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Abstract

Robots operating in a workspace can localize themselves by querying nodes of a sensor-network deployed in the same
workspace. This paper addresses the problem of computing the minimumnumber and placement of sensors so that the localization
uncertainty at every point in the workspace is less than a given threshold. We focus on triangulation based state estimation where
measurements from two sensors must be combined for an estimate.

We show that the general problem for arbitrary uncertainty models is computationally hard, and present approximation
algorithms for two geometric instances. For the general problem, we present a solution framework based on integer linear
programming and demonstrate its practical feasibility with simulations.
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Sensor Placement for Triangulation Based
Localization

I. I NTRODUCTION

A sensor network is a network of small, cheap devices
equipped with sensing, communication and computation ca-
pabilities. With concurrent advances in robotics, embedded
sensing, computation and communication technologies, sensor
networks are becoming increasingly popular in automation
applications such as surveillance, inventory control and traffic
management.

The presence of a sensor-network in a robot’s workspace can
provide robust, scalable solutions to a number of fundamental
robotics problems. As an example, consider the localization
problem whose solution is a prerequisite for many robotics
applications. Sensor network technology offers a scalable
solution for localization of heterogeneous, independent robot
teams operating in a large and complex environment: We can
deploy a calibrated camera-network in such an environment
and the robots can query these sensors for localization –
instead of relying on on-board sensors and customized appli-
cations. Other robotics problems which can benefit from the
existence of a sensor network include navigation, search and
surveillance.

In the present work, we address the problem of placing
sensors so that when a robot queries sensors to estimate
its own position, the uncertainty in the position estimation
is small. We focus on triangulation-based localization where
two sensors are needed for estimating the position of the
robot. A good example of this scenario is a robot localizing
itself in a camera network. As is well known, a robot cannot
localize itself with a single measurement from a single camera.
At least two different camera measurements are required for
triangulation. However, the quality of the localization isa
function of the robot-camera geometry. We consider a scenario
where the location of the cameras are known to the robot.
To localize itself, the robot queries two cameras and merges
their measurements. The problem we address is:given the
workspace and an uncertainty threshold, what is the minimum
number, and placement of cameras so that the uncertainty in
localization is less than the threshold at every point in the
workspace?

In this paper, we make three main contributions:
First, we show, via a simple reduction, that the general

sensor placement problem (where the uncertainty measure is
arbitrary) is NP-Complete.

Second, we focus on geometric uncertainty measures and
present two approximation algorithms for two different in-
stances. In the first instance, the uncertainty in the estimation
is proportional tod(s1,x)×d(s2,x)

sin 6 c1xc2
where x is the position of

the robot,s1 and s2 are the locations of the sensors andd
denotes the Euclidean distance. We present an approximation

algorithm for this uncertainty model that deviates from the
optimal solution only by a constant factor both in the number
of cameras used and the uncertainty in localization. However,
in this instance, we do not address the issue of visual-
occlusions in the workspace (Equivalently, it is assumed that
there are no obstacles in the workspace and the cameras are
omnidirectional.). In the second instance, we address visual
occlusions and present alog-factor approximation algorithm
for a more restricted uncertainty measure (where thresholds
for allowable angle and sensor-target distances are given).

Finally, we present a general framework based on math-
ematical programming which, in practice, can be used to
solve the placement problem for arbitrary uncertainty models
while incorporating sensing constraints such as occlusions. We
demonstrate the practical feasibility of this approach through
simulations.

After an overview of the related work (Section I-A), we
present a formal definition of the placement problem (Sec-
tion II-B) and establish its hardness (Section II-C). We con-
tinue with the approximation algorithms (Sections III and IV)
and the mathematical programming framework (Section V).

A. Related work

The most well-known placement problem that involves cam-
eras is the Art Gallery Problem [3] where a minimum number
of omnidirectional cameras is sought to guard every point
in a gallery represented by a polygon. Art gallery problems
emphasize visibility/occlusion issues and there is no explicit
representation of the quality of guarding – which is the focus
of this paper.

Coverage and placement problems received a lot of atten-
tion recently. The problem of relocating sensors to improve
coverage has been studied in [4]. In this formulation, the
sensors can individually estimate the positions of the targets.
However, the quality of coverage decreases with increasing
distance. Placement of sensors which jointly estimate the states
of targets is an active research area.

In [5], the problem of controlling the configuration of a
sensor team which employs triangulation for estimation is
studied. The authors present a numerical, particle-filter based
framework. In their approach, the optimal move at each time
step is estimated by computing ann dimensional gradient
numerically wheren is the size of the joint configuration
space of the team. In [6], the problem of relocating a sensor
team whose members are restricted to lie on a circle and
charged with jointly estimating the location of the targets
was studied. In [7], the authors study the problem of placing
cameras in a polygonal workspace in such a way that for each
point of interest, there are two cameras which can view the
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s1 = (x1, y1) s2 = (x2, y2)

~x = (x, y)

θ

θ1 θ2

Fig. 1. The uncertainty in estimating the position of the target atx is given
by: U(s1, s2, x) =

d(s1,x)×d(s2,x)
sin θ

point at a “good” angle. The authors present an approximation
algorithm which guarantees that the number of sensors is
within a logarithmic factor of the optimal value. The second
approximation algorithm presented in this paper (Section IV)
is based on this work. Our contribution is in extending this
algorithm to handle distance constraints.

