
Citation: Ghasemzadeh, M.; Kefal, A.

Sensor Placement Optimization for

Shape Sensing of Plates and Shells

Using Genetic Algorithm and Inverse

Finite Element Method. Sensors 2022,

22, 9252. https://doi.org/10.3390/

s22239252

Academic Editor: Jiawei Xiang

Received: 24 October 2022

Accepted: 22 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensor Placement Optimization for Shape Sensing of Plates
and Shells Using Genetic Algorithm and Inverse Finite
Element Method
Maryam Ghasemzadeh 1,2,3 and Adnan Kefal 1,2,3,*

1 Composite Technologies Center of Excellence, Istanbul Technology Development Zone,
Sabanci University-Kordsa Global, 34906 Istanbul, Turkey

2 Integrated Manufacturing Technologies Research and Application Center, Sabanci University,
34956 Istanbul, Turkey

3 Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
* Correspondence: adnankefal@sabanciuniv.edu

Abstract: This paper reports the first investigation of the inverse finite element method (iFEM) cou-
pled with the genetic algorithm (GA) to optimize sensor placement models of plate/shell structures
for their real-time and full-field deformation reconstruction. The primary goal was to reduce the
number of sensors in the iFEM models while maintaining the high accuracy of the displacement
results. Here, GA was combined with the four-node quadrilateral inverse-shell elements (iQS4) as the
genes inherited through generations to define the optimum positions of a specified number of sensors.
Initially, displacement monitoring of various plates with different boundary conditions under con-
centrated and distributed static/dynamic loads was conducted to investigate the performance of the
coupled iFEM-GA method. One of these case studies was repeated for different initial populations
and densities of sensors to evaluate their influence on the accuracy of the results. The results of
the iFEM-GA algorithm indicate that an adequate number of individuals is essential to be assigned
as the initial population during the optimization process to ensure diversity for the reproduction
of the optimized sensor placement models and prevent the local optimum. In addition, practical
optimization constraints were applied for each plate case study to demonstrate the realistic applica-
bility of the implemented method by placing the available sensors at feasible sites. The iFEM-GA
method’s capability in structural dynamics was also investigated by shape sensing the plate subjected
to different dynamic loadings. Furthermore, a clamped stiffened plate and a curved shell were also
considered to assess the applicability of the proposed method for the shape sensing of complex
structures. Remarkably, the outcomes of the iFEM-GA approach with the reduced number of sensors
agreed well with those of the full-sensor counterpart for all of the plate/shell case studies. Hence,
this study reveals the superior performance of the iFEM-GA method as a viable sensor placement
strategy for the accurate shape sensing of engineering structures with only a few sensors.

Keywords: inverse finite element method; genetic algorithm; optimal sensor placement; deformation
monitoring; structural health monitoring

1. Introduction

Mechanical structures are prone to various defects and faults that can rapidly grow
and lead to tragic failures. Numerous accidents causing human and environmental loss
have been annually reported due to structural anomalies and deficiencies in aerospace
vehicles, civil platforms, and ship/marine structures [1–3]. The main portion of these faults
is associated with the reduction in the overall structural integrity; therefore, the practice
to determine a structure’s real-time information regarding its global or local state, known
as structural health monitoring (SHM), plays a vital role in the repair and maintenance of
structures [4–7].
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SHM is a sensor-integrated procedure that processes the data collected from a sensing
system to detect the defects triggered under operational conditions. SHM consists of five
keys: (i) sensing system description, (ii) sensor data acquisition, (iii) shape/strain/stress-
sensing process, (iv) global/local failure prediction, and (v) decision-making process.
Real-time deformation evaluation [8,9], vibration-based monitoring [10–13], and other
SHM approaches [14,15] involve the implementation of sensors such as accelerometers,
displacement sensors, or strain gauges [16–18], which are directly mounted on structural
components to measure mechanical responses. SHM can assess the structural integrity,
cracks, and damage during their initial phase and subsequently reduce the maintenance
costs. The implementation of SHM for the real-time reconstruction of full-field displace-
ments of the structure, known as shape sensing, has grown as emerging method in recent
research efforts [19–23].

The Inverse finite element (iFEM) method, a novel approach of SHM proposed by
Tessler and Spangler [24], originally employed a three-node inverse-shell element (iMIN3)
for the shape sensing of plate structures. iFEM is a strain/displacement based SHM
technique which, in contrast to other available SHM methods, is suitable to monitor any
displacement of complex topologies and stress fields with intricate boundary conditions
by using a network of in situ strain sensors and measured strains [25–29]. The advantages
of iFEM have recently drawn significant attention since various scientists have attempted
to improve the available iFEM equations to achieve better results in the last decade. For
example, the seminal work of Kefal et al. [30] is worth highlighting herein, which increased
the practical utility of iFEM by developing a novel inverse-shell element, iQS4. This
element includes hierarchical drilling rotation degrees-of-freedom (DOF) to extend the
suitability of the method for the shape sensing of large-scale structures. Moreover, the
iQS4 element has the advantage of avoiding singular responses when simulating complex
shell structures. Furthermore, features of its formulation can prevent membrane and shear
locking phenomena. These benefits have motivated many other investigations conducted
by employing iQS4/iFEM methodology in the last few years. As an example, Kefal et al.
applied iQS4 elements to reconstruct the displacement field of a chemical tanker [31], a
container ship [32], and a bulk carrier [33] from discrete strain sensors and subsequently
obtained their full-field strains and stresses in real-time. The experimental strains were
simulated with high-fidelity finite element method (FEM) analysis where hydrodynamic
loads of the large-scale structures for a certain wave frequency were calculated with an
in-house panel-method code [34]. Li et al. [35] implemented iFEM/iQS4 to analyze the
offshore wind turbine tower structure under static and dynamic loading conditions; they
attempted to reconstruct the full-field displacement by considering the gravity of the
upper frame and tower for the static loading and aerodynamic forces for the dynamic
cases. Moreover, Espesito et al. [36] applied iFEM/iQS4 methodology to monitor the
displacement of a wing box model and compared its shape-sensing capability with other
methods (e.g., modal method [37] and Ko’s displacements theory [38]). This study proved
that the iQS4 element provides superior displacement accuracy while requiring a slightly
more demanding number of sensors than the other methods for shape sensing.

