
   

 

 

 

Abstract 
 

Most existing camera placement algorithms focus on 
coverage and/or visibility analysis, which ensures that the 

object of interest is visible in the camera’s field of view 

(FOV).  However, visibility, a fundamental requirement of 

object tracking, is insufficient for persistent and automated 

tracking.  In such applications, a continuous and 

consistently labeled trajectory of the same object should be 

maintained across different cameras’ views.  Therefore, a 

sufficient overlap between the cameras’ FOVs should be 
secured so that camera handoff can be executed successfully 

and automatically before the object of interest becomes 

untraceable or unidentifiable. The proposed sensor 

planning method improves existing algorithms by adding 

handoff rate analysis, which preserves necessary 

overlapped FOVs for an optimal handoff success rate.  In 

addition, special considerations such as resolution and 

frontal view requirements are addressed using two 
approaches: direct constraint and adaptive weight.  The 

resulting camera placement is compared with a reference 

algorithm by Erdem and Sclaroff.  Significantly improved 

handoff success rate and frontal view percentage are 

illustrated via experiments using typical office floor plans. 

 

1. Introduction 

With the increased scale and complexity involved in most 

practical surveillance applications, it is almost impossible 

for any single camera (either fisheye or PTZ) to fulfill 
persistent tracking and monitoring tasks with an acceptable 

degree of continuity and/or reasonable accuracy.  Systems 

with multiple cameras find extensive use in surveillance 

applications.  The need for sensor planning comes naturally 

when the question of how to place multiple cameras to fulfill 

given tasks with given performance requirements arises. 

In literature, most sensor planning algorithms are 

proposed for such applications as 3D object inspection and 
reconstruction.  Roy et al. reviewed existing sensor planning 

algorithms for 3D object reconstruction [1] and proposed an 

online scheme using a probabilistic reasoning framework for 

next-view planning and object recognition [2].  Wong et al. 

defined a metric evaluating the unknown information in each 

group of potential viewpoints and used it in the search of the 

next best view for 3D modeling [3].  Yous et al. designed an 

active scheme for multiple PTZ camera assignment so that 

each camera observes a specific part of a moving object, 

mainly pedestrians, and achieves the best visibility of the 
whole object [4].  Sensor planning for surveillance systems 

also received increasing attention in recent years [5-7].   

Cameras are placed such that a full or specified coverage of 

the environment or object is achieved.  A probabilistic 

camera planning framework with visibility analysis was 

proposed by Mittal and Davis [8].  Erdem and Sclaroff 

defined different types of coverage problems and developed 

corresponding solutions using perspective cameras [9]. 
The conventional requirements in sensor planning, such 

as coverage and visibility, are unable to ensure a persistent 

and automated tracking in real-time surveillance systems.  

Sufficient amounts of overlap between the FOVs of adjacent 

cameras should be reserved so that consistent labeling and 

camera handoff can be executed successfully.  However, 

coverage and overlapped FOVs are at two opposite ends.  

Given the same camera configuration, an increase in 
overlapped FOVs leads to a decrease in coverage.  

Therefore, an optimal balance between coverage and 

overlapped FOVs is to be found via sensor planning.  The 

optimal balance requires a maximum increase in handoff 

success rate at the cost of a minimum decrease in coverage 

using the same number of cameras.   

We refer to the necessary overlapped FOVs as handoff 

safety margin and design an observation measure (OM) to 
differentiate it from other visible areas in the camera’s FOV.  

Based on this safety margin, we develop sensor planning 

algorithms balancing the tradeoff between overall coverage 

and adequate overlap.  Furthermore, variations, including 

direct constraint and adaptive weight approaches, are 

introduced for special considerations of resolution and 

frontal view requirements.  We then compare the efficiency 
of our algorithms with the scheme proposed by Erdem and 

Sclaroff [9] under three criteria: coverage, handoff success 

rate, and frontal view percentage using typical office floor 

plans, an example of which is shown in Figure 1. 

The major contributions of this paper are listed as follows.  

(1) An observation measure is designed for perspective 

cameras to describe the suitability of tracking and to define 

the handoff safety margin.  (2) A general sensor planning 
algorithm for persistent and automated tracking is developed 

to secure sufficient handoff margins.  (3) Special 
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considerations such as resolution and frontal view are 

addressed by two types of solutions: direct constraint and 

adaptive weight. 