Finally, we note that the placement problem can be viewed
as a clustering problem where the cluster centers correspond
to the chosen sensor locations. For example, in thek-center
problem, we are given a set of locations for centers and a set
of targets. The objective is to minimize the maximum distance
between any target and the center closest to it. In the placement
problem, studied here, there are two centers associated with
each location and the cost is much more involved than the
Euclidean distance. We were unable to find any literature
that addresses this type of clustering problems. Therefore, the
placement algorithm presented in Section III may also be of
independent interest.

II. T HE PLACEMENT PROBLEM

Before we formalize the placement problem and establish
its hardness, we start with an overview of uncertainty models
for triangulation based state estimation.

A. Uncertainty in triangulation

The term triangulation refers to inferring the state~x of
a target (e.g.: a robot) by solving a system of simultaneous
equations~z = h(~x) where~z denotes the observation vector.
As an example, consider the process of estimating the position
~x = [x y] of a target (or a robot) using measurements from two
cameras. We assume calibrated cameras, hence their locations
are known with respect to a common reference frame and their
measurements can be interpreted as angles with respect to the
horizontal axis (see Figure 1).

In this case, we have observablesθ1 and θ2 and solve for
the unknownsx andy in:

tan θ1 =
y1 − y

x1 − x
tan θ2 =

y2 − y

x2 − x

One way of establishing the accuracy of the estimation is
to study the effect of small variations in the observables on
the estimate. This effect can be established by studying the
determinant of the JacobianH = δh

δ~x which is commonly

referred to as the Geometric Dilution of Precision (GDOP).
In case of cameras, theGDOP is given by

U(s1, s2, x) =
d(s1, x)× d(s2, x)

| sin 6 s1xs2|
(1)

where d(x, y) denotes the Euclidean distance betweenx
and y and θ = 6 s1xs2 is the angle between the sensors
and the target (Figure 1). The details of this derivation can
be found in [8]. In general, Equation 1 suggests that better
measurements are obtained when the sensors are closer to the
target and the angle is as close to 90 degrees as possible.

Similarly, the uncertainty in merging the measurements of
two range sensors (which correspond to circles centered at the
sensor location, passing through the target), can be shown to
be:

U(s1, s2, x) =
1

| sin 6 s1xs2|
(2)

In general, it is desirable to obtain a placement algorithm for
arbitrary uncertainty measuresU(s1, s2, x) so as to incorpo-
rate additional sensing constraints such occlusion, minimum
clearance required by cameras etc. In the next section, we
formalize the sensor placement problem.

B. Problem formulation

Let W be the workspace which consists of all possible
locations of the robot. For concreteness, throughout the paper
we assume thatW is discretized and given by a set of points
on the plane. Similarly, letS be the set of candidate sensor
locations1. In addition to the two setsW andS, we are given
a function,U(si, sj , w) for all si, sj ∈ S andw ∈ W which
returns the uncertainty in localization when the robot is at
locationw ∈ W and queries sensorssi and sj . The function
U can be easily defined to incorporate sensor limitations. For
example, for cameras, we can defineU(si, sj , w) to be infinite
if one of the cameras can not see the pointw.

Let S = {s1, . . . , sn} ⊆ S be a set of sensors placed at
locationss1 throughsn. When there is no danger of confusion,
we will usesi to denote the location of sensori as well. For a
given placementS and a locationw ∈ W, let assign(w,S) =
arg minsi,sj∈S U(si, sj , w) be the assignment function which
chooses the best pair of sensors for locationw.

The uncertainty of a placement is defined asU(S,W) =
maxw∈W U(w, assign(w,S)).

We can now define the sensor placement problem:
Given a workspaceW, candidate sensor locationsS, an

uncertainty functionU and an uncertainty thresholdU∗, find
a placementS with minimum cardinality such thatU(S,W) ≤
U∗.