With the recent development of composite materials and their application in different
structures, monitoring their structural integrity and safety has become an important topic
of interest in the field of SHM [39–41]. In this regard, many researchers have employed
iFEM to perform deformation reconstruction, strain sensing, and the stress monitoring
of composite structures [42–45]. These studies include applications of iFEM to at/curved
composite structures with thin/thick or moderately thick lamination regimes. Most im-
portantly, Kefal et al. [45] enhanced the available iFEM formulation [44] by incorporating
the full kinematic relations of the refined zigzag theory [46] with the iFEM least-squares
formulation. The enhanced iFEM method [45] provided highly accurate stress and strain
distribution results through the thickness of composite laminates using a few strain sensors.
Apart from composite structures, Gherlone et al. [47] attempted to estimate the frame
and beam deformation using iFEM based on the kinematic relations of Timoshenko’s
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theory. Moreover, Roy et al. [48] reformulated this inverse method for the shape sens-
ing of beams with complex cross-sections. These involved specific fixed coefficients and
functions for identifying the shear strain variation in any cross-section and evaluating
its equivalent value at its centroid. Perusing improvement of the results of analyzing
structures with iFEM, Kefal et al. [49] offered the coupling of isogeometric analysis (IGA)
with the iFEM methodology for the shape sensing of complex/thin shell structures. The
isogeometric iFEM approach aims to provide highly accurate small/large-deformation
shape reconstruction of the doubly curved shell structures with a lower number of sensors.
Furthermore, Papa et al. [50] took advantage of iFEM for real-time full-field displacement
reconstruction of a UAS wing box with the utilization of a triangular shape at the shell
element, whereas Kefal et al. [51] promoted the model of iFEM combined with RZT to
shape sense airplane-wing-shaped plates under different types of loading. These research
efforts extracted the strain data from sensors with various densities and alignments, and
then compared its results with the computational or experimental methods. Development
in sensor technology and the evolution in the current sensor products (e.g., suggesting fiber
Bragg grating (FBG) sensors) have enabled the exploitation of many sensors; however, due
to the weight restriction for many structures and the cost of instrumentation, the number
of applicable sensors is limited. Regarding the importance of this issue, many researchers
have focused on exercising the location and alignment of the sensors to achieve the most
accurate data by using the minimum possible number of sensors. For this goal, some
studies have been conducted to determine the optimum sensor placement [52–57]. One of
the highlighted research studies in this field [52,53] examined the optimum arrangement of
sensors by minimizing the norm of the Fisher information matrix, which was obtained from
the modal and measurement of the covariance matrix. In addition, Salama [54] suggested
implementing the modal kinetic energy as a criterion to select the eligible sensors to achieve
an optimum arrangement.

Despite the available literature on the optimum sensor placement in vibration-based
structural health monitoring, the lack of a comprehensive method to define the optimum
placement in strain-based SHM is evident. The primary strategy of the inverse finite
element method is to collect data from the strain rosette sensors and employ it through
the iFEM formulation to regenerate the real-time full-field deformation [58–63]; thus, the
location of these strain gauges plays an essential role in the certainty of the results. In this
regard, Kefal et al. [58], in the endeavor of introducing a new inverse eight-node element
(iCS8) to shape sensing curved structural components of marine structures, investigated
the effect of the sensor sparsity and its effect on the accuracy of the results. In another effort,
Abdollahzadeh et al. [59] reduced the number of sensors and changed full-sensor cases
with reduced cases to examine the effect of sensors on the accuracy of the results; in this
research, the author improved the accuracy of reduced sensor cases by pre-extrapolated
strain measurements. Kefal et al. [60] employed isogeometric iFEM analysis for shell
structures to improve the displacement results of coarse mesh with a few sensors compared
to the results of high-fidelity FEM analysis. Roy et al. [61] struggled to suggest a proper
position for sensors on a rectangular plate. They explored various sensor patterns, taking a
specified volume fraction for sensors and implemented them in such locations to achieve
the best result and the minimum displacement error.

As above-mentioned, most of the research conducted to examine the best place for
sensors by leveraging iFEM methodology have estimated the critical locations for available
sensors by examining experience-based-selected/specific positions and the trial and error
process. However, this process is not always practical for complex structural topologies and
mixed boundary conditions. Thus, to scrutinize the role of sensor placement based on iFEM,
the absence of an automatic approach to define the best spots for sensors is evident. This
key gap is filled with the objectives of the present study by attempting to reduce the number
of sensors in the iFEM method while maintaining the accuracy of the results. The primary
and novel aim of the current work is to couple the genetic algorithm (GA) optimization
method with iFEM to determine the best locations for a given number of sensors. To the
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best of our knowledge, this was the first study that merged iFEM-GA methods to optimize
the sensor placement model of the plate/shell structures for the purpose of shape sensing
in the literature.

The rest of this paper is structured as follows. First, the theoretical basis of iFEM
and the implementation of iFEM-GA is introduced. Then, the number of efficient initial
populations in GA is examined to avoid local optimization, premature convergence, and
ensure the proper diversity to ascertain the most eligible parents for the next generation.
After this, as a practical application, a clamped plate with different loading conditions
was considered to investigate the optimum locations for the available sensors with and
without geometrical constraints. Moreover, the dynamic response of the plate subjected to
time-dependent loadings with different frequencies was reconstructed using the proposed
method to capture the different vibrational modes. The obtained results for all cases were
compared with high-fidelity FEM and full-sensor placement models of the iFEM analysis.
Afterward, a stiffened panel was considered to search for the best locations for the sensors
to investigate the applicability of the introduced method in reconstructing the deformation
of the complex geometries. Next, the proposed method was implemented to search for the
optimum positions for the sensors in curved shell structures to the real-time reconstruction
of its displacement. Finally, several closing remarks regarding the scientific advances of the
iFEM-GA algorithm are presented in the concluding section.

2. Mathematical Formulation of iFEM-GA Method
2.1. The iQS4 Inverse-Shell Element

The four-node quadrilateral inverse-shell element, iQS4 [30], was implemented in this
research study to examine the performance of the iFEM-GA method. The iQS4 element
was considered with a uniform thickness of 2h. Node coordinates were defined according
to the local coordinate system of (x, y, z) located at the centroid of the mid-plane (z = 0) of
the element. Here, (x, y) and z ∈ [−h, h] describe the in-plane and thickness coordinates,
respectively. Kinematic relations were established according to the first-order shear defor-
mation theory. The membrane displacements were interpolated using in-plane translational
and drilling rotational degrees of freedom (DOF) whereas deflection and counterclockwise
bending rotations were defined by out-of-plane translational and in-plane rotational DOF
according to [30]. Taking relevant first-order derivatives of the kinematic variables, the
normal and shear strains of the iQS4 element can be determined as:

εxx
εyy
γxy

 ≡ e(ue) + zκ(ue) = Bmue + zBbue (1a)

{
γxz
γyz

}
≡ g(ue) = Bsue (1b)

where the symbols of e, κ, g, and ue represent the membrane strains, bending curvatures,
transverse-shear strains, and nodal DOF of the iQS4 element, respectively. Moreover, the
Bm matrix contains the corresponding derivatives of shape functions that construct the
membrane strain response of the element. Furthermore, Bb and Bs hold the derivatives
of shape functions that define the element bending response. The explicit forms of these
matrices can be found in [30].