The remainder of this paper is organized as follows.  The 

problem definition is given in Section 2.  Section 3 defines 

the observation measure.  Our sensor planning algorithms 

are described in Section 4.  Section 5 demonstrates our 

experimental results and comparisons with the reference 
algorithm.  Section 6 concludes this paper. 

2. Problem definition 

When formulated mathematically as an optimization 

process, sensor planning algorithms fall into two categories: 

(1) the search for the maximum coverage given a fixed total 

cost or number of cameras and (2) the search for the 

minimum cost or number of cameras for a full or designated 

coverage.  In this paper, we refer to (1) and (2) as Type 1 and 

Type 2 problems, respectively. 

Assuming that a polygonal floor plan is represented as an 
occupancy grid, a binary vector b can be obtained by letting 

1=ib  if the corresponding grid can be seen by at least one 

camera and 0=ib otherwise.   We construct a binary matrix 

A with 1=ija if the ith grid is covered by the jth camera 

configuration.  Each camera configuration specifies one 

combination of camera intrinsic and extrinsic parameters, 

including camera’s focal length f, pan/tilt angle TP θθ / , and 

position TC.  The following relation holds: bi=1 if 0
' >ib ; 

and bi=0 otherwise, with xb A='  where the solution vector 

x is a set of chosen camera configurations with the 

corresponding elements xj being one. 
Let the cost associated with the jth camera configuration 

be jω .  Given the maximum cost Cmax, the Type 1 sensor 

planning problem can be described by: 

maxsubject to ,max Cxb
j jji i ≤∑∑ ω . (1) 

Given a specified coverage vector bo or a minimum 

coverage percentage Cmin, the Type 2 problem can be 
modeled as: 

oj jj Ax bx ≥∑  subject to ,min ω , (2) 

or 

min subject to ,min Cbx
i

i
j

jj ≥∑∑ ω . (3) 

The Type 2 problem with specified coverage was addressed 

and solved using binary programming in [9]. 

3. Observation measure 

To describe the observation of a tracked target in addition 

to visibility, we consider the resolution MR and the distance 

to the edges of camera’s FOV MD.  From a viewer’s point, 

visibility is a fundamental requirement.  Herewith, the 
viewer includes not only operators but also successive 

processing such as consistent labeling and face/object 

recognition.  An observation with different detail levels 

affects the performance of these algorithms.   For example, a 

frontal face image with an inter-ocular distance of 60 pixels 

is recommended by a well-known face recognition engine 

FaceIt® for a face to be automatically recognized [10].  The 

MR component is designed to evaluate a valid observation 
for the viewer.  For a persistent object tracking and smooth 

camera handoff, the tracked target should be at a reasonable 

distance from the edges of the camera’s FOV.  The MD 

component considers the safety margin before the object 

falls out of the camera’s FOV.   

3.1. Definition 

To begin our study, the camera and world coordinates are 

defined and illustrated in Figure 2.  A point 

[ ]TZYXP =  in world coordinates is projected onto a 

point [ ]Tzyx '''=p  in camera coordinates by: 
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with [ ]TZYXC TTTT = .  Assuming zero skew, unit aspect 

ratio, and zero image center, the projected point in the image 

plane is given by: 




=

=

'/'

'/'

zfyy

zfxx
. 

Letting Z=0 (in the ground plane), the target depth 'ẑ  can 

be estimated by: 
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fx

T
z
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−
= , (5) 

and the resolution component is then expressed as 

'ˆ/ zfM R α= , where α  is a normalization coefficient.  

However, when the target is at a close distance, this relation 

is not entirely valid, especially when part of the target falls 

out of the camera’s FOV.  Therefore, the above definition is 
adjusted by: 
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(a) (b) 
Figure 1.  (a) Example floor plan and (b) a snapshot of the room to 
surveil. 



   

 

 

In practice, for a better observation and to reserve enough 

computation time for handoff, the target should remain at a 

distance from the edges of the camera’s FOV.  Moreover, 

this margin distance is affected by the target depth.  When 

the target is at a closer distance, its projected image 

undergoes larger displacement in the image plane.  

