible sensor set cost and the fault isolability indes child nodes is not worth it. On the other hand, condition
of the current best sensor configuration is improved. C2B occurs when the current best sensor configuration cost

. The lowest reachable sensor configuration cost in @0€es not exceed the lowest reachable sensor configuration
branch exploration is lower than the current best sens€PSt In a brangh _e>.<|:_)lo_rat|on.
configuration cost and the fault isolability index of the Algorithm 1 is initialised as follows:

current best sensor configuration is matched. 1) The root node of the search tree corresponds to the
A branch operation is aborted at some child node when-  candidate sensor setode.S := node.R. = S.
ever any of the following three conditions hold: 2) The current best sensor configuration corresponds to

C1A: The fault isolability index corresponding to the the empty setS* := 0.
node is worse than the current best one.

C2A: The node does not correspond to a feasible sensor V. APPLICATION TOFUEL CELL SYSTEM
configuration.

C3A: The fault isolability index corresponding to the
node matches the current best one but not that of A fuel cell is an electrochemical energy converter that
the parent node, and the current best sensor configonverts the chemical energy of fuel into electrical cutren
uration cost does not exceed the lowest reachabfe model for a Fuel Cell system was proposed in [21] and
sensor configuration cost in a branch exploration.further information can be found in [22] and [23]. This model

A branch operation always involves removing a sensdP widely accepted nowadays in the control community as a

from a sensor configuration, so if condition C1A holds ther?OOd representation of the behavior of an aCt“"?" fuel cell
no sub-node can improve the best isolability index eithe or contrql PUrposes. _The model,_see Fig. 1, '”C'“d‘?s a
Moreover, if condition C2A holds then no sub-node correY®"Y detailed description of the air compressor, the inlet
sponds t(; a feasible sensor configuration either. Conditi d return cathode manifolds, the static air cooler, thiicsta
C3A concerns a node that matches the current best isojabil umidifier, the hydrogen flow and the PEM fuel cell stack.

index and no descendant can improve the current best coy?? fuel cell stack model is further decomposed in four

A branch operation involves visiting the child nodes of gnan subsystems: stack voltage, cathode flow, anode flow

parent node. Aborting a branch operation at a parent notgdtmembratlne hydkratlon. Indthe mtOd?I‘ .'t IS g:ssgmed _thgt
means that a call teearchOp,, returns. A branch operation € lemperature 1S Known and constant since 1is dynamic 1s

is aborted at a parent node whenever any of the foIIowin'g;1uch more slower thqn those of the rest of the model.
two conditions hold: The model was originally developed for control purposes.

. So, it is necessary to first pinpoint which equations belon
C1B: All child nodes that are ancestors of some SensQl aach componeynt In orzerpto do so e\(jery componer?t

configurations which does not exceed the MaxiMUM, - yodelled apart. This means that internal and external

ﬁg?'ss'ble sensor set cost have been already Viariables are considered apart for each component, and then

C2B: The fault isolability ind di h extra equations will be defined to interconnect the differ-
' e fault isolability Index corresponding to theg components. Following this procedure, the component

node ;T\atghes t:le ﬁur:ﬁr&t bedst o?r? ?nd that Oftﬂbeehaviour can be easily modelled, as well as system faults
p;’;\ren node, an af_c ! t_no ?ﬁ ta are ancestﬁﬁ%fined. Note that, by doing this, the number of variables and
of Some sensor configurations that can improve gquations involving the complete model is increased. How-
1A feasible configuration means a sensor configuration sumhathf ever, the red.undancy qewee IS preserved’ meaning that no
F are detectable. extra computing effort is expe<_:ted._ In fact_, all the struatu
2Initiating a branch operation involves a recursive cals&archOp. properties needed for diagnosis will remain unaltered.

A. Fuel-cell system model



the fuel cell stack. It represents a malfunction in the dutle
cathode (e.g. the outlet is partially stuck). Last fagit,

: -..?: ' affects the outlet manifold. It could represent either &lea
e '.;;é' or an outlet obstruction.
UC') W . 0 ns P o TABLE |
o B X
= % SYSTEM FAULTS
© .l‘.'v,
o s '.'.‘:'l Fault Fault description
.f'_) o o W, fep1 | compressor motor fault
5 « . e fep2 compressor box fault
D > \\'\ fsm supply manifold fault
@ °e N N o fac air cooler fault
Nt fsh static humidifier fault
o N fom outlet manifold fault
Sst stack cathode fault

set of variables

Fig. 2. Struct . . .
9 ructural model of the FCS system B. Sensor placement for fault detection and isolation