C. Hardness of the sensor placement problem

The hardness of the sensor-placement problem can be easily
obtained by establishing its relation to the well-knownk-center

1Here, it is implicitly assumed that the only relevant sensor parameter
is location. If there are additional sensor parameters such as orientation,S
corresponds to the entire parameter set.
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problem, which is NP-Complete. In thek-center problem, we
are given a set of locations for centers and a set of targets along
with a distance functiond(i, j) between the centers and the
targets. The objective is to minimize the maximum distance
between any target and the center closest to it [9]. The converse
problem, where the maximum distance from each vertex to its
center is given and the number of centers is to be minimized,
is also NP-Complete [10]. Further, this problem is equivalent
to the dominating set problem [10] which is not only NP-
complete, but also can not be approximated within a factor
better thanlog n in polynomial time [11]. Here,n denotes the
number of target locations. The converse problem can be easily
seen to be a special case of the sensor placement problem
where the uncertainty function is chosen asU(si, sj , w) =
min{d(si, w), d(sj , w)}. Hence, sensor placement is at least
as hard as the mentioned problems.

In the next sections, we present polynomial time approxi-
mation algorithms for two geometric versions of the placement
problem.

III. A CONSTANT FACTOR PLACEMENT ALGORITHM

In this section, we present a placement algorithm to mini-
mize the error metric given by Equation 2, repeated here for
convenience:

U(s1, s2, x) =
d(s1, x)× d(s2, x)

| sin 6 s1xs2|
Let U∗ be a desired uncertainty threshold andOPT be

an optimal placement. We will first present an algorithm to
compute a placementS with |S| ≤ 3|OPT | andU(S,W) ≤
6U∗ whereU∗ is the uncertainty threshold. Let us call such a
placement as acompetitive placement. We assume thatW ⊆
IR2 and cameras can be placed on the entire plane. However,
as we will see shortly, no competitive placement can afford to
place cameras too far from the workspace.

Let R =
√

U∗. The proposed placement algorithm consists
of two phases. In the first phase, we choose a set of centers
which will be used to determine the location of the cameras. In
the second phase, we place cameras on circles whose centers
coincide with the chosen centers and whose radii are at most
2R. We will show that this placement is a competitive one.

The centers are chosen by the following algorithm:

Algorithm selectCenters(workspaceW):
• C = ∅, W ←W
• while W 6= ∅

– w ← an arbitrary point inW
– C ← C ∪ {w}
– W ←W \ {x : d(x,w) < 2R, x ∈W}

The following lemma shows that the number of centers is
small with respect to|OPT |.

Lemma 1:Let C be the set of centers chosen by selectCen-
ters and OPT be an optimal placement.|OPT | ≥ |C|.

Proof: For each centerc ∈ C, let us defineDc to be a
disk centered atc with radiusR. Since the distance between

s1

s2 s3

A23

A12A13

B12

B23

B13

B′

12

B′

23

B′

13

C12

C23

C13C′

12

C′

23

C′

13

Fig. 2. This figure shows the partitionsA, B and C, and their divided
partitions. Three sensors(s1, s2, s3) are placed on the circumference of

circle
“
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q

1
4
r

”

. The areaXij represents the region in the partitionX,
whereplaceSensorsassignssi andsj for all w ∈ Xij .

the centers is at least2R, the disksDc are pairwise disjoint.
We claim that each diskDc contains at least one camera in
OPT, which proves the lemma.

Suppose the claim is not true and letc be a center such that
OPT has no cameras inDc. But then, for anysi, sj ∈ OPT ,
the error in observing the center ofDc will be:

U(si, sj , c) =
d(si, c)d(sj , c)

| sin 6 sicsj |
≥ d(si, c)d(sj , c) > R2 = U∗

However, this means that OPT exceeds the error threshold on
c. A contradiction!

In the second phase, we use the set of centers to determine
the placement of cameras.

Algorithm placeSensors(centersC):
• for eachci ∈ C

– Wi ← {w : d(ci, w) < 2R,w ∈W}
– ri = maxw∈Wi

d(ci, w)
– Place three camerassi1, si2, si3 oncircle(ci, r

′
i) with

r′i = 3

√

1
4ri, at anglesπ

2 , 7π
6 and 11π

6 (See Figure 2).

Herecircle(c, r) denotes the circle centered atc with radius
r. The angles are with respect to a coordinate frame whose
origin is at the center of the circle and orientation is arbitrary.

Clearly, algorithmplaceSensorsplaces at most3 · |OPT |
cameras (Lemma 1). All we need to show is that for any point
w in the workspace, we can find two camerassj andsk such
thatU(w, sj , sk) ≤ 6U∗. The next lemma shows the existence
of such camera pairs.

Lemma 2:For each centerci ∈ C, let Wi be the set
of points defined in algorithmplaceSensors. Let Si =
{si1, si2, si3} be the set of three cameras placed byplace-
Sensors inside circle(ci, ri), along the circumference of

circle(ci, r
′
i = 3

√

1
4ri), at anglesπ2 , 7π

6 and 11π
6 . For any point

w ∈ Wi, there exists an assignment of two sensors(sij ,sik),
such thatU(w, sij , sik) ≤ 6U∗ wheresij , sik ∈ Si.
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s1

s2 s3

m12 m13

m23

π
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2π
3

c

w

r′

Fig. 3. We divide△s1s2s3 into three parts using the bisectors of the
triangle. The shaded area shows the possible set of locations for w such that
the assignment(s2, s3) satisfiesU(w, s2, s3) < 3

2
r2.

