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Abstract— This paper presents a strategy based on fault
diagnosability maximization for optimally locating sensors in
Fuel Cell Stack Systems. The goal is to characterize and
determine a sensor set that guarantees a maximum degree
of diagnosability and does not exceeds a maximum sensor
set cost constraint. The strategy is based on the structural
model of the system in study. Structural analysis is a powerful
tool for dealing with complex nonlinear systems. The proposed
approach is successfully applied to a Fuel Cell Stack System.

I. I NTRODUCTION

The problem of sensor placement for Fault Detection and
Isolation (FDI) consists in determining the optimal set of
instruments such that a predefined set of faults are detected
and isolated. The usual objective to minimize in the sensor
placement problem is the sensor cost. The sensor placement
problem can then be viewed as a combinatorial problem that
consists in finding a sensor combination that fulfils diagnosis
specifications.

Solving the sensor placement for diagnosis can be treated
from many different points of view. Indeed, such a problem
depends on the kind of system description, the required
diagnosis specifications, as well as the technique used to
implement the diagnosis system. Because of this, developing
a sensor placement method, that works for all possible fault
diagnosis systems, is unattainable. In this paper, fault diag-
nosis systems are based on consistency checking by means
of structural models. The required diagnosis specifications to
be fulfilled are fault detection and isolation for a predefined
set of faults under budget constraints.

Some works devoted to sensor placement for diagnosis
using graph tools can be found in [1], [2], [3], [4], [5] and [6].
All these works use a structural model-based approach and
define different diagnosis specifications to solve the sensor
placement problem. A structural model is a coarse model
description, based on a bi-partite graph, that can be obtained
early in the development process, without major engineering
efforts. This kind of models is suitable to handle large scale
and complex systems since efficient graph-based tools can be
used and do not have numerical problems. Structural analysis
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is a powerful tool for early determination of fault diagnosis
performances.

In structural model based diagnosis, consistency may be
checked by using a set of redundant sub-models (i.e. Minimal
Structurally Overdetermined (MSO) sets of equations). A
residual generator can be implemented from an MSO set
by computing the internal unknown variables through a
convenient manipulation of the equations and later checking
consistency in a redundant equation. This concept is known
[7] as a causal interpretation of the computability. The result
is a directed bi-partite graph, namedcomputation sequence,
that shows how internal values can be computed from the
equations (value propagation) in every redundant sub-model.
However, to guarantee that the residual is generated by using
non-linear equations, the structural model framework needs
to be adapted in order to handle causal computability. Few
works focus this causal assignment in the fault diagnosis
field. For instance, in [8] causality is taken into account in
the computation of the set of redundant sub-models. In [9]
causality is treated in derivative and integral computations by
considering which solver tools are available, whereas in [10]
the causality of invertible function is fitted in the structural
analysis. An MSO set of equations has the property of a
complete matching in the unknown variable set, plus an extra
non-matched equation named the redundant equation. This
redundant equation is used for checking consistency.

This paper presents a new sensor placement algorithm
based on an extension of the work done in [11] that takes into
account maximum diagnosability specifications. The sensor
placement methodology is applied to a fuel cell system. A
fuel cell system benchmark is used and some faults are
defined to be diagnosed. The goal consists in finding the
best diagnosis performance that can be achieved by installing
a specific number of sensors under budget constraints. The
strategy is based on the structural model of the Fuel Cell
Stack system (FCS).

Fuel cell systems are receiving much attention in the last
decade as good candidates for clean electricity generation.
In this work, a fuel cell system benchmark is used and
some faults are defined to be diagnosed. An FCS is a
complex system with many components interacting with
each others and combining thermodynamic, hydraulic and
electric phenomena. Faults, which are unobservable damages
affecting components of the FCS, can occur due to many
causes. Some are serious and must require to stop the system,
or to put it in a safety mode while others have minor impact
and should only be reported for being repaired off-board.