Therefore, a larger margin should be reserved.  In our 

definition, different polynomial powers are used to achieve 
varying decreasing rates of the MD component as the object 

of interest approaches the edges of the camera’s FOV.  The 

MD is then given by: 

( ) ( )[ ] 01 'ˆ22
2/||2/||

ββ
β

+
−+−=

z

colrowD NyNxM , (7) 

where Ncol and Nrow denote the image’s width and height, β  

is a normalization weight, and coefficients 
1β  and 0β are 

used to adjust the polynomial power. 

The observation measure for a perspective camera is then 
given by: 





∞−

Π∈+
=

otherwise

yxMwMw
S

DDRR ),(
, (8) 

where Rw  and Dw  are importance weights and Π  denotes 

the image plane.  Note that no explicit visibility component 

is present in (8).  Instead, the visibility analysis is included in 

the definition of MR and MD.   

3.2. Handoff safety margin 

A failure threshold SF and a trigger threshold ST are 

derived to define three disjoint regions: (1) invisible area 

with Fij SS <  where Sij represents the OM value of the ith 

grid observed by the jth camera configuration, (2) visible 

area with Tij SS ≥ , and (3) handoff safety margin with 

TijF SSS <≤ . The failure threshold SF segments the 

invisible areas and is used for coverage analysis. The trigger 

threshold ST separates the visible areas and handoff margins.  

It is introduced for handoff rate analysis, where the 

overlapped FOVs between adjacent cameras are optimized. 

The trigger threshold ST is given by 

HmFT TVSS µ+= where Vm represents the average moving 

speed of the object of interest, TH denotes the average 

duration for a successful handoff, and µ  is a conversion 

scalar. 

The individual and combined effects of MR and MD 
become evident when we study the contours of OM 

projected onto the ground plane.  In Figure 3, the black solid 

lines and red dashed lines depict the contours with 

Fij SS = and Tij SS = , respectively.  The resolution 

component MR provides limits along the direction of the 

camera’s optical axis while the MD component generates 

constraints mainly in the direction across the camera’s FOV.  

In the example shown in Figure 3(a) with 'ˆ/ zfM R α= , the 

handoff margin is only defined at the far end of the camera’s 

FOV along the optical axis.  The scenario where the target is 

so close to the camera that part of it falls out of the camera’s 

FOV is ignored.  The modification in (6) imposes a proper 

constraint at the near end of the camera’s FOV along the 
optical axis.  Therefore, the resulting observation is both 

complete and with desired resolution, as shown in Figure 

3(b).  Figure 3(c) shows the combined effects of the 

resolution and distance components, which defines the 

handoff safety margin. 

4. Sensor planning 

Based on the definition of OM given in Section 3, our 

sensor planning algorithm is developed to achieve the 

optimal balance between coverage and sufficient overlapped 

margins for successful camera handoff.  

Let A1 represent the grid coverage with 1,1 =ija  if 

Fij SS ≥  and 0,1 =ija  otherwise.  The A1 matrix resembles 

the A matrix in the conventional coverage analysis discussed 

in Section 2.  Two additional matrices are constructed A2 and 

A3.  The A2 matrix has 1,2 =ija  if TijF SSS <≤  and 

0,2 =ija  otherwise.  The A3 matrix has 1,3 =ija  if Tij SS ≥  

and 0,3 =ija  otherwise.  Matrices A2 and A3 represent the 

handoff safety margin and visible area, respectively.  Let 

xc kk A=' , 3,2,1=k .  The objective function at the ith grid is 

formulated as: 

)1'()2'()0'( ,33,22,11 >−=+>= iiii cwcwcwc , (9) 

where w1, w2, and w3 are predefined positive weights.  The 
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Figure 2. Illustration of the camera and world coordinates. 

  

S=SF

S=ST  
(a) (b)             (c) 

Figure 3. The contours of OM projected onto the ground plane.  (a) 

'ˆ/ zfMS R α== .  (b) RMS =  as defined in (6).  (c) 

DDRR MwMwS +=  with 5.0=Rw , 5.0=Dw , 11 =β  and 

10 =β . 



   

 

 

operation )0'( ,1 >ic means 


 >

=>
otherwize

c
c

i
i

0

0'1
)0'(

,1
,1 .  The 

first term in the objective function considers coverage, the 

second term produces sufficient overlapped handoff margins, 

and the third term penalizes excessive overlapped visible 

areas.  Our objective function achieves a balance between 

coverage and adequate margins for camera handoff.  The 

optimal sensor arrangement for the Type 1 and Type 2 
problems then can be obtained by: 

  subject to,max maxi
Cxc

j jji ≤∑∑ ω  (10) 

min subject to,max and min Cbcx
i

i
i

i
j

jj ≥∑∑∑ ω . (11) 

The choice of the weights depends on the importance 

assigned to coverage and handoff success rate.  A rule of 

thumb is w1<w2<w3. 