Proof: For each pointw insidecircle(c, r), we will show
that one can pick two sensors such that the uncertainty in
observingw from these two sensors is less than3

2r2. The
lemma follows sincer2 ≤ 4U∗.

We divide the set of points insidecircle(c, r) into three
parts: A = △s1s2s3, B = circle(c, r′) \ A and C =
circle(c, r) \ circle(c, r′). Here, we abused the notation to
avoid additional notation:circle(c, r) refers to all points inside
the circle. Note that△s1s2s3 is an equilateral triangle. This
fact is used throughout our proof. Letw be any point inside
circle(c, r). We consider three casesw ∈ A, w ∈ B and
w ∈ C, and show that the uncertainty atw in all cases is less
then 3

2r2.
Case (w ∈ A):
We partition A into three regions using angular bisectors as

shown in Figure 2. In present the proof for the casew ∈ A23.
The proof for both casesA12 andA13 is symmetric.

Let w be a point insideA23 (Figure 3). First, we establish a
bound on the angle6 s2ws3, which we use to bound distances
dist(s2, w) anddist(s3, w). Finally, we obtain a bound on the
uncertainty using these separate bounds on the numerator and
the denominator in the uncertainty formula.

The angle6 s2ws3 is always between the angles,6 s2s1s3

and 6 s2cs3. Hence, the angle between the sensors and the tar-
get is bounded byπ3 ≤ 6 s2ws3 ≤ 2π

3 . It is easy to verify that
dist(s2, w) ≤ dist(s2, s1) anddist(s3, w) ≤ dist(s3, s1), i.e.
dist(s2, w), dist(s3, w) ≤

√
3r′. Finally, the uncertainty at

w ∈ A is bounded byU(w, s2, s3) ≤ 3r′2

sin π/3 < 1.38r2.
Case (w ∈ B):
Let us partitionB into 6 equal parts using the bisectors

of triangle s1s2s3 as shown in Figure 2. The indicesij in
Bij correspond to the sensors assigned to all points inside
Bij . Note that,Bij andB′

ij are symmetric with respect to the
bisector of the line segmentseg(si, sj).

Suppose thatw lies in the region between the arc of a
circle arc(m′

13, s3) and the line segmentsseg(s3,m13) and
seg(m13,m

′
13) (See Figure 4 and alsoB23 in Figure 2).

Let l be the tangent line tocircle(c, r) at the point s3.
For any pointp ∈ B, p′ represents the intersection point
between circumferencecircum(c, r) and the rayray(s2, p).
For clarity, let’s relabel the following angles:α = 6 s2ws3,
β = 6 s2w

′s3, γ = 6 ws3w
′ and δ = 6 s1s3w

′. Since
angle β is an inscribed angle,β = π

3 holds. The angleγ
is lower bounded by0 and upper bounded byδ (otherwise,

s1

s2 s3

m13

m′

13

α

β

γ
δ

π
3

w′

w

l

r′

Fig. 4. Inside the region bounded byarc(m′
13, s3), seg(s3, m13) and

seg(m13, m′
13), anyw seess2 ands3 with properties:π

3
≤ 6 s2ws3 ≤ 2π

3
andU(w, s2, s3) < 3

2
r2.

w would lie outside ofB). Further, δ is restricted by the
tangent linel andseg(s3m13), which shows that0 ≤ δ ≤ π

3 .
Finaly, using the factα = β + γ and the bounds established
earlier, we can bound6 s2ws3: π

3 ≤ 6 s2ws3 ≤ 2π
3 . The

distancesdist(s2, w) and dist(s3, w) reach their maximum
value whenw is onm′

13, i.e. dist(s2, w) ≤ dist(s2,m
′
13) and

dist(s3, w) ≤ d(s3,m
′
13). Hence, the bound on uncertainty of

w ∈ B is U(w, s2, s3) ≤ 2r′2

sin π/3 < 0.92r2.
Case (w ∈ C):
We partition C into 6 equal pieces using bisectors of

△s1s2s3 as shown in Figure 2. In what follows, we establish a
bound for an arbitrary pointw inside the regionC13. The proof
for the regionC ′

13 is symmetric with respect to the bisector of
seg(s1, s3). The generalization of this proof to other regions
is obtained by rotating thecircle(c, r) in the counterclockwise
direction around its origin by angles:2π/3 and4π/3.

For any pointw inside C13, we assign sensorss1 and s3

(See Figure 5). To obtain a bound on the uncertainty, we first
establish a lower bound onsin(6 s1ws3), followed by an upper
bound on the productdist(s1, w) × dist(s3, w). Finally, we
show that both bounds are reached at the same point.