The performance of FCS as all industrial processes is



strongly dependent on available sensor measurements. In-
accurate measurements resulting from insufficient measure-
ments or improper sensor placement can significantly dete-
riorate fault observability and process control.

A reduced number of papers devoted to model-based
diagnosis for FCS system has been found. In [12], four
faults related to several subsystems of the FCS system are
diagnosed by using Bayesian networks. The faults concern
the air-reactor blower, the refrigeration system, a fuel loss
in the membrane (also known as fuel crossover) and the
hydrogen pressure. In [13], a set of relative residuals are
designed to diagnose a set of fault scenarios. Residual design
techniques are also used in [14], where two test quantities
are developed to detect hydrogen leaks in the anode side.
Finally, in [15], a set of structured residuals is obtained from
a bond-graph model of a FCS system.

The paper is organized as follows: In Section II, the sensor
placement problem tackled in this paper is presented. Section
III formally introduces the diagnosis framework based on
structural models. Section IV describes the algorithm used
to solve the aforementioned problem. In Section V, the
sensor placement methodology is applied to a Fuel Cell Stack
System. Finally, some conclusions and remarks are given in
Section VI.

II. PROBLEM FORMULATION

Usually, the sensor placement problem is presented as an
optimization problem where the best sensor configuration
fulfilling some given diagnosis specifications is sought, see
e.g. [16] and [17]. Nevertheless, ensuring diagnosis speci-
fications may let to an optimal solution with a large cost
and thus not desirable for a practical implementation. In this
paper, the optimal problem is slightly modified so that only
sensor configurations with a lower cost than a preestablished
value are considered as possible solutions. From this subset,
the sensor configuration with the best diagnosis performance
will be sought.

Let S be the candidate sensor set andC̄ the maximum
admissible sensor cost. Then, the problem can be roughly
stated as the choice of a sensor configurationS ⊆ S with
a costC(S) ≤ C̄ such that the diagnosis performance is
maximised. In addition, if several sensor configurations exist
that satisfy these conditions, the one with the lowest cost will
be chosen.

In model-based diagnosis, fault detectability and fault
isolability are the main objectives. Fault detectability is the
ability of monitoring a fault occurrence in a system, whereas
fault isolability concerns the capacity of distinguishingbe-
tween two possible fault occurrences. Thus, the diagnosis
performance will be stated based on fault detectability and
isolability properties. In this work, the single fault assump-
tion will hold (i.e., multiple faults will not be covered) and
no candidate sensor fault will be considered.

Let F be the set of faults that must be monitored, then
FD(S) ⊆ F denotes the detectable fault set when a sensor
configuration S ⊆ S is installed in the system. Fault
isolability can be characterised in a similar way by means of

pairs of faults. LetF : F×F be all fault pairs permutations
from F, thenFI(S) ⊆ F denotes the set of isolable fault
pairs when the sensor configurationS ⊆ S is chosen for
installation (i.e.,(fi, fj) ∈ FI(S) means that faultfi is
isolable fromfj when the sensor setS is installed in the
system).

Based on theFI(S) set, the isolability index I(S) is
defined as the number of isolability pairs when the sensor
configurationS is installed, i.e.,

I(S) = |FI(S)| (1)

where| · | denotes the cardinality of the set.
To solve the sensor placement problem proposed in this

paper, a system descriptionM is also required. Such descrip-
tion will allow the computation of the detectable faults and
the isolability index for a given sensor configuration. Hence,
the sensor placement for fault diagnosis can be formally
stated as follows:

GIVEN a candidate sensor setS, a system descriptionM,
a fault setF, and a maximum admissible sensor
configuration costC̄.

FIND a sensor configurationS ⊂ S such that:

1) its cost does not exceeds the maximum ad-
missible cost,

2) all faults inF are detectable,
3) the number of isolable fault pairs is max-

imised, and
4) its cost is minimal among all sensor configu-

rations satisfying conditions 1, 2 and 3.