The input for iFEM formulation is the discrete strain data collected from on-board
sensors such as conventional strain rosette or embedded fiber-optic sensor (fiber Bragg
grating, FBG) networks. These data have a profound effect on the accuracy of the obtained
results. To experimentally compute the membrane section strain eε and bending curvature
κε corresponding to the analytical counterparts (as given in Equation (1a)), the in situ strain
rosettes need to be mounted at the top and bottom surface of the plate (iQS4 model), as
depicted in Figure 1.
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The measured strain data obtained from discrete n locations within element
(xα = xα, xα,±h) were utilized to express the discrete values of membrane strain eε

α and
bending curvature κε

α as:

eε
α =

1
2


ε+xx + ε−xx
ε+yy + ε−yy
γ+

xy + γ−xy


α

(α = 1, n) (2a)

κε
α =

1
2h


ε+xx − ε−xx
ε+yy − ε−yy
γ+

xy − γ−xy


α

(α = 1, n) (2b)

One can use these discrete values of the experimental section strains in smoothing
procedures [28] to obtain their continuous form within the element, eε

α → eε and κε
α → κε .

If a single set of in situ section strains is available per iQS4 element, namely n→ 1 , the
continuous form of the section strains, eε and κε can be assumed to be uniformly distributed
(spatially constant) within the element. This reasonable assumption is often desirable for a
practical and low-cost sensor placement model. It is also always valid since an individual
element domain has an infinitesimally small surface compared to the whole surface of
the structure being monitored. For such a sensor placement configuration, the centroid of
the element can be chosen to mount the top and bottom strain rosettes on the structure to
experimentally obtain the average values of eε and κε over the iQS4 element [62,63].

The iFEM methodology minimizes a weighted least-squares function of the experi-
mental and numerical section strains with respect to the nodal DOF of the full discretization
to perform shape sensing of the structure using the discretized model and sensor data. This
function is carefully defined for an individual iQS4 element as:

Φe(ue) =
1

Ae

x

Ae

(we‖e(ue)− eε‖2 + wk(2h)2‖κ(ue)− κε‖2 + wg‖g(ue)− gε‖2)dxdy (3)

In the above equation, g(ue) corresponds to the transverse shear strain, and gε stands
for the experimentally collected transverse shear strain. In the deformation of plate/shell
structures, the contribution of transverse shear is much smaller than that of the bending
curvature; thus, this term can be safely omitted. On the other hand, the weighting constant
of we, wk, and wg are positive values associated with the section strains, controlling the
consistency between the experimentally measured data and analytical section strains.

In the general form of the inverse finite element method, all of the inverse elements
contain the sensor; however, this study attempted to obtain the result using a reduced
number of sensors. To this end, weighting constants play a significant role in conducting
accurate deformation reconstruction. In the case of the existing measured in situ measures,
the weighting constants are set to unity; for the missing strain component values, the
corresponding weighting constants are assigned to a very small number (e.g., β = 10−4). To
maintain the accuracy of the results, the location of the strain-less elements, expressly the
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place of available sensors, is crucial. Note that since there is no experimental measurement
following shear stress, its conjugated constant value was set to a very small number
wk = 10−4. Rewriting the Euclidean norms of Equation (3) in terms of the Bi(i = m, b, s)
matrices and subsequently minimizing the Φe(ue) for the nodal DOF yields the following
form [30]:

∂Φe(ue)

∂ue = keue − fe = 0 (4)

In Equation (4), ke is the element shape matrix, which can be written in terms of the
Bi(i = m, b, s) matrices as:

ke =
1

Ae

x

Ae

(we(Bm)TBm + wk(2h)2(Bb)
T

Bb + wg(Bs)TBs)dxdy (5)

where fe is the right-hand-side vector, which can be defined utilizing the data collected
from the sensors as:

fe =
1

Ae

x

Ae

(we(Bm)Teε + wk(2h)2(Bb)
T
κε + wg(Bs)TBs)dxdy (6)

The surface area integrals in Equations (5) and (6) can be numerically computed for
the iQS4 element by employing the Gaussian quadrature method with 2× 2 integration
points. Specifically, if a single set of top–bottom strain rosettes are available for the iQS4
element, the experimental section strains can be assigned identically (as per the assumption
of the spatially uniform distribution elaborated above) for all Gaussian points during
the numerical integration in Equation (6). Accordingly, during the optimization process
detailed in Section 2.2, we considered that each iQS4 element can include either a maximum
of one set of sensor data or no sensor measurements to obtain the most practical and low-
cost sensor placement models.

Ultimately, for the entire discretization, the formulation derived for an element can be
extended to the global linear equation through an assembly process (i.e., based on standard
finite element procedures):

KU = F (7a)

K =
nel

∑
e=1

(Te)TkeTe, F =
nel

∑
e=1

(Te)Tfe, U =
nel

∑
e=1

(Te)Tue (7b)

where the summation symbol represents the classical finite element assembly process; K,
U, and F are the assembled shape matrix, global nodal displacement, and global right-
hand-side (experimental strain) vector, respectively; and Te is the transformation matrix of
the nodal DOFs of the iQS4 element from the local to the global coordinate system. This
equation system can be solved by (1) applying a problem-specific constraint condition
to the K matrix, K→ KR ; (2) taking its inverse, K−1

R ; and (3) multiplying the resultant
inverse matrix with a reduced form of the global experimental strain vector, FR. As a result,
the displacement DOF of all nodes, representing the global deformed shape of the full
discretization, can be obtained from this solution.