4.1. Function validation  

In this section, we examine the behavior of the newly 
defined objective function to validate its effectiveness.  For 

clear illustration, we study the behavior of the objective 

function based on the relative position between two cameras.  

The position of one camera is fixed while the position of the 

other camera has four degrees of freedom including 

horizontal translation ∆X, vertical translation ∆Y, pan θP, 

and tilt θT.  From the definition of OM, the contours defined 

by Fij SS =  and Tij SS =  approximately constitute a 

trapezoid. The corresponding parameters are given in Figure 

4.   

The derivation of the exact expression of the objective 

function is not difficult but tedious.  To simplify the process 

and yet reveal the characteristics of the objective function, 

we fix ∆Y= θP = θT =0 and study the relation between the 

objective function and ∆X as our first step.  The resulting 

function ∑=
i

icF can be expressed as: 
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(12)

with 2)3)(1(2 dDDX th −−−=∆ η .  Since the coverage, 

overlapped handoff margins, and overlapped visible areas 

become effective in (9) in sequence as ∆X decreases, the 

corresponding objective function has three expressions 
depending on the value of ∆X.   

Given the expression in (12), Figure 5 shows the objective 

function with different choices of weights.  We can see that 

the optimal ∆X* is achieved with thXXD ∆<∆< *2η .  

When a smaller weight is assigned to the coverage term, the 

optimal ∆X* is shifted toward Dη2 , resulting in more 

overlapped FOVs for executing camera handoff.  On the 

contrary, if a larger weight is assigned to the coverage term, 

the optimal ∆X* is shifted toward thX∆ , leading to an 

improved coverage at the cost of decreased overlapped 

handoff margins.  From the derivatives of the functions in 

(12), we note that F1 and F3 are monotonically decreasing 

and increasing functions, respectively, with a proper choice 

or the weights in (9).  The turning point falls in the range of 

F2 and is determined by the relation between w1 and w2, the 

weights for the coverage and handoff margin terms in (9).   

4.2. Special performance requirements 

For general sensor planning, the objective function 

defined in (9) can be used.  However, when special 

requirements are to be satisfied, additional constraints need 

to be included.  The resolution consideration corresponds to 

priority areas which need a specified resolution.  The frontal 

view component points to path constraints where there exist 
predefined paths within which the objects’ movements are 

restricted. 

There exist two approaches to impose the resolution 

requirements: direct constraint and adaptive weight.  To 

incorporate the resolution requirements, we construct a 

supplementary matrix A4 with 1,4 =ija if ioRijR MM ,,, ≥  and 

0,4 =ija otherwise, where ioRM ,, is the corresponding 

resolution requirement at the ith grid point.  The direct 

constraint approach is carried out by introducing an extra 

constraint oRA ,4 bx ≥  where bR,o represents the required 

resolution with 1,, =ioRb if the corresponding grid needs the 

minimum resolution and 0,, =ioRb otherwise.  The adaptive 

weight approach on the other hand assigns different weights 

w1,i to the grid points according to the coverage 

requirements.  Larger weights are used if the corresponding 

grids require the minimum resolution.  The objective 

function then becomes: 

X

Y

(∆X, ∆Y, θP, θT)

(-D, h/2)

(-d, -h/2) (d, -h/2)

Sij= SF

Sij= ST

Camera 1

Camera 2

(-ηD, ηh/2)

(-ηd, -ηh/2)

 
Figure 4.  Schematic illustration of the geometric relation between 
the adjacent cameras’ FOVs for computing the objective function.  
The position of camera 1 is fixed while the position of camera 2 can 
be varied with four degrees of freedom. 



   

 

 

)0'()1'(

)2'()0'(

,4,4,33

,22,11

>+>−

=+>=

iii

iii

cwcw

cwcwc
, (13) 

where xc 44' A= and iw ,4 are different weights allocated 

according to the resolution requirement. 