It is worth noting that other diagnosis performance in-
dexes, also designed for sensor placement, could be used
here, see for example [18] and [5]. However, these indexes
may fail at representing maximum fault isolability.

The objective of this paper is to derive an algorithm that
computes a solution for the aforementioned problem. This
algorithm will perform a search through different sensors
configurations until the solution is ensured.

III. FAULT DIAGNOSIS BASED ON STRUCTURAL MODELS

A structural model approach will be used to solve the
sensor placement problem stated in the previous section.
The analysis of the model structure has been widely used in
the area of model-based diagnosis [7]. Therefore, consistent
tools exist in order to perform diagnosability analysis and
consequently compute the set of detectable and isolable
faults.

The structural model is often defined as a bipartite graph
G(M,X,A), whereM is a set of model equations,X a
set of unknown variables andA a set of edges, such that
(ei, xj) ∈ A as long as equationei ∈ M depends on variable
xj ∈ X . A structural model is a graph representation of the
analytical model structure since only the relation between
variables and equations is taken into account, neglecting the
mathematical expression of this relation.

Structural modelling is suitable for an early stage of the
system design, when the precise model parameters are not



known yet, but it is possible to determine which variables are
related to each equation. Furthermore, the diagnosis analysis
based on structural models is performed by means of graph-
based methods which have no numerical problems and are
more efficient, in general, than analytical methods. However,
due to its simple description, it cannot be ensured that the
diagnosis performance obtained from structural models will
hold for the real system. Thus, only best case results can be
computed.

To mitigate this problem, one possible approach involves
taking into account how unknown model variables are com-
puted in order to perform the diagnosis. Here, the framework
proposed in [19] is adopted. In this framework, a causal
relation for each variable-equation pair is defined. The result
is a structural sub-model, known ascausally computablesub-
model, where the computation of all unknown variables is
ensured by straightforward value propagation, i.e., numerical
solvers are not required. For further information on this
framework, the reader is refereed to the aforementioned
reference.

It is well-known that the over-determined part of the
model is the only useful part for system monitoring [7].
The Dulmage-Mendelsohn (DM) decomposition [20] is a
bipartite graph decomposition that defines a partition on the
set of model equationsM . It turns out that one of these parts
is the over-determined part of the model and is represented
asM+.

The diagnosis analysis is next performed based on the
structural model properties under the causal computable
framework. Specifically, fault detectability and isolability are
defined as properties of the over-determined part of the model
[2]. First, it is assumed that a single faultf ∈ F can only
violate one equation (known asfault equation), denoted by
ef ∈ M .

Definition 1: A fault f ∈ F is (causally structurally)
detectable in a model described by the set of equationsM

if
ef ∈ E+ (2)

whereE is the causally computable part ofM . Remark that
the procedure to computeE from M is described in [19].

Definition 2: A fault fi is (causally structurally) isolable
from fj in a model described by the set of equationsM if

efi ∈ E+

fj
(3)

whereEfj is the causally computable part ofM \ {efj}.
Without loss of generality, it is assumed that a sensor

si ∈ S can only measure one single unknown variable
xi ∈ X . In the structural framework, such sensor will be
represented by one single equation denoted ases (known as
sensor equation). Given a set of sensorsS, the set of sensor
equations is denoted asMS. Thus, given a candidate sensor
configurationS and a modelM , the updated system model
corresponds toM ∪MS.

From Definition 1,FD(S) can be computed as

FD(S) = {f ∈ F | ef ∈ E+

S } (4)

whereES is the causally computable part ofM ∪MS , and
from Definition 2,FI(S) can be computed as

FI(S) = {(fi, fj) ∈ F | efi ∈ E+

fj |S
} (5)

whereEfj |S is the causally computable part ofMS ∪ (M \
{efj}).

It is worth noting that testing different sensor configura-
tions involves different sensor equation sets,MS , in (4) and
(5) while the other sets remain unchanged.

Remark that isolability index,I(S) is directly computed
as the number of elements inFI(S), according to (1).