2.2. Coupling iFEM and Genetic Algorithm

Weighting constants in Equations (5) and (6) are the keys to link the iFEM formulation
and genetic algorithm. The values of we = wk = 1 are associated with the existence of
a sensor within an element and can be assigned to the desired number of the inverse
elements concerning the specified sensor volume fraction. Moreover, these weighting
values enable us to remove sensors from some elements through strain-less inverse element
analysis. For this type of measurement, all weighting factors are set to a very small
value, we = wk = wg = 10−4. GA is a heuristic optimization algorithm based on the
natural selection of species. It works based on defining the initial population, reproduction,
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mutation of the gene band, and natural selection to reach the most favorable population. In
this optimization method, genes carrying information of the problem form a string known
as individuals (chromosomes), where a defined number of these individuals constitutes
an initial population. According to Darwin’s theory, individuals struggle for existence,
and their chance to survive depends on their genes accommodating to the environment.
In this paper, the binary coding method was adopted to assign values to the genes [64].
The number of genes was set according to the number of inverse elements employed in
iFEM discretization. To allocate ntotal sensors in nnel elements, a string with nel degrees of
freedom that represents an individual in the genetic algorithm is considered. Accordingly,
assigning 1 to each gene is interpreted as placing a sensor in the corresponding element,
and 0 means the iFEM element without a sensor is:

τe =

{
1 iQS4 element e with sensor

0 iQS4 element e without sensor
(e = 1, 2, 3, . . . , nel) (8)

The genetic algorithm sets sensors in random locations to shape individuals (chromo-
somes) of the initial population. Each of the chromosomes needs to meet the constraints of
the optimization problem, which are the number of available sensors, ntotal , and feasibility
of the selected locations, in this study. Table 1 concisely illustrates the above explanation
with λ individuals randomly assigned a value to their genes, which were considered as the
initial population of the optimization problem.

Table 1. Mechanical properties of the orthotropic and isotropic materials.

Individual
Gene Value for Each Element, τe Sum of Gene Values,

nel
∑

e=1
τee=1 e=2 . . . e=nel

1 1 0 . . . 1 ntotal
2 0 0 . . . 1 ntotal

. . . . . . . . . . . . . . . . . .
λ 1 1 . . . 1 ntotal

The next step is selecting the most eligible parents to produce the next generation. GA
ranks the individuals based on the cost function and picks the most qualified couples to
have their offspring. Each couple of parents mix their genes based on a crossover system to
perform their next generations. Crossover is an operator that exchanges the parents’ genes
to generate offspring. There are several crossover techniques, and uniform crossover was
chosen in this paper [64]. Assume the case that two strings of P1 = p11, p12, p13, . . . , p1e
and P2 = p21, p22, p23, . . . , p2e are the chromosomes corresponding to the parents and
F1 = f11, f12, p13, . . . , f1e and F2 = f21, f22, p23, . . . , f2e are the mutated descendants.
Equation (9a,b) state the relation between the parent and offspring genes based on uniform
crossover as:

f ′1e = γp1e + (1− γ)p1e (9a)

f ′2e = γp2e + (1− γ)p2e (9b)

where γ is a random binary number that specifies the correlation of each parent’s gene
in the corresponding offspring gene. Since the crossover step randomly exercises the
gene value, the obtained genes of offspring f ′1e and f ′2e may not fulfill the condition of
the optimization problem (immature offspring). Therefore, these generations undergo
the mutation process where the sensors are randomly added or dismissed to achieve the
desired offspring (mutated offspring). Note that controlling the population heterogeneity
is very important to search the global optima and to avoid premature convergence [64];
thus, mutation helps to prevent local optimization and to meet the optimization limitation.
The scheme of blending genes and mutations is illustrated through an example of parents
with ten genes according to Figure 2, where F′1 and F′2 stand for the immature offspring.
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Figure 2. Generating new offspring using the genetic algorithm.

The genetic algorithm is based on the theory of evolution, where the population
consists of the people who persevered and generated offspring [65,66]. The standard that
defines the level of adjustment to the environment is the cost/fitness function. In this work,
the cost function is the error between the reference result (full-sensor iFEM) and the result
of the searched position of sensors through each generation of GA as:
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where for a node with the index of i, ure f
i , vre f

i , wre f
i , θ

re f
xi , and θ

re f
yi are the reference solutions

and the genetic results at the jth generation for the given node are uj
i , vj

i , wj
i , θ

j
xi, and θ

j
yi.

Additionally, (φ1, φ2, φ3, φ4, φ5) are the coefficients determining the role of each of the
kinematic variables in the cost function, and subsequently the optimum positions of the
sensors. Through each iteration of the genetic algorithm process, the eligible parents will
pass the generation to their offspring, which locate sensors where they make the cost
function the minimum.

Sensor placement optimization is a restricted problem regarding the number of sensors,
so it is required to admit this into the GA problem. The cross-over process may violate
the optimization problem restrictions, as shown in Figure 2. This paper assumed that
new offspring modify the inherited genes to meet the problems’ condition through the
mutation stage. Each individual is correlated with the possible contribution of sensors, and
the problem aims to attain the optimum configuration. The reproduction process will be
stopped if the best configuration among the population remains constant after a specified
number of regenerations. To complete the description, the whole process of the genetic
search to find the optimal sensor placement is shown in Figure 3.
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3. Numerical Examples

In this section, several examples were solved to investigate the accuracy of the iFEM-
GA method and determine the optimum arrangement for the considered number of sensors
in each case. The results of direct FEM analyses were employed to numerically simulate the
experimental strain measures obtained from the in situ strain sensors. The obtained strain
data were utilized as the input for the iFEM analysis of each case of study. First, iFEM
analysis was performed by allocating sensors in all inverse elements to develop a reference
solution for each of the benchmark problems. Then, a cantilever plate with a concentrated
load at its free edge was examined to investigate the best number of initial populations for
the optimization problem. With the obtained initial population, the number shape sensing
of the plate under various boundary conditions was achieved with iFEM-GA having either
the whole structure or restricted area of it as the search space. Finally, the practicality of
the proposed method was exercised by running the shape-sensing analyses based on the
iFEM-GA method for two cases of stiffened plate and curve structure.

3.1. Cantilever Plate under Static/Dynamic Transverse Loading

As the first example, the square plate depicted in Figure 4 was examined to see the
effect of the location of the sensors and attempted to optimize that using GA. The simulation
presented in this section examines the sensor’s best location for the plate with 400 iQS4
elements [30], while only 20% of iQS4 elements (80× 2 sensors) carried a sensor. In this
case, the left edge of the plate was clamped, and a transverse loading of F = 1 N was
applied at the middle of the right edge. The thickness of the plate was equal to 3.716 mm
with the material properties of E = 70 GPa and ν = 0.3.
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The execution of the genetic algorithm method to detect the best locations for the
sensors depends on the number of individuals in the initial population. Therefore, the
initial population should be adequate to have sufficient diversity to achieve the optimum
result. Some studies have understood the effect of the initial population [67] and their
relationship with global optimization; however, this paper attempted to find the proper
initial population by studying different cases. Therefore, the convergence of the fitness
function was studied for the various numbers of the initial population.