In surveillance systems, a predefined path is commonly 

encountered.  It is also preferred that a frontal view can be 

achieved sometime while pedestrians are walking along this 
path.  An example is the entrance areas where a frontal view 

of the pedestrian is preferred when he or she enters the gate.  

We use the tangential direction of the middle line of the path 

as the average direction of the pedestrian’s motion.  Let the 

kth point on the middle line be kP ,0  and its tangential 

direction kPV , .  The frontal view measure observed by the jth 

camera (placed at TC,j) at point kiP ,'  along the line 

perpendicular to kPV , is given by: 

( )
|||||||| ,,',

,,',
'

kPkijC

kP
T

kijC
ji

VPT

VPT
FV

−

−
= . (14) 

Based on jiFV ' , we define a matrix A5 with 1',5 =jia if 

0' ≥jiFV and 0',5 =jia otherwise.  Let 0,5 =ija for grid 

points outside the path.  Finally the frontal view or path 

constraint is incorporated into the objective function by: 

)0'()1'(

)2'()0'(

,5,5,33

,22,11

>+>−

=+>=

iii

iii

cwcw

cwcwc
, (15) 

where xc 55' A= . Note that although the resolution and 

frontal view constraints are addressed separately, it is 

straightforward to combine these two terms.  The only 

modification is to simply add the corresponding 

components.  The adaptive weight approach is especially 

attractive because of its concise expression and speed of 

convergence. 

5. Experimental results 

In this section, we first examine the soundness of the 

newly developed OM for perspective cameras and then 

introduce our experimental methodology. Our experimental 

results using two typical office floor plans are presented and 

compared with the reference algorithm proposed by Erdem 
and Sclaroff [9].  For clear presentation, the reference 

algorithm is denoted as T1C and T2C for Type1 and Type 2 

problems, where C stands for coverage.  Our sensor planning 

methods discussed in Section 4.1 are denoted as T1H and 

T2H, where H stands for handoff.  When the frontal view or 

path constraint is included, we refer to our methods 

described in Section 4.2 as T1P and T2P, where P stands for 

the path constraint.  Comparing the T1C (T2C) method with 
the T1H (T2H) method, an improved handoff success rate is 

expected.  The major difference between the T1H and T1P 

(T2H and T2P) methods lies in that the frontal view 

component is added in the T1P and T2P methods.  Therefore 

an improved frontal view percentage is expected from the 

T1P and T2P methods.   

5.1. Experiments on observation measure 

A perspective camera is placed at TC=[0 0 3m]T  looking 

down towards the ground plane at a tilt angle of -30°.  Its pan 

angle is set to zero.  The image size is 640×480.  The 

camera’s focal length is 21.0mm.  Points are uniformly 

sampled on the ground plane (Z=0) with X in the range of 

-8m to 8m and Y in the range of 3m to 10m.  Figure 6 shows 

the corresponding OM values for the perspective camera.  

The best observation area with the maximum OM values is 
in the proximity of  [0 5m 0]T.  As the object moves away 

from this area, the OM value decreases.  A higher penalty is 

given to the motion along the X direction, the direction 

across the camera’s FOV.  The proposed OM gives a 

quantified measure of the tracking and observation 

suitability, which agrees with our intuition and visual 

inspection.  Three disjoint regions are also depicted in the 

ground plane separated by the failure and trigger thresholds.   
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Figure 5.  The objective function with varying ∆X and different 
choices of w1, the weight assigned to the coverage term in (9).  D=1, 
d=0.6, h=0.8, η=0.6, w2=2, w3=5. 
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Figure 6. Graphical illustration of the observation measure and 
handoff safety margin of a perspective camera placed at [0 0 3m]. 



   

 

 

5.2. Experimental methodology 

The floor plans under test are shown in Figures 1(a) and 7. 

The floor plan in Figure 1(a) represents two types of 
environments encountered in practical surveillance: space 

with obstacles (region A illustrated in yellow) and open 

space where pedestrian can move freely (region B illustrated 

in green).  Region B is deliberately included because it 

imposes more challenges on camera placement when 

considering handoff success rate.  Camera handoff is 

relatively easier when there is a predefined path compared 

with the scenarios where subjects are assumed to move 
freely, since camera handoff may be triggered at any point in 

the camera’s FOV.  Figure 7 illustrates an environment with 

a predefined path where workers proceed in a predefined 

sequence.  In the following experiments, we will refer to the 

two floor plans as plan A and B.  In our experiments, 

perspective cameras are free to be placed along the walls of 

the environment.   