IV. OPTIMAL SENSOR PLACEMENT ALGORITHM

The sensor placement problem stated in Section II is
solved by Algorithm 1, which is based on a depth-first branch
and bound search.

Algorithm 1 S∗ = searchOpC(node, S
∗)

childNode.R := node.R

for all s ∈ node.R ordered in decreasing costdo
childNode.S := node.S \ {s}
childNode.R := childNode.R \ {s}
if C(childNode.S \ childNode.R) > C̄ then

return S∗

end if
if I(childNode.S) = I(S∗) then

if C(childNode.S \childNode.R) < C(S∗) then
if FD(childNode.S) = F then

if C(childNode.S) < C(S∗) then
S∗ := childNode.S % update best solution

end if
S∗ := searchOpC(childNode, S∗)

end if
else

if I(childNode.S) = I(Node.S) then
return S∗

end if
end if

else
if I(childNode.S) > I(S∗) and
FD(childNode.S) = F then

if C(childNode.S) ≤ C̄ then
S∗ := childNode.S % update best solution

end if
S∗ := searchOpC(childNode, S∗)

end if
end if

end for
return S∗

Every node in the search tree consists of two sensor sets
and:

• node.S, the sensor configuration that the node repre-
sents.

• node.R, the set of sensors that are allowed to be
removed in its child nodes.



Throughout the search, the best solution is updated in
S∗ whenever a feasible sensor configuration1 is found that
satisfies one of the following two conditions:

• This sensor configuration has a cost not greater than
the maximum admissible sensor set cost and the fault
isolability index of the current best sensor configuration
is improved.

• The fault isolability index of the current best sensor
configuration is matched but its cost is greater than that
of this sensor configuration.

A branch operation is initiated2 whenever a feasible sensor
configuration is found that satisfies one of the following two
conditions:

• The lowest reachable sensor configuration cost in a
branch exploration does not exceed the maximum ad-
missible sensor set cost and the fault isolability index
of the current best sensor configuration is improved.

• The lowest reachable sensor configuration cost in a
branch exploration is lower than the current best sensor
configuration cost and the fault isolability index of the
current best sensor configuration is matched.

A branch operation is aborted at some child node when-
ever any of the following three conditions hold:

C1A: The fault isolability index corresponding to the
node is worse than the current best one.

C2A: The node does not correspond to a feasible sensor
configuration.

C3A: The fault isolability index corresponding to the
node matches the current best one but not that of
the parent node, and the current best sensor config-
uration cost does not exceed the lowest reachable
sensor configuration cost in a branch exploration.

A branch operation always involves removing a sensor
from a sensor configuration, so if condition C1A holds then
no sub-node can improve the best isolability index either.
Moreover, if condition C2A holds then no sub-node corre-
sponds to a feasible sensor configuration either. Condition
C3A concerns a node that matches the current best isolability
index and no descendant can improve the current best cost.

A branch operation involves visiting the child nodes of a
parent node. Aborting a branch operation at a parent node
means that a call tosearchOpC returns. A branch operation
is aborted at a parent node whenever any of the following
two conditions hold:

C1B: All child nodes that are ancestors of some sensor
configurations which does not exceed the maximum
admissible sensor set cost have been already vis-
ited.

C2B: The fault isolability index corresponding to the
node matches the current best one and that of the
parent node, and all child nodes that are ancestors
of some sensor configurations that can improve the

1A feasible configuration means a sensor configuration such that all f ∈

F are detectable.
2Initiating a branch operation involves a recursive call tosearchOpC .
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Fig. 1. Fuel Cell System scheme

current best sensor configuration cost have been
already visited.

Condition C1B occurs when the lowest reachable sensor
configuration cost in a branch exploration exceeds the max-
imum admissible sensor set cost. Then, visiting the rest of
the child nodes is not worth it. On the other hand, condition
C2B occurs when the current best sensor configuration cost
does not exceed the lowest reachable sensor configuration
cost in a branch exploration.