Figure 5 compares the convergence of the fitness function with the initial 10, 20, and
100 individuals. The fitness function converged to a specific number in all three cases;
however, the convergence number, which implies the corresponding cost function for the
optimum configuration with the defined initial population, was different. According to
Equation (10), the cost function is the square error between the reference solutions and
the results obtained through each generation of iFEM-GA analysis. With 10 individu-
als in the initial population, the cost function converges to a considerable number (cost
function = 857), indicating that the optimum configuration of the sensors obtained with
genetic algorithms significantly differed from the global optimum. With 20 as the initial
population, the error was improved (cost function = 158); nevertheless, the corresponding
sensor configuration was not valid. This amount of error is also enormous, indicating
that the problem is locally optimized. To dispose of the local optimization, the initial
population plays an important role. According to Figure 5, with 100 individuals in the
initial population, the cost function converges to a very small number (≈0), showing that
the corresponding arrangement of sensors is globally optimized using GA.
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The genetic algorithm searches for the most eligible individuals and mainly starts
with notable errors, implying that the predecessors do not match the environment and
they cannot reproduce; however, after some generations, the error drastically decreases by
GA to reach the minimum error, which indicates that the defective genes cannot survive
through generations. The randomness of the sufficient initial population can lead to the
globally optimal solution of the optimization problem, but it will also make the results of
each optimization different, in another words, the optimum configuration of the sensors is
not unique [66].

Based on the procedure established in Figure 3, all of the inverse elements in the iFEM
model, primitively, were assumed to be occupied with sensors to achieve the reference
solution. In the next step, a high-fidelity FEM analysis was carried out using the commercial
software of ABAQUS. The mesh independence study was already performed for finite
element analysis, and the most refined mesh consisted of 900 S4R elements that possessed
4500 DOFs. These FEM analyses were utilized to generate the discrete in situ strain
measurements that reproduce the strain data obtained from the FBG sensors accommodated
at the surfaces of the plate. The accurate reference solution, which is denoted by the ‘re f ’
superscript in Equation (10), can be obtained with iFEM with a full-sensor placement
model in which each of the iQS4 elements carries a sensor. Since the verification of the
new element formulation was the main concern, the accuracy of the reference solution was
assessed by comparing the obtained transverse deflection with high-fidelity FEM. Figure 6
depicts the displacement contour plot in the transverse direction using iFEM analysis with
the full-sensor placement model and compared it with high-fidelity FEM results. In this
comparison, the maximum and minimum deflection locations were in good agreement
with the FEM and reference solution. Additionally, the error between FEM and the iFEM
maximum deflection was 0.04%, demonstrating that the iFEM reconstruction with the
full-sensor placement model agreed with the high-fidelity FEM result and can confidently
be considered as the reference solution.
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using the full-sensor placement model.

The required number of sensors for the reference solution is seen to be impractical in
the real test environment; hence, this research aimed to reduce the number of sensors while
having consistent and accurate inverse finite elements output. In situ section strains are the
input of the iFEM, and their values are vital to performing a precise analysis; thus, a GA
optimization algorithm was used to detect the optimum locations for the available sensors,
which was 20% of all of the iQS4 elements (80× 2 sensors in this problem). According
to Figure 5, an initial population of 100 is sufficient to minimize the fitness function
through 200 generations. However, the problem was also considered after the first, 20, and
50 generations. Figure 7 depicts the sensor configuration through the different generations
and the corresponding results of deflection for each arrangement.
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After the first generations from the starting point to explore the optimum positions for
the available sensors, the obtained results conjugated to the configuration of the sensors ac-
cording to the Figure 7a, which showed a 143.66% error compared to the reference solution.
The error value was considerable and interpreted as insufficient generations in reaching the
best state. Through the generations, the population will be created from the most eligible
parents, while the offspring of vulnerable parents, which can be considered as defective
genes, cannot survive to reproduce in the next generation and fail in natural selection.
The error after 20 generations (≈57.96%) compared to that at the beginning showed a
drastic drop; this implies that the infirm part of the population is eliminated with a higher
rate at the initial stages. According to Figure 7c,d, after 50 and 200 generations, the error
reduced to 7.8% and 0.26%, respectively. This small difference with the reference solution
implies that the corresponding value of cost function for both generations converges to an
insignificant value (Figure 5).

From the point of view of sensor configuration, according to Figure 7a, at the initial
generations, the candidate parents for reproduction were mostly separated; however, their
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offspring became closer to connect and create strings. At the last stage, almost all the
sensors were attached and built neuron-like configurations.

There are impediments in deploying sensors, for example, FBG sensors are connected,
and their enforced curve is limited. Thus, there is a restriction in the placing of the sensors.
Abdollahzadeh et al. [59] suggested some experienced-based feasible sensor configurations
for analyzing the structures; however, herein, the goal was to make the results of iFEM-
GA more applicable by applying some geometrical constraints to the sensor optimization
problem. On this point, as a practical example, Figure 8a depicts the adaptable positions for
the available sensors in the plate depicted in Figure 4, and limits the search space of the GA
problem to the highlighted part. By confining the search space of the optimization problem,
the number of genes for individuals decreased to 25% of the initial number. In other words,
the length of the string depicted in Figure 2, shrank by 75%. The GA suggests the sensor
distribution shown in Figure 8b as the optimized locations for the plate in Figure 4 with
the permitted sites in Figure 8a. According to Figure 8b, GA places sensors evenly in two
assigned rows near the edges. The number of sensors in both rows were almost equal,
which means that GA attempted various configurations for the sensors to dispose from
local optimization. Adjusting all of the sensors in a single line, at first glance, can lead to
local optimization; however, since the initial population and generations were properly
investigated (Figure 5), GA achieved global optimization with a starting optimization with
a sufficiently random gene configuration for the parents at each attempt. With the strain
measures collected from the sensors in Figure 8b, the transverse deflection of the plate in
Figure 4 was reconstructed using iFEM-GA with a confined search space. According to
Figure 8c, even with the geometrical constraint, the error between the obtained results and
the reference solution is negligible (≈0.8%), implying that the obtained sensor configuration
was the optimum in the designated area.
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It is important to note that the initial geometrical constraint imposes a limitation to
the search space of the genetic problem. The search space should contain eligible parents
to improve their genes in the future generation to produce qualified offspring. Therefore,
the initial search space is vital to obtain an admissible result. The minor error with the
reference solution indicates that the highlighted area in Figure 8a can constitute eligible
parents to achieve the optimum result.

However, running the problem without a spatial constraint in the first stage is highly
recommended as its corresponding sensor distribution will demonstrate the best genes to
allocate sensors in the optimum offspring’s chromosomes. Hence, if the goal is limiting
the search space of the optimization problem, it can be confined to the zones showing the
maximum sensor density in the optimization problem without a geometrical constraint.