For any pointp inside C, p′ denotes the intersection of
line(c, p) with circum(c, r′), andp′′ denotes the intersection
of line(c, p) with circum(c, r). Let w be a point insideC.
The angle6 s1ws3 is always between6 s1w

′s3 and 6 s1w
′′s3.

Note that, 6 s1w
′s3 = π/3 as it is an inscribed angle of

circle(c, r′). Therefore,sin(6 s1ws3) is bounded from below
by min(sin(6 s1w

′′s3), sin(2π/3)).
For the remaining part of the proof, we will representw

in polar coordinates as shown in Figure 5. Let us define
three functions:Mult(ρ, θ) = dist(s1, w) × dist(s3, w),
Angle(ρ, θ) = 6 s1ws3, and Uncert(ρ, θ) is the uncertainty
of the target. These three functions are given by:

Uncert(ρ,θ) = Mult(ρ,θ)
sin(Angle(ρ,θ))

Mult(ρ,θ) =
q

(ρ2−2ρr′ sin θ+r′2)(ρ2−2ρr′ cos(θ+ π
6 )+r′2)

Angle(ρ,θ) = π
3 +arctan

“

r′−ρ sin θ
ρ cos θ

”

+arctan

 

r′−ρ cos(θ+ π
6 )

ρ sin(θ+ π
6 )

!

Note that,−π/6 ≤ θ ≤ π/6 andr′i ≤ ρ ≤ ri.
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s1

s2 s3

x

y

w′′

w′

s′′

3

w

ρ
θ

Fig. 5. In this figure, we representw with ρ and θ parameters in polar
coordinate system. For allw ∈ C13, sin( 6 s1ws3) ≤ sin( 6 s1s′′3 s3) and
dist(s1, w) × dist(s3, w) ≤ dist(s1, s3

′′) × dist(s3, s3
′′)

We showed before that sin(6 s1ws3) is bounded
by min(sin(6 s1w

′′s3), sin(2π/3)) where w′′ is a
point on circumference of circle(c, r). Notice that
sin(6 s1s

′′
3s3) < sin(2π/3), consequently sin(6 s1ws3)

is bounded by min−π/6≤θ≤π/6(sin(Angle(r, θ))). The
function Angle(r, θ) has its local maxima and minima at
θ = π/6 and θ = −π/6, respectively and it is increasing in
its domain. This can be shown by investigating the boundary
of domain and roots of the first derivative ofAngle(r, θ).

Both sin(Angle(π/6, θ)) andsin(Angle(−π/6, θ)) are less
than 1, accordinglysin(Angle(r, θ)) gets its minimum value
at θ = −π/6.

By Euclid’s exterior angle theorem (in any triangle the angle
opposite the greater side is greater), we havedist(s1, w) ≤
dist(s1, w

′′) and dist(s3, w) ≤ dist(s3, w
′′). Therefore,

Mult(ρ, θ) ≤ Mult(r, θ) holds. By the extreme value the-
orem,Mult(r, π/6) ≤Mult(r, θ) ≤Mult(r,−π/6).

We showed that both the maximum value of product
dist(s1, w) and dist(s3, w), and the minimum value of
sin(6 s1ws3) appears at the same pointw = s′′3 . As a result,
the uncertainty ofw ∈ C holds the following:

U(w, s2, s3) ≤ Mult(r,−π/6)
sin(Angle(r,−π/6) < 1.38r2.

Hence, in all cases we have an uncertainty value which
is less than3

2r2. Finally, sinceplaceSensorsguarantees that
r2 ≤ 4U∗ for all w ∈ W, U(W,S) < 3

2r2 ≤ 6U∗.
In Figure 2, we present numerical results for the optimal

partitioning of the disk and the corresponding uncertaintyval-
ues (for the placement given byplaceSensors). The maximum
uncertainty matches the bound obtained in Lemma 2. However,
the optimal assignment scheme is slightly different than the
one used in the proof (cf. Figure 6).

Is it possible to obtain a better uncertainty guarantee? In
general, let us define an(α, β)-approximation algorithm for
sensor placement be an algorithm which places at mostβ
times the number of cameras used in an optimal placement
and guarantees a deviation of factorα in uncertainty. From
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Fig. 6. Top figure shows the optimum assignment incircle(c, r) and bottom
figure shows the uncertainty incircle(c, r).

the results presented above, we have(6, 3) approximation
algorithm. Clearly, there is a trade-off betweenα andβ. Using
algorithmplaceSensorsas a subroutine, we can obtain a class
of approximation algorithms by covering each disk of radius
2R (used byplaceSensors) with k disks of smaller radius.
This guarantees a smaller deviation fromU∗. The problem
now becomes a disk-covering problem: Given a disk of radius
2R, find the smallest radiusr(k) < 1 required fork equal
disks to completely cover the original disk. Clearly, this would
guarantee a reduction ofr(k)2 in the performance guarantee
of placeSensors, at the expense of increasing the number of
cameras by a factork. The interested reader can find different
values ofr(k) in [12].