To obtain a statistically valid estimation of handoff 
success rate and frontal view percentage, simulations are 

carried out to enable a large amount of tests under various 

conditions.  A pedestrian behavior simulator [11, 12] is 

implemented so that we could have a close resemblance to 

the experiments in real environments and in turn an accurate 

estimation of the handoff success rate.  To save space, 

interested readers can refer to the original papers for details. 

In our experiments, the arrival of the pedestrian follows a 
Poisson distribution with an average arrival rate of 0.1 

(person/second).  The average walking speed is 0.5 

(meters/second).  Several points of interest are generated 

randomly to form a pedestrian trace.  Figures 1(a) and 7 

depict some randomly generated pedestrian traces.  System 

performances are evaluated using coverage (C), handoff 

success rate (HSR), and frontal view percentage (FVP).  

HSR and FVP are obtained from simulations of 300 
randomly generated pedestrian traces. 

5.3. Experiments on sensor planning 

For both floor plans we require a visible distance of 10m 

and a height of 3m.  The same pair of tilt angle and focal 

length can be used with mmf 0.21= and 30−=Tθ .  The 

importance weights w1, w2, and w3 are set to 1, 2, and 5.  

w5=5 if the path constraint is imposed. The failure and 

trigger thresholds are 0 and 0.4, respectively 

Figure 8 illustrates the experimental results using floor 

plan A to solve the Type 1 problem. Our T1H approach 

chooses a camera positioning scheme with a slightly 
decreased coverage from 81.6% to 74.7% compared with the 

T1C method.  However, the averaged HSR is improved 

substantially from 23.2% to 87.4%.  An example trace is also 

shown in Figure 8(c) and (d).  As expected, if only coverage 

is considered, insufficient overlapped areas are kept between 

the adjacent cameras, leading to two handoff failures as 

observed in Figure 8(c).  In Figure 8(d), the target is tracked 

continuously with three successful handoffs.   
Figure 9 shows and compares sample frames from two 

cameras with and without sufficient handoff margins.  If 

only coverage is taken into account as shown in Figure 9(a), 

the object of interest is lost before the left camera is able to 

identify the subject and cooperate with the right camera.  

With sufficient handoff margins as shown in Figure 9(b), the 

object of interest can be detected and labeled correctly 

before it becomes unidentifiable in the right camera. 
As expected, a considerably improved HSR is also 

achieved for floor plan B, as shown in Figure 10.  In 

addition, we add the frontal view criterion and test the T1P 

method. The averaged FVP is elevated from 28.7% to 

93.5%.  From Figures 10(b) and (c), we could see that the 

cameras are turned towards the direction of the predefined 

path after introducing the frontal view constraint. 
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Figure 7.  Illustration of an office floor plan with predefined path 
which the workers’ movements are restricted to. 
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Figure 8. Optimal camera positioning for floor plan A and Type 1 
problem (a) T1C (C: 81.6 %, HSR: 23.2%) and (b) T1H (C: 74.7%, 
HSR: 87.4%).  An example trace: two handoff failures in (c) and 
three successful handoffs in (d). 



   

 

 

The Type 2 problem imposes additional requirements on 

the overall coverage, which leaves less freedom in the 
optimization process to maximize the HSR.  As Figure 11 

demonstrates, the overall coverage is constrained to be 

above 80%, which results in a decrease in HSR from 87.4% 

obtained by the T1H method to 68.5%.  However, with a 

similar coverage (81.5% vs. 81.6%), our T2H algorithm is 

still able to achieve a much higher HSR (68.5%) than the 

conventional T1C approach (23.2%).  Similar observations 

apply to the experiments using floor plan B as shown in 
Figure 12. 

5.4. Performance comparison 

Table 1 summarizes the performance comparison 

between our algorithms and the reference algorithm 
proposed by Erdem and Sclaroff [9]. Consistent 

observations are obtained from experiments using two floor 

plans.  Compared with the reference algorithm, our 

algorithms produce considerably improved HSR and FVP at 

the cost of slightly decreased coverage.  This amount of 

decrease in coverage is inevitable so as to maintain 

overlapped areas between adjacent cameras required by 

persistent and automated tracking for a fixed number of 
cameras.   