Algorithm 1 is initialised as follows:

1) The root node of the search tree corresponds to the
candidate sensor set:node.S := node.R. = S.

2) The current best sensor configuration corresponds to
the empty set:S∗ := ∅.

V. A PPLICATION TO FUEL CELL SYSTEM

A. Fuel-cell system model

A fuel cell is an electrochemical energy converter that
converts the chemical energy of fuel into electrical current.
A model for a Fuel Cell system was proposed in [21] and
further information can be found in [22] and [23]. This model
is widely accepted nowadays in the control community as a
good representation of the behavior of an actual fuel cell
for control purposes. The model, see Fig. 1, includes a
very detailed description of the air compressor, the inlet
and return cathode manifolds, the static air cooler, the static
humidifier, the hydrogen flow and the PEM fuel cell stack.
The fuel cell stack model is further decomposed in four
main subsystems: stack voltage, cathode flow, anode flow
and membrane hydration. In the model, it is assumed that
the temperature is known and constant since its dynamic is
much more slower than those of the rest of the model.

The model was originally developed for control purposes.
So, it is necessary to first pinpoint which equations belong
to each component. In order to do so, every component
is modelled apart. This means that internal and external
variables are considered apart for each component, and then
extra equations will be defined to interconnect the differ-
ent components. Following this procedure, the component
behaviour can be easily modelled, as well as system faults
defined. Note that, by doing this, the number of variables and
equations involving the complete model is increased. How-
ever, the redundancy degree is preserved, meaning that no
extra computing effort is expected. In fact, all the structural
properties needed for diagnosis will remain unaltered.
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The resulting FCS system model is a complex and large-
scale model involving 96 equations and 96 unknown vari-
ables.

Three different kinds of equations are distinguished:com-
ponent equations, known variable equationsandcomponent
interconnection equations. Component equationsrefer to the
equations that model the FCS system components.Known
variables equationsare introduced in the model to indicate
that some model variables are assumed known.Compo-
nent interconnection equationsdescribe the interconnections
among components.

In Figure 2, the resulting structural model is depicted in
matrix form where the equation set corresponds to rows
and the variable set corresponds to columns. A dot in the
(i, j) element indicates that there exists an edge incident to
equationei ∈ M and variablexj ∈ X , i.e., (ei, xj) ∈ A.
Note that the structural model of the FCS system is a
just-determined model where all unknown variables can be
computed, i.e. the model can be used for system simulation.

A set of faults has been defined for this benchmark
[23]. Each fault affects a primarily equation by changing
a parameter or a variable, so that the relation between a
fault and an equation is unique. Table I summarizes the
faults considered in this work3. Other faults could be easily
included in this set, that should be related to other model
equations. Another assumption is that only single faults are
allowed. This means that two or more faults can not occur
in the system at the same time.

There are two compressor faults,fcp1 andfcp2. Faultfcp1
represents an electric fault where the electrical resistance
varies (e.g. due to an overheating). Faultfcp2 represents a
malfunction of the compressor box. The supply manifold
is affected by faultfsm which represents, for example, a
leak. Air cooler and static humidifier faults are represented,
respectively, byfac andfsh. These two faults are simulated
by a change in the setpoints values,Tdes andφdes, meaning
that the device is not working properly. Next fault,fst, affects

3As already mentioned, a complete description of how these faults are
modeled can be found in [23]

the fuel cell stack. It represents a malfunction in the outlet
cathode (e.g. the outlet is partially stuck). Last faultfom
affects the outlet manifold. It could represent either a leak
or an outlet obstruction.

TABLE I

SYSTEM FAULTS

Fault Fault description
fcp1 compressor motor fault
fcp2 compressor box fault
fsm supply manifold fault
fac air cooler fault
fsh static humidifier fault
fom outlet manifold fault
fst stack cathode fault

B. Sensor placement for fault detection and isolation

Installing sensors for measuring any variable is not always
possible or it may be difficult. For instance, measuring some
internal variables in the fuel cell stack would require insert-
ing probes into the stack which is physically impossible.
Other variables like a partial mass in the gas mixture is
considered not measurable because a complex measuring
equipment is needed and therefore installing such device
would not be realistic for practical applications. In all, 30
variables will be assumed to be measurable. The set of
candidate sensors and their corresponding cost is depicted
in Table II.