IV. A LOG FACTOR APPROXIMATION ALGORITHM FOR

HANDLING OCCLUSIONS

In this section, we present an approximation algorithm for
a modified version of the uncertainty metric for triangulation
with bearing-only sensors such as cameras. As stated in
Equation 1, the uncertainty in estimating the position of a
target at locationx from sensorss1 ands2 is given by:

U(s1, s2, x) =
d(s1, x)× d(s2, x)

| sin 6 s1xs2|
Our goal is to design a placement algorithm which mini-

mizes this uncertainty metric and addresses occlusions in the
workspace.
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When there are obstacles in the workspace, a sensor place-
ment strategy which solely minimizes this uncertainty value
may result in a placement with some properties which are
undesirable in practice. For example, in an optimal placement,
a target may make a very large angle with the cameras it
is assigned to. This is because the optimal solution may
compensate the decrease in the value of| sin 6 s1xs2| by
putting the cameras too close and still obtain a low uncertainty
value. Or similarly, under this metric, two cameras can be
assigned to a target in a way that one camera is very far and
the other is very close. We note that the placement algorithm
presented in the previous section avoids these degeneracies by
design in the case where there are no obstacles.

Therefore, instead of minimizing the product, it makes sense
to explicitly restrict the distances and the angle between the
sensors and the target. In this section, we present an ap-
proximation algorithm for the problem of placing a minimum
number of sensors with the following properties.

Let S be a placement of sensors, andx be a target location.
We assume that the workspace is represented by a polygon
and say that a camera ats1 seesa pointx inside the polygon,
if the line segments1x lies completely inside the polygon.

The placementS is called a valid placement if, for allx in
the workspace, two sensorss1(x), s2(x) ∈ S can be assigned
to x such that

(i) both s1(x) ands2(x) seex,
(ii) α∗ ≤ 6 s1(x)xs2(x) ≤ π − α∗, and
(iii) d(s1(x), x) ≤ D∗ andd(s1(x), x) ≤ D∗

whereD∗ andα∗ are user defined threshold values. In [7],
Efrat et al. present an approximation algorithm for placing
sensors that addresses constraints (i) and (ii). In this section,
we present an extension of their algorithm to accommodate
constraint (iii) as well. We start with some preliminaries.

A. Preliminaries

A set system is a pair(X,R) whereX is a subset andR is
a collection of some subsets ofX. We say that a set of subsets
R′ ⊆ R coverX if their union is equal toX. The minimum
set cover problem is to find a minimum cardinalityR∗ ⊆ R
that coversX.

As an example, consider the following camera placement
problem: we are given a set of candidate target locationsX
(which lie inside a polygon) along with a set of candidate
camera locationsS. The goal is to place a minimum number
of cameras such that every point inX is visible from at least
one camera. This problem (which we call visibility cover) can
be formulated as a set-covering problem for the set system
(X,R) where R contains a subsetR(s) for each candidate
sensor locations ∈ S whereR(s) = {x|x is visible froms}.

The following definition is introduced in [7]: A pointx is
two-guardedat angleα by sensorss1 and s2, if the angle
6 s1xs2 is in the interval[α, π − α] and both sensors can see
x.

The algorithm in [7] proceeds in two stages. In the first
stage, a visibility coverC1 of X is computed. This gives
a placement where each locationx is assigned to a single
sensors1(x). In the second stage, a second set of sensorsC2

is computed such that, for eachx ∈ X, there exists a sensor
s2(x) ∈ C2 such thatx is two-guarded bys1(x) ands2(x) at
angleα/2. The existence of the setC2 is guaranteed by the
following lemma.

Lemma 3 ([7]): Let C∗ be a set of sensors that two-guard
X at angleα andC1 be a visibility cover ofX. Then, for any
point x ∈ X there exist sensorss1 ∈ C∗ and s2 ∈ C1 that
two-guardx at angleα/2.

Let OPT be the minimum set of sensors that two-guardx.
It is shown in [7] that one can computeC1 andC2 above in
polynomial time such that|C1 ∪ C2| = O(OPT log OPT ).
In other-words, one can simultaneously satisfy condition (i),
obtain a 2-approximation for (ii) and alog approximation to
the number of sensors.

In the next section, we show how this result can be extended
to satisfy condition (iii). That is, we show how two setsC1

andC2 can be computed in a way that simultaneously satisfy
conditions (i) and (iii), obtain a 2-approximation for (ii)and
a log approximation to the number of sensors.

B. ComputingC1 and C2

A standard algorithm to compute a cover of a given set
system (X,R) is the greedy algorithm: we initialize all
elements inX to be uncovered. Next, we select a subset
R′ from R which contains the most number of uncovered
elements. We mark all elements ofR′ as covered and repeat
this process until all elements ofX are covered (or we run out
of subsets inR). It is well known that the greedy algorithm is a
log|X|-approximation, that is, the number of subsets chosen is
guaranteed to be within a factor ofO(log |X|) of the optimal
solution.