Installing sensors for measuring any variable is not always
The resulting FCS system model is a complex and larg@ossible or it may be difficult. For instance, measuring some
scale model involving 96 equations and 96 unknown varinternal variables in the fuel cell stack would require itse
ables. ing probes into the stack which is physically impossible.
Three different kinds of equations are distinguishemin- Other variables like a partial mass in the gas mixture is
ponent equationknown variable equationandcomponent considered not measurable because a complex measuring
interconnection equation€omponent equationefer to the equipment is needed and therefore installing such device
equations that model the FCS system componegtitewn would not be realistic for practical applications. In alf 3
variables equationsire introduced in the model to indicatevariables will be assumed to be measurable. The set of
that some model variables are assumed kno@ompo- candidate sensors and their corresponding cost is depicted
nent interconnection equationtescribe the interconnectionsin Table II.
among components. Different dimensionless costs have been assigned to each
In Figure 2, the resulting structural model is depicted inmeasurable variable according to the ease of installation a
matrix form where the equation set corresponds to rowe price of its corresponding sensor. For example, note tha
and the variable set corresponds to columns. A dot in th®easuring humidity or vapour in gases has a large cost since
(i,4) element indicates that there exists an edge incident tbe sensors are expensive and difficult to install in theesgst
equatione; € M and variabler; € X, i.e., (e;,z;) € A.  Onthe other hand, installing sensors to measure air tempera
Note that the structural model of the FCS system is tures or pressures is easy. Moreover, their measurements ar
just-determined model where all unknown variables can b@ther reliable. Therefore, this kind of sensors have alsmal
computed, i.e. the model can be used for system simulatiognst. Air flow, angular speed and motor torque are assumed
A set of faults has been defined for this benchmarko be measurable at an intermediate cost.
[23]. Each fault affects a primarily equation by changing If all candidate sensors were installed, the maximum
a parameter or a variable, so that the relation betweendiagnosis performance would be achieved. For this paaticul
fault and an equation is unique. Table | summarizes thepplication, all faults would be detectable and the isdilgbi
faults considered in this wotk Other faults could be easily index would be maximised/(S) = 2 x (}) = 42). However
included in this set, that should be related to other modéhe cost of installing all sensors would B&S) = 1594.
equations. Another assumption is that only single faules ar Assume that a maximum budget for investment on instru-
allowed. This means that two or more faults can not occunentation has been set to 32 by the FCS system owner.
in the system at the same time. Hence, the company wants to install a set of sensors such that
There are two compressor faulfg,; and f.,.. Faultf.,;  the maximum budget is no exceeded but the diagnosis perfor-
represents an electric fault where the electrical resistanmance is maximised. Algorithm 1 has been implemented in
varies (e.g. due to an overheating). Fafilf, represents a Matlab and applied to solve this problem with:= 32. After
malfunction of the compressor box. The supply manifol®20.72 seconds, the algorithm returns the following optimal
is affected by faultf,,, which represents, for example, asensor configuration:
leak. Air cooler and static humidifier faults are represdnte
respectively, byf,. and f;. These two faults are simulated
by a change in the setpoints valu&y,, and ¢4.;, meaning
that the device is not working properly. Next faufi;, affects Pom.outs Pea,out §

* .
S :{cha Tcp,outa Tsm,outapsm,outa Tsh,outapsh,outa

SAs already mentioned, a complete description of how theabtsfare ) The CO.St of this §ensor Conﬁgura_-tiqn is 27 and the isolabil-
modeled can be found in [23] ity index is 36. This means that this is the lower cost sensor



variable description cost
Wep compressor angular speed 10 42
Tmep compressor motor torque 25
iep compressor current 1 wl |
Wep,out compressor exit air mass flow rate 40
Tep,out compressor exit air temperature 2
Pep compressor exit air relative humidity 150 38t 1
Wesm,out supply manifold exit air mass flow rate 40 3
Tsm,out supply manifold exit air temperature 2 =
DPsm,out supply manifold exit air pressure 5 £ 361 ]
Psm,out supply manifold exit air relative humidity 150 §
Wae,out air cooler exit air mass flow rate 40 T ol i
Tac,out air cooler exit air temperature 2
Pac,out air cooler exit air relative humidity 150
Wsh,out static humidifier exit air mass flow rate 40 32 1
Tsh,out static humidifier exit air temperature 2
Psh,out static humidifier exit air pressure 5 2 ) ) ) ‘
Dsh,out static humidifier exit air relative humidity 150 20 40 60 80 100 120
W, inj static humidifier injected vapour mass flow rate100 Maximum sensor configuration cost specification
Wom,out outlet manifold exit air mass flow rate 40
Pom,out outlet manifold exit air pressure S Fig. 3. Fault diagnosis performance tradeoff
Pom,out outlet manifold exit air relative humidity 150
Wafe,out regulated hydrogen mass flow rate 40
DPan,in FCS anode input hydrogen pressure 5
Wan,out FCS anode exit hydrogen mass flow rate | 40 In the literature, most approaches to optimal sensor place-
Pan,out FCS anode exit hydrogen pressure 5 . ] L.
bar out FCS anode exit hydorgen relative humidity| 150 ment try to solve the following problem: search the minimum
Wea,out FCS cathode exit air mass flow rate 40 cost sensor configuration that satisfies a given set of fault
Pea,out FCS cathode exit air pressure 5 diagnosis specifications. A key contribution of this work
Wo,an,out FCS anode exit vapour mass flow rate 100 . . . . .
W ca out FCS cathode exit vapour mass flow rate | 100 is the generalization of this problem by introducing the
TABLE Il concept of the isolability index as a measurement of the faul

diagnosis performance achievable in a given system. This
measurement allows to set up a sensor placement problem
based on a fault diagnosis performance maximization under
the constraint of a given maximum sensor configuration cost.

configuration that has an isolability index of 36, which is th Thus, the new formulation presented in this paper becomes
maximum diagnosis performance that can be achieved unddpropriate in complex systems with a bound in the budget
the stated budgetary constraint. assigned to instrumentation.

It is clear that there is a trade-off between the budgetary In model-based fault diagnosis, diagnosis is basically
constraint and the best achievable isolability index. ldeor Performed based on the response of residual generators,
to illustrate it, Algorithm 1 has been run with differentwhich are derived from the model equations. When the
values forC'. Figure 3 shows these results. Remark that thef@odel includes nonlinearities, deriving a residual getvera
exists a sensor configuration with a cost of 114 that ha&n become a difficult or even a practically infeasible task.
the same isolability index gained by installing all candéda In this paper, the causality framework introduced in [19% ha
sensors. On the other hand, there does not exist any sengegen followed to address it. Thus, the solution obtainethfro
configuration such that all faults are detectable with a kmal the sensor placement analysis will guarantee a set of easily
cost than 21. So they are not shown in the figure. It i§omputable residual generators.
interesting to note that just a 16% increase in the budget
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