Moreover, the plate presented in Figure 4 was subjected to the sinusoidal load of
F = −2 cos(ωpt)− sin(ωpt) N, with ωp = 10.52 rad/s to assess the practicality of the iFEM-
GA in real-time full-field displacement reconstruction of the structures under dynamic
loadings. The same discretization and number of sensors in Figure 7d (400 iQS4 elements
with 80× 2 sensors) were implemented to produce the transverse deflection of the plate
under the loading F. The circular frequency of the dynamic loading (ωp = 10.52 rad/s) was
reasonably far from the natural frequency of the plate, which was equal to ωn = 16.45 rad/s
for the first mode, to avoid t he structural resonance and beating phenomenon. The overall
structural density was considered as ρ = 2750 kg/m3 to apply the mass effect in the
problem. The dynamic explicit solver of Abaqus CAE was implemented to calculate the
natural frequency of the plate in Figure 4. One of the most advantageous merits of iFEM
is providing a pioneering tool for real-time monitoring of the structures. Hence, using
the dynamic explicit solver in Abaqus CAE, the sensor data necessary to track structural
behavior can be obtained from its high-fidelity FEM counterpart under the dynamic loading
of F. To achieve this, the problem is solved at a variety of time intervals so that its history
of response can be precisely tracked and exploited as the input for iFEM. The obtained
strain measures from the sensors were adjusted according to the configuration in Figure 7d,
at each time interval, which were the input to reconstruct the transverse deflection of the
structure at the considered instants.

To examine the structural response of the plate and validate the accuracy of the presented
method for real-time monitoring, time histories of the displacement predicted by iFEM-
GA analysis were compared with the reference solution at two points of P1 (x = 500 mm,
y = 1000 mm) and P2 (x = 500 mm, y = 500 mm). The simulation was conducted for 5 s
and through this duration, the strain data were collected from the mounted sensors on the
surfaces of the plate with the distribution as shown in Figure 7d.

The time–domain variations of the transverse displacement, w, calculated at p1 and p2
are presented in Figure 9a,b, respectively. In these figures, the duration of the analysis was
divided into 100 time intervals and at each time increment, the transverse displacements of
p1 and p2 obtained with iFEM-GA, were clearly compared with the continuous results of
the reference solution. Each empty mark denotes the response of the point at the specified
instant. Significantly, the results of the reference solution and the proposed method for
the transverse deflection in the considered locations were almost indistinguishable from
each other. The iFEM-GA model predicted highly accurate transverse displacements at
these points, utilizing sensors only in 20% of the iQS4 elements, which fairly agreed with
reference solution.

To further investigate the practicality of the obtained sensor configuration in Figure 7d
to capture the dynamic response of the plate in the Figure 4 under the applied load with
various frequencies and amplitudes, the concentrated load changed to F = 5 sin(ωpt) with
the loading frequency of ωp = 18.83 rad/s. This loading frequency is fairly close to the
natural frequency of the plate (ωn = 16.45 rad/s) to impose the beating phenomenon to
the structure. According to this phenomenon, the maxima and minima of the response
were no longer constant and changed over time. When the natural and loading frequencies
were nearly 180◦ out of phase, the maxima of one wave cancelled the minima of the other,
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whereas when they were nearly in phase, their maxima were summed up, raising the
perceived volume. Figure 10 depicts the displacement response of the plate at two different
points of P1 (x = 500 mm, y = 1000 mm) and P2 (x = 500 mm, y = 500 mm) under
the applied load. According to this figure, the results obtained with the suggested sensor
configuration in Figure 7d through the iFEM-GA procedure were almost indistinguishable
with that in the reference solution. Therefore, this proves the remarkable performance of the
proposed method to track the structural response under loadings with various amplitudes
and frequencies utilizing an identical sensor distribution pattern. Overall, these results
validate the accuracy of the iFEM-GA method for usage in the real-time displacement
monitoring of structures with a fewer number of sensors.
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Figure 9. Time history of the transverse displacement of the plate depicted in Figure 4 under the load
of F = −2 cos(ωpt)− sin(ωpt) N, with ωp = 10.52 rad/s. A comparison of the reference solution and
iFEM-GA analysis at position (a) P1 (x = 500 mm, y = 1000 mm), (b) P2 (x = 500 mm, y = 500 mm).
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Figure 10. Time history of the transverse displacement of the plate depicted in Figure 4 under the load
of F = 5 sin(ωpt) with ωp = 18.83 rad/s. A comparison reference solution and iFEM-GA analysis at
position (a) P1 (x = 500 mm, y = 1000 mm), (b) P2 (x = 500 mm, y = 500 mm).

3.2. Cantilever Plate under Concentrated Loading at Its Corner

To examine the performance of the genetic algorithm in detecting the optimum po-
sitions for the available sensors to maintain the accuracy of the results of iFEM with a
reduced number of sensors, the square plate in Figure 4 was further investigated under
different boundary conditions and loading types. Figure 11 describes a cantilever plate
(fixed at the shaded edge) subjected to a transverse loading, F = 1 N, at the top right corner.
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Figure 11. The cantilever plate under the concentrated force at its corner.

Following the results obtained in Figure 5, the iFEM-GA algorithm was initiated
with 100 individuals as its initial population and iterated up to the maximum generation
of 200. Note that the first constraint of the optimization problem imposes a definite
number of sensors (20% of the inverse elements) as the volume fraction. Therefore, within
the search domain of the plate, the genetic algorithm suggests the optimum locations
for the available sensors, as shown in Figure 12a. Similar to that shown in Figure 7d,
sensors become closer to connect and build a neuron-like string. Although this string
propagates from the fixed edge of the plate, unlike the sensor configuration in Figure 7d, it
does not continue in a straight path to be branched toward the upper and lower surface.
The created string in Figure 12a turned to the corner, where the maximum displacement
occurred. Another secondary branch moved toward the lower corner in the symmetric
position of the loading point. The sensor depicted a higher concentration in the vicinity
of the maximum displacement in the suggested optimum configuration obtained with
GA. Figure 12b,c depicts the transverse deflection obtained using iFEM-GA analysis and
the reference solution, respectively. According to these figures, the discrepancy between
the maximum deflection obtained with iFEM-GA analysis and the reference solution was
almost negligible (less that 1%). Regarding the transverse displacement contours, both
iFEM-GA and the reference solution presented an almost similar distribution. However,
in Figure 13, the number of sensors was the only restraint applied to the optimization
problem; thus, GA explored the optimum locations all over the domain. Nevertheless, in a
practical example, Figure 13a limited the search space to the highlighted parts. In this case,
the suggested sensor configuration concerning the imposed geometrical restrictions in the
search domain and the corresponding reconstructed deflection are depicted in Figure 13b,c,
respectively. According to Figure 13b, the sensors tended to show a higher concentration
near the free edges of the plate, where they experienced higher amounts of deflection, rather
than creating strings in the inner parts of the permitted site. Figure 13c shows consistency
in the maximum values of w in the iFEM-GA analysis with a confined search space and the
reference solution in Figure 12c as well as its corresponding contour. The equivalent error
between the maximum values of transverse deflection was equal to 6%. However, this
agreement was not valid over the area of the plate. To better comprehend the deviation of
the results acquired by GA optimization from the reference solution for both analyses with
the whole domain and constrained area as the search space, the transverse deflection was
plotted through the path that connects the middle of the side edges according to Figure 14.
The GA results with the entire domain as the search space agreed with the reference
solution very well; however, with the geometrical restriction, the transverse deflection had
considerable deviation from the reference solution, which can be disregarded concerning
the goal of the simulation.
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3.3. Partially Clamped Plate under Concentrated Loading at Its Center