For geometric set systems, however, once can usually do
better:

Definition 4: Given a set system(X,R), let A be a subset
of X. We sayA is shatteredby R if ∀Y ⊆ A, ∃R′ ∈ R
such thatR′ ∩ A = Y . The VC-dimensionof (X,R) is the
cardinality of the largest set that can be shattered byR [13].

In what follows, we will utilize two well-known properties
of set systems with bounded VC-dimension.

(i) The VC-dimension of a set system obtained by the
intersection or union of two set systems of constant VC-
dimension is also constant [14].

(ii) Let (X,R) be a set system and(X ′, R′) be its dual:
X ′ = R and R′ = {R(x) : x ∈ X} whereR(x) is the set
of subsets inR which contain the elementx. If (X,R) has a
constant VC-dimension, so does its dual [15].

Our algorithms rely on the fact that, for sets systems
with finite VC-dimensiond, there are algorithms which can
compute a set-cover of the set system whose size is at most
O(d·log OPT ·OPT ) whereOPT is the size of the minimum
set-cover [16], [17]. In other words, in the finite (or bounded)
VC-dimension case, one can obtain alog OPT approximation,
as opposed to thelog |X| approximation obtained by the
greedy algorithm.

Let (X,R) be a set system whereX is a set of points on
the plane. We say(X,R) is a disk set systemif R is obtained
by intersectingX with the set of all possible disks on the
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Fig. 7. The sensors2 coversx because it satisfies the distance constraint
and, together withs1(x), it satisfies the angle constraint as well.

plane. Similarly, we call(X,R) a triangle set systemif R
is obtained by intersectingX with all triangles. It is a well
known folklore fact that both disk and triangle set systems
have constant VC-dimension. Another example of a set system
with finite VC-dimension is the following. LetX be a set of
points in a polygonP . For each possible pointp ∈ P , let
V (p) be the set of those points inX that are visible from p.
In [18] it was shown that the set system(X, {V (p) : p ∈ P}
has a constant VC dimension ifP is simply-connected or has
a bounded number of holes.

We now present the details of the algorithm to constructC1.
Recall thatX is a set of candidate target locations we would
like to cover andS is the set of candidate sensor locations.
Both C and S are points sampled inside a polygon which
represents the workspace. We are given thresholdsD∗ and
α∗ that specify the angle and distance constraints. LetOPT
be a minimum cardinality sensor placement which satisfies
constraints (i) – (iii).

To compute setC1, we first build the set system(X,R′)
where

R′ = {R′(s)|s ∈ S}
R′(s) = {x|x ∈ X ∧ x is visible froms ∧ d(x, s) ≤ D∗}

The VC-dimension of this set system is constant. This is
because the set system can be expressed as an intersection of
a visibility set system and a disk set system.

Since there is a set-cover of(X,R′) of size at most|OPT |,
one can find a cover of sizeO(OPT log OPT ) in polynomial
time using [16], [17]. This gives us the setC1. For each target
locationx ∈ X, let s1(x) be a sensor inC1 which is visible
from x with d(x, s1(x)) ≤ D∗.

In order to computeC2, we build the set system(X,R′′)
where

R′′ = {R′′(s)|s ∈ S}
R′′(s) = {x|x ∈ X ∧

x is visible froms ∧
d(x, s) ≤ D∗ ∧
6 s1(x)xs ∈ [

α

2
, π − α

2
]}

Lemma 3 can be easily modified to show that eachR′′(s)
is nonempty if the optimal solution which satisfies all three
constraints exists. We now show that(X,R′′) has a constant
VC-dimension. Consider a pointx ∈ X, together with sensor
s1(x) assigned in the previous stage. We say that a sensor
s2 coversx if it seesx, satisfies both the distance constraint
and the angle constraint together withs1(x). Now consider
a set system(S, Q) whereS is the set of candidate sensor
locations andQ is obtained by inserting for each target
location x ∈ X, the set of sensors which coverx. This
set system can be obtained as follows: First, construct a set
system corresponding to intersections with triangle pairsas
shown in Figure 7. Second, intersect this new set system with
visibility and disk set systems. Since all these set systemshave
finite VC-dimension, the resulting set system has finite VC-
dimension as well. The set system(X,R′′) is simply the dual
of (S, Q) and hence, has a finite VC-dimension.

V. A MATHEMATICAL PROGRAMMING FORMULATION

There are many different types of sensors with differ-
ent measurement characteristics. Since the general placement
problem is hard, when designing placement algorithms, con-
straints imposed by the estimation process must be utilized.
However, designing a dedicated placement algorithm for every
type of sensor is a tedious process. Therefore, in this section,
we present a general solution framework which can be utilized
to solve placement problems that arise in practice.