The ratio between the increase in HSR and the decrease in 

coverage |C|HSR ∆∆ describes the advantage of our 

algorithms.   For the Type 1 problem, every 1% decrease in 
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Figure 9. Illustration of sufficient safety margin for automated 
camera handoff.  Sample frames from two cameras (a) when only 
coverage is considered and (b) when both coverage and handoff 
success rate are considered.  The object of interest is visible in the 
right camera at to.  In (a), the object of interest is lost in the right 
camera as it moves and becomes visible in the left camera at to+∆t. 
There is no sufficient margin for a successful handoff.  In (b), the 

object of interest remains visible in the right camera at to+∆t, which 
ensures a successful handoff. 
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Figure 10. Optimal camera positioning for floor plan B and Type 1 
problem: (a) T1C (C: 84.8%, HSR: 6.0%, FVP: 67.7 %), (b) T1H 
(C: 74.7%, HSR: 56.9 %, FVP: 28.7%), and (c) T1P (C: 72.1%, 
HSR: 58.0%, FVP: 93.5%).   
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Figure 11.  Optimal camera positioning for floor plan A and Type 2 
problem (C≥80%).  (a) T2H (C: 81.5%, HSR: 68.5%).  (b) An 
example trace with one handoff failure and two successful handoffs. 
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Figure 12.  Optimal camera positioning for floor plan B and Type 2 
problem (C≥80%):  (a) T2H (C: 81.3%, HSR: 43.7%, FVP: 41.0%) 
and (b) T2P (C: 81.6 %, HSR: 47.1 %, FVP: 69.0%). 



   

 

 

coverage results in a 4% to 10% increase in HSR.  An even 

higher improvement rate can be achieved for the Type 2 

problem.  The efficiency of the proposed algorithms in 

balancing the overall coverage and sufficient overlapped 

FOVs becomes evident.  Furthermore, our algorithms can 

handle additional constraints, such as the frontal view 

requirement.  The resulting T1P and T2P algorithms are able 

to maintain a similar improvement rate in HSR as the 
general methods (T1H and T2H) with further improved 

FVP. 

Conventional sensor planning methods produce a camera 

placement with a maximized coverage.  In such a system, 

although a target can be seen, it cannot be automatically and 

consistently labeled or recognized as the same target across 

different cameras because of handoff failures resulted from 

insufficient overlapped FOVs.  The resulting camera 
placement cannot support automated and persistent 

surveillance systems since the tracked or identified target 

trajectories are disjointed at the junction areas of adjacent 

cameras.  In contrast, our sensor placement ensures a 

continuous and consistently labeled trajectory.  The 

decreased coverage can be easily compensated for by adding 

an additional camera.  The cost of an extra camera is 

acceptable in comparison with a system with inherent 
disability of maintaining persistent and continuous tracking.   

6. Conclusions 

In this paper, we proposed a general sensor planning 

algorithm in the context of persistent and automated tracking 

and improved existing algorithms by incorporating handoff 

rate analysis with coverage and visibility analysis.  Direct 

constraint and adaptive weight approaches were derived 

from the general method to solve the resolution and frontal 

view constraints.  Significantly improved handoff success 

rate and frontal view percentage were reported via 
experiments and comparisons with a reference algorithm 

using typical office floor plans.  This indicates the efficiency 

of the proposed algorithm in balancing the overall coverage 

and sufficient overlapped FOVs.  With considerably 

improved handoff success rate and frontal view percentage, 

the proposed algorithm produces robust and enhanced 

performance compared with the reference algorithm 

presented in [9] when applied to automated tracking 
systems. 
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Table 1. System performance comparison. C: coverage, HSR: 
handoff success rate, and FVP: frontal view percentage. 

 

Floor plan A 

Method C (%) HSR(%) |C|HSR ∆∆  

T1C/T2C 81.6 23.2  

T1H 74.7 87.4 9.3 

T2H (80%) 81.5 68.5 453 

Floor plan B 

Method C (%) HSR(%) |C|HSR ∆∆  FVP(%) 

T1C/T2C 84.8 6.0  67.7 

T1H 74.7 56.9 5.0 28.7 

T1P 72.1 58.0 4.1 93.5 

T2H (80%) 81.3 43.7 10.8 41.0 

T2P 81.6 47.1 12.8 69.0 