Different dimensionless costs have been assigned to each
measurable variable according to the ease of installation and
the price of its corresponding sensor. For example, note that
measuring humidity or vapour in gases has a large cost since
the sensors are expensive and difficult to install in the system.
On the other hand, installing sensors to measure air tempera-
tures or pressures is easy. Moreover, their measurements are
rather reliable. Therefore, this kind of sensors have a smaller
cost. Air flow, angular speed and motor torque are assumed
to be measurable at an intermediate cost.

If all candidate sensors were installed, the maximum
diagnosis performance would be achieved. For this particular
application, all faults would be detectable and the isolability
index would be maximised (I(S) = 2×

(

7

2

)

= 42). However
the cost of installing all sensors would beC(S) = 1594.

Assume that a maximum budget for investment on instru-
mentation has been set to 32 by the FCS system owner.
Hence, the company wants to install a set of sensors such that
the maximum budget is no exceeded but the diagnosis perfor-
mance is maximised. Algorithm 1 has been implemented in
Matlab and applied to solve this problem with̄C := 32. After
20.72 seconds, the algorithm returns the following optimal
sensor configuration:

S∗ ={icp, Tcp,out, Tsm,out, psm,out, Tsh,out, psh,out,

pom,out, pca,out}

The cost of this sensor configuration is 27 and the isolabil-
ity index is 36. This means that this is the lower cost sensor



variable description cost
ωcp compressor angular speed 10
τmcp compressor motor torque 25
icp compressor current 1

Wcp,out compressor exit air mass flow rate 40
Tcp,out compressor exit air temperature 2
φcp compressor exit air relative humidity 150

Wsm,out supply manifold exit air mass flow rate 40
Tsm,out supply manifold exit air temperature 2
psm,out supply manifold exit air pressure 5
φsm,out supply manifold exit air relative humidity 150
Wac,out air cooler exit air mass flow rate 40
Tac,out air cooler exit air temperature 2
φac,out air cooler exit air relative humidity 150
Wsh,out static humidifier exit air mass flow rate 40
Tsh,out static humidifier exit air temperature 2
psh,out static humidifier exit air pressure 5
φsh,out static humidifier exit air relative humidity 150
Wv,inj static humidifier injected vapour mass flow rate100
Wom,out outlet manifold exit air mass flow rate 40
pom,out outlet manifold exit air pressure 5
φom,out outlet manifold exit air relative humidity 150
Wafc,out regulated hydrogen mass flow rate 40
pan,in FCS anode input hydrogen pressure 5
Wan,out FCS anode exit hydrogen mass flow rate 40
pan,out FCS anode exit hydrogen pressure 5
φan,out FCS anode exit hydorgen relative humidity 150
Wca,out FCS cathode exit air mass flow rate 40
pca,out FCS cathode exit air pressure 5

Wv,an,out FCS anode exit vapour mass flow rate 100
Wv,ca,out FCS cathode exit vapour mass flow rate 100

TABLE II

MEASURABLE VARIABLES AND COSTS.

configuration that has an isolability index of 36, which is the
maximum diagnosis performance that can be achieved under
the stated budgetary constraint.

It is clear that there is a trade-off between the budgetary
constraint and the best achievable isolability index. In order
to illustrate it, Algorithm 1 has been run with different
values forC̄. Figure 3 shows these results. Remark that there
exists a sensor configuration with a cost of 114 that has
the same isolability index gained by installing all candidate
sensors. On the other hand, there does not exist any sensor
configuration such that all faults are detectable with a smaller
cost than 21. So they are not shown in the figure. It is
interesting to note that just a 16% increase in the budget
(i.e., from 32 to 37) would lead to an 8% increase in the
isolability index (i.e., from 36 to 39). This new optimal
sensor configuration would involve just the addition of a
sensor measuringωcp to the previous optimal sensor set.