Figure 15 represents the square plate depicted in Figure 4, which was clamped at its
left and right edges. The iFEM-GA method attempts to reconstruct the real-time full-field
displacement of this plate under two concentrated forces, F = 5 N, applied at an equal
distance from both side edges. To achieve the best accuracy of the results with iFEM-
GA analysis, where only 20% of thee iQS4 elements carry sensors, the sensor placement
model in Figure 16a was suggested by genetic optimization. In this configuration, the
sensors create strings initiated from the clamped edges to join in the center of the plate.
Figure 16b depicts the reconstruction of the transverse deflection of the plate utilizing
the strain data collected from the sensors distributed according to Figure 16a. While the
reference solution depicts a smoother transverse displacement contour in comparison to
that iFEM-GA, there was a small inaccuracy between the obtained maximum deflection
with either method (≈1% ). Although the obtained result in Figure 16 using the proposed
method showed good agreement with the reference solution, organizing the sensors in
the offered composition in Figure 16a is challenging. Therefore, considering the obtained
configuration using the reduced iFEM-GA methodology, the constraint in Figure 17a was
applied to the search domain to achieve a more practical result. Figure 17b suggests the
optimum locations for the sensors in the constrained area, and the corresponding real-time
deflection reconstructed using the data obtained from these sensors is depicted in Figure 17c.
According to the sensor configuration demonstrated in Figure 17a, the sensors tended to be
located in the regions closer to the center of the plate, which showed higher displacement
values. Accordingly, in the three separated areas, a higher portion of iQS4 elements in the
inner columns was occupied by sensors. The maximum value of w obtained with iFEM-GA
analysis with the confined search domain in Figure 17c showed a negligible error with the
iFEM-GA results and reference solution in Figure 16b,c, respectively. Moreover, to better
compare the results obtained by full-sensor iFEM, reduced iFEM-GA, and constrained
iFEM-GA, the deviation of the results using iFEM-GA and iFEM-GA with limited search
space from the reference solution is depicted in Figure 18. According to these comparisons,
the iFEM-GA models, with both the whole and confined search spaces, produced almost
the same transient trend with a small deviation from the reference solution at the middle of
the plate. Near the edges, the obtained results were almost indistinguishable.
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Figure 16. (a) Optimum sensor configuration obtained for the plate shown in Figure 14. (b) Transverse
displacement contour obtained with iFEM-GA, (c) reference solution.

Moreover, the effect of the ratio of the iQS4 elements with sensors to the number of
all inverse elements in the plate shown in Figure 15, ν f , in the accuracy of the results was
further investigated. Herein, the plate was analyzed with five sensor volume ratios of
ν f = 0.05, 0.1, 0.2 and 0.3, and compared with that of the reference solution. Subsequently,
GA sought the optimum positions for the available sensors in the defined search space
according to the geometry of the plate in Figure 15. Then, the obtained results with the
considered sensor volume ratios were compared with the reference solution. Additionally,
Figure 19 depicts the transverse displacement of the middle of the plate through the length
with different sensor volume ratios.
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The transverse deflection was reconstructed using the data gained by the sensors
residing in the optimum elemental locations determined by GA for each volume fraction.
With sensors in only 5% of the inverse elements, the results deviated considerably from
the reference solution. By increasing the number of sensors to 10% of the inverse elements,
the achieved results became closer to the reference solution; however, there was still
divergence from the ideal case. For the case of 20% of inverse elements with sensors and
further, GA located the sensors in the locations where the discrepancy from the reference
solution was negligible, which means that for the plate shown in Figure 14, GA could
construct the displacement by 20% of sensors (ν f = 0.2), with the same accuracy of the
full-sensor condition.

3.4. Fully Clamped Plate under Uniform Pressure

In this example, the aim was to study the case in which all oof the discretizing nodes
carried the applied load. In other words, the plate in Figure 4 was studied under a
distributed load of q = 0.1KN/m2. Figure 20 depicts the loading condition of this case,
where all the plate edges were fully clamped. Due to the symmetric boundary condition,
only one-fourth of the geometry of the plate shown in Figure 20 was simulated to reduce
the computational costs. In this example, 20% of iQS4 elements was occupied with sensors.
Figure 21a expresses the optimum locations for these sensors obtained using genetic
optimization. According to this configuration, the main portion of the available sensors
was concentrated at the center of the plate, which demonstrates the maximum value of the
transverse deflection. Figure 21b depicts the reconstructed displacement and a comparison
with the reference solution shown in Figure 21c. In this case, the discrepancy between the
iFEM-GA results and the reference solution was negligible; however, the suggested sensor
position by GA (with the whole domain as the search space) had shortcomings regarding
the limitation of the utilized sensors. Therefore, to make the proposed method practical,
the constraint demonstrated in Figure 22a is suggested to apply to the geometry. Because
of the features of the many sensors, allocating them in series is preferable rather than
having a scatter distribution of the sensors. Therefore, the permitted sites in Figure 22a are
suggested as the search space for the optimization problem. Figure 22b shows the obtained
optimum locations for the sensors in the allowed region. The number and variation in
the eligible parents were reduced as a result of confining the search space. However, the
maximum transverse displacement predicted using the iFEM-GA method after diminishing
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the search space had a 1.5% deviation from the reference solution, as can be seen from
Figure 22c. Additionally, as demonstrated in Figure 23, the deflection of the plate obtained
using iFEM-GA with both the complete and limited search space, through the horizontal
symmetric line, was almost identical. Overall, these comparisons validate and demonstrate
the superior predictive capabilities of iFEM-GA analysis in utilizing a fewer number of
sensors in comparison with the reference solution.
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3.5. Stiffened Plate and Curved Shell Structures