The general sensor placement problem can be formulated
as an integer linear programming (ILP) problem as follows:

minimize
∑

j

yj (3)

subject to

yj ≥ xu
ij ∀u, i, j (4)

xu
ij = 0 ∀u, i, j with U(u, i, j) ≥ U∗ (5)

∑

i

zu
i = 2 ∀u (6)

∑

i

xu
ij = zu

i ∀u, j (7)

∑

j

xu
ij = zu

j ∀u, i (8)

We define a binary variableyj for every locationj 2. If
yj = 1, a sensor will be placed at locationj. Other binary
variables arezu

i andxu
ij . The indexu varies over all possible

target locations whereasi and j vary over candidate sensor
locations. Variableszu

i become 1 when the sensor at location
i is assigned to target locationu. Variablesxu

i,j are set to 1
if the target locationu is monitored by sensors at locationsi
and j.

Equation 3 is the cost function, i.e. the total number of
sensors. The constraints on the placement are imposed by
Equations4 – 8.

2If the sensors have more parameters,yj is obtained by discretizing the
entire parameter space. For example, for limited field-of-viewcameras, one
would define ayj variable for each (position, orientation) pair.
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The first constraint (Equation 4) forces that if a sensor at
location j will be assigned to a targetu, then a sensor must
be placed at locationj in the first place. Equation 5 enforces
sensing and quality constraints: it prevents sensor pairs which
do not satisfy the constraints from being assigned to a target
location.

Equation 6 guarantees that two sensors are placed to monitor
the targetu.

Finally, Equations 7 and 8 make the connection between the
variablesxu

ij andzu
i . The variablexu

ij can be 1 if and only if
i andj are the locations for the sensor pair which is assigned
to monitor the targetu. All the otherxu

ij variables with same
u but differenti andj locations will be 0 (due to Equation 6).
Therefore, if i′ and j′ are the two locations for the sensors
to be assigned for the targetu′, the total of sumxu′

i′j will be
equal tozu′

i′ andzu′

j′ .
Since the sensor placement problem is NP-Complete, this

ILP can not be solved in polynomial time in its full generality.
However, there are many efficient algorithms for solving ILPs
in practice. In the next section, we demonstrate the practical
feasibility of this approach in simulations.

VI. SIMULATIONS

In this section, we present two simulations to demonstrate
the feasibility of using an ILP solver for sensor placement.

We computed optimal placements which satisfy all three
constraints (visibility, angle and distance) given in Section IV
for two environments. The top rows in Figures 8 and 9
correspond to the solutions obtained by the ILP solver. For
these simulations, we used the Cbc ILP solver on the NEOS
server [19]. Both environments occupied the unit square.
The angle constraint was chosen to beπ/2 and the distance
constraint was0.4 units. The first environment contained 68
target locations and 84 sensor locations, whereas the second
environment had 64 target locations and 70 sensor locations.
The number ofxu

ij variables in the ILP introduced in Section V
weremn2 wherem is the number of target locations andn is
the number of candidate sensor locations. However, most of
these variables were redundant. For example, ifU(u, i, j) >
U∗, we could remove the variablexu

ij . This alone reduced the
number ofxu

ij variables for the first environment from 479808
to 3470 and for the second environment from 313600 to 2324.
The same approach was applied to remove other redundant
binary variables. For example, a variablezu

i were removed
whenu was not visible fromi or the distance between them
was greater than the threshold.

In these two simulations, we chose the maximum grid size
(number of locations) for each environment such that the
ILP can be solved under 5 minutes. The ILP for the first
environment contained 4612 variables and 2184 constraints.
The ILP for the second environment contained 3196 variables
and 1668 constraints.

The bottom rows in Figures 8 and 9 are obtained using
the approximation algorithm presented in Section IV. For
simplicity, we used the greedy algorithm to compute setsC1

andC2. In the first environment, the approximation algorithm
matched the performance of the ILP solution. In the second

environment, however, it placed 18 sensors as opposed to the
16 placed by the ILP.

VII. C ONCLUSION AND FUTURE WORK

In this paper we addressed the sensor placement problem
in scenarios where robots operating in a workspace query the
nodes of a sensor-network to localize themselves. Specifically,
we studied the problem of computing the minimum number
and placement of sensors so that the uncertainty at every point
in the workspace is less than a given threshold. We focused
on triangulation based state estimation where measurements
from two sensors must be combined for an estimation.

After showing that the general problem for arbitrary un-
certainty models is computationally hard, we focused on two
geometric instances and presented approximation algorithms
with provable performance guarantees. We also presented a
framework based on integer linear programming which can
be used to solve general placement problems in practice. We
demonstrated the practical feasibility of this approach with
simulations.

Our future work includes the deployment of a real camera
network in our building and to address placement (calibration)
uncertainties. Future research also includes extending our
results to three dimensions.
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