Regarding the search strategy performance issues, with 30
candidate sensors there are more than109 (i.e.,230) possible
sensor configurations. However, applying Algorithm 1 with
C̄ := 32 just 99 nodes are visited, and thus inspected.

VI. CONCLUSIONS

The sensor placement problem in a complex system has
been addressed in this paper. A FCS system involves a high
number of equations which involve look-up tables, maps
and other nonlinear relations. Such complexity requires the
development of suitable tools. The approach provided in this
paper addresses it applying a structural analysis framework.
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In the literature, most approaches to optimal sensor place-
ment try to solve the following problem: search the minimum
cost sensor configuration that satisfies a given set of fault
diagnosis specifications. A key contribution of this work
is the generalization of this problem by introducing the
concept of the isolability index as a measurement of the fault
diagnosis performance achievable in a given system. This
measurement allows to set up a sensor placement problem
based on a fault diagnosis performance maximization under
the constraint of a given maximum sensor configuration cost.
Thus, the new formulation presented in this paper becomes
appropriate in complex systems with a bound in the budget
assigned to instrumentation.

In model-based fault diagnosis, diagnosis is basically
performed based on the response of residual generators,
which are derived from the model equations. When the
model includes nonlinearities, deriving a residual generator
can become a difficult or even a practically infeasible task.
In this paper, the causality framework introduced in [19] has
been followed to address it. Thus, the solution obtained from
the sensor placement analysis will guarantee a set of easily
computable residual generators.
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[9] C. Svärd and M. Nyberg, “A mixed causality approach to residual
generation utilizing equation system solvers and differential-algebraic
equation theory,” ser. 19th International Workshop on Principles of
Diagnosis (DX-08), Blue Mountains, Australia, 2008.

[10] V. de Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov,
“Structural analysis for fdi: a modified, invertibility-based canonical
decomposition,” in20th International Workshop on Principles of
Diagnosis (DX-09), Stockholm, Sweden, June 2009.

[11] A. Rosich, A. A. Yassine, and S. Ploix, “Efficient optimal sensor
placement for structural model based diagnosis,” in21th International
Workshop on Principles of Diagnosis (DX-10), Portland, USA, Octo-
ber 2010.

[12] L. A. M. Riascos, M. G. Simoes, and P. E. Miyagi, “On-linefault
diagnostic system for proton exchange membrane fuel cells,” Journal
of Power Sources, vol. 175, no. 1, pp. 419 – 429, 2008.

[13] T. Escobet, D. Feroldi, S. de Lira, V. Puig, J. Quevedo, J. Riera, and
M. Serra, “Model-based fault diagnosis in pem fuel cell systems,”
Journal of Power Sources, vol. 192, no. 1, pp. 216 – 223, 2009.

[14] A. Ingimundarson, A. G. Stefanopoulou, and D. A. McKay,“Model-
based detection of hydrogen leaks in a fuel cell stack,”Control Systems
Technology, IEEE Transactions on, vol. 16, no. 5, pp. 1004 –1012,
September 2008.

[15] Q. Yang, A. Aitouche, and B. Ould-Bouamama, “Structural diag-
nosability of fuel cell stack system based on bond graph tool,” in
Proceedings of IFAC Safeprocess’09, Barcelona, Spain, 2009.

[16] M. Bagajewicz, A. Fuxman, and A. Uribe, “Instrumentation network
design and upgrade for process monitoring and fault detection,” AIChE
J., vol. 50, no. 8, pp. 1870–1880, Aug. 2004.

[17] A. Rosich, R. Sarrate, and F. Nejjari, “Optimal sensor placement for
fdi using binary integer linear programming,” in20th International
Workshop on Principles of Diagnosis (DX-09), Stockholm, Sweden,
June 2009.
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