To further investigate the practical application of iFEM-GA to the real-time displace-
ment monitoring of complex structures, two samples of a stiffened plate and a curved shell
were studied herein. In fact, the structure of the studied stiffened plate can be representative
of a floating marine structure, therefore, the following iFEM-GA analysis can be beneficial
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for the real-time SHM capabilities of marine structural components utilizing fewer sensors.
The stiffened plate consists of a plate as the immediate member and beams as the secondary
member. These are generally used for weight saving and increasing the stability in various
structures. Herein, a stiffened square plate with the material property of E = 210 GPa and
ν = 0.3 was determined to be solved based on the proposed method. The square plate with
a length of 3 m and uniform thickness of 15 mm was clamped from all edges, as depicted
in Figure 24.
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A static uniform transverse pressure of P = 40 KPa is subjected to the bottom surface
of the plate. Moreover, mesh independent FEM results have been conducted to extract
the strain values of in-situ strain gauges. In the FEM study using the commercial soft-
ware of Abaqus, 4284 square and uniformly distributed S4 (four-node shell) elements are
implemented to solve the problem. Besides, 864 iQS4 elements carry sensors at their top
and bottom surface to reconstruct the real-time full-field transverse displacement of the
stiffened plate with full-sensor iFEM methodology. In the following, the number of sensor
elements was reduced to 30% of all iQS4 elements (259× 2 sensors). The GA optimization
was carried out with 100 individuals as the initial population, which suggests Figure 25 as
the optimum locations for the available sensors.
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Generally, stiffeners run constantly through the supporting frame and are in charge of
strengthening that and experiencing the maximum stress values and consequence strains.
Thus, the value of extracted strains from the elements in these regions plays a crucial role in
the accuracy of the obtained results. Therefore, this observation affirms the concentration
of the available sensors on stiffeners. In Figure 26, the variation in the displacement
contours for both iFEM-GA and the reference models were almost indiscernible from each
other. The percentage error between the maximum values of the displacement was less
than 0.5%. This comparison indicates that the iFEM-GA formulation enabled a highly
accurate reconstruction of the deformed shape of the structure with a reduced number of
strain measurements.
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Figure 26. The transverse displacement contour of the stiffened plate with (a) iFEM-GA analysis and
(b) the reference model.

In the previous examples, the robustness of the proposed method was assessed by
way of flat-shell and stiffened plate problems; however, the advantage of curved shell
plates in many practical engineering applications is highlighted. Therefore, a thin-walled
cylinder with a radius of r = 100 mm, a length of L = 20 mm, and a uniform thickness of
2h = 1.5 mm was examined to indicate the reliability of the iFEM-GA method for modeling
realistic shell structures. The curve plate with E = 210 GPa and ν = 0.3 was subjected
to a concentrated load equal to F = 100 N at the middle of the front edge as depicted in
Figure 27. A global Cartesian coordinate system of (X, Y, Z) with the origin of (0, 0, 0) was
located at the center of the right-hand-side circle, and positive directions of the coordinate
axes are clearly shown in Figure 27.
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In this structure, 336 iQS4 elements were taken to discretize the geometry. However, only
20% of the inverse elements carried sensors at their top and bottom surfaces (68× 2 available
sensors). The proposed method attempts to conduct real-time shape sensing of the curve plate
by placing the available sensors in the optimum locations suggested in Figure 28.
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Figure 28. Optimized sensor distribution for the thin-walled cylinder obtained with the iFEM-
GA method.

As discussed in Figure 5, the number of the initial population plays a vital role in
the accuracy and consistency of the results as it provides sufficient diversity to proceed
with the most eligible parents. An initial population with 100 individuals ensured global
optimization and mature convergence after 200 generations in the studied cases.

According to the contour plots in Figure 29, the discrepancy between the results
obtained with iFEM-GA analysis and the reference solution was less than 1%. These results
indicate the superior accuracy of the proposed method in reconstructing the deformation
of the thin-walled cylindrical shell-plate with a reduced number of sensors. Therefore,
the sparse distribution of sensors could perform very accurate shape sensing of a thin-
walled cylinder, which was as accurate as those predicted by the reference model. The
deformed shape produced by the GA-suggested configuration in Figure 29a was almost the
same as those with the reference shape in Figure 29b, demonstrating the superior practical
capability of the iFEM-GA framework. Overall, the potential and versatile applicability of
the iFEM-GA methodology was demonstrated for the shape sensing of complex structures
subjected to distributed and concentrated loads.
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4. Concluding Remarks

A combination of the inverse finite element and the genetic algorithm was employed
to reconstruct the real-time displacement field of the structures with a reduced number
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of sensors. GA searched for the optimum locations for the available sensors to minimize
the deviation of the iFEM results with a reduced number of sensors from the reference
solution (iFEM with sensor in all inverse elements) through the iFEM-GA method. GA
employed binary numbers to designate the sensors in iQS4 elements to achieve the optimum
configurations for the available sensors, recognizing each element as the genes. The genes
represented by one indicate the existence of a sensor in the corresponding element, and
the sensors were eliminated from the genes labeled with zero. All genes together are
considered as an individual, and a pair of these individuals, known as parents, mix their
genes to produce eligible offspring that adjust better to the environment and lead the sensor
configuration to minimize the cost function. Genetic optimization has been linked to iFEM
by using the constant values used in the iFEM formulation to adjust the coherence between
the experimental and analytical strain values. The cost function in the current study was
taken as the error between the results of each solving step of GA and the reference solution.

Genetic algorithm initiates the optimization problem with a defined number of indi-
viduals known as the initial population, wherein this research, the proper size of the initial
population was determined to avoid unmatured convergence. To examine the accuracy of
the concept, a plate with different boundary conditions and static/dynamic loading types
with only 20% of the inverse elements containing sensors were considered with and with-
out geometrical constraints. The results with a reduced number of sensors showed good
consistency with the reference solution in all of the case studies. Furthermore, the effect
of the number of sensors on the accuracy of the results was also examined. Utilizing the
strain data obtained from 30% of sensors and above, the iFEM-GA results showed almost
identical results with the reference solution. Two examples of stiffened plates and curved
structures were considered to examine the performance of the method in shape sensing
the complicated structures. As a result of optimum sensor locations, the real-time full-field
displacement reconstruction with the remaining sensors manifested a consistency with the
reference solution with a minor error. Hence, the GA-iFEM methodology is a promising
framework for performing accurate shape sensing, providing a viable technology for the
SHM of future structures.
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