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Abstract—Precise localization and tracking of moving objects
is of great interest for a variety of emerging applications including
the Internet-of-Things (IoT). The localization and tracking tasks
are challenging in harsh wireless environments, such as indoor
ones, especially when objects are not equipped with dedicated
tags (non-collaborative). The problem of detecting, localizing,
and tracking non-collaborative objects within a limited area has
often been undertaken by exploiting a network of radio sensors,
scanning the zone of interest through wideband radio signals
to create a radio image of the objects. This paper presents a
sensor network for radio imaging (sensor radar) along with
all of the signal processing steps necessary to achieve high-
accuracy objects tracking in harsh propagation environment.
The described sensor radar is based on the impulse radio (IR)
ultrawide-band (UWB) technology, entailing the transmission of
very short duration pulses. Experimental results with actual
UWB signals in indoor environments confirm the sensor radar’s
potential in IoT applications.

Index Terms—Detection, indoor tracking, Internet-of-Things,
localization, multistatic radar, sensor radar, ultrawide-band.

I. INTRODUCTION

L
OCALIZATION and tracking of moving objects is a
critical component for important new applications, in-

cluding medical services, military systems, search and rescue
operations, automotive safety, and logistics [1]–[7]. Indeed,
wireless sensor networks and more generally the Internet-of-
Things (IoT) consider localization as the enabling technology
to provide georeferenced information from sensors, machines,
vehicles, and wearable devices, in the ever growing trend of
hyper-connected society [8]–[11].

Localization systems estimate object positions based on
observations (or measurements) gathered by a network of
sensors deployed in the environment [12]–[17]. The term “lo-
calization” usually refers to the capability to infer the position
of collaborative objects, i.e., tagged objects interacting with
the system to facilitate the localization process [18]–[21].
However, an increasing attention is recently being devoted to
the capability of detecting and tracking objects that do not
take actions to help the localization infrastructure or that do
not wish to be detected and localized at all. This operation
is referred to non-collaborative localization and is typical of
radar systems [22]. These systems are further classified based
on whether the network emits a signal designed for target de-
tection and localization (active radar), or the network exploits
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signals emitted by other sources of opportunity (passive radar)
[23]–[25].

The expressions “sensor radar” and “radar sensor network”
are hereafter used interchangeably to refer to a network of
active radars in a monostatic, bistatic, or multistatic configu-
ration [26]–[30]. A multistatic radar is a network of multiple,
independent radars, where each sensor performs a significant
amount of processing. Pre-processed data are then collected
by central unit through a communication link [27]. Multistatic
radar shall not be confused with multiple-input multiple-output
(MIMO) radar, which refers to a radar system employing
multiple transmit waveforms (typically orthogonal to each
other) and having the ability to jointly process signals received
at multiple antennas [31], [32]. Such a feature requires tight
synchronization among all sensors, to track phase changes,
and limits the possibility to perform local processing [33].

Accurate localization via sensor radars becomes particularly
challenging in indoor environments characterized by dense
multipath, clutter, signal obstructions (e.g., due to the pres-
ence of walls), and interference. In a real-world scenario
measurements are usually heavily affected by such impair-
ments, severely affecting detection reliability and localization
accuracy. These operating conditions may be mitigated by the
adoption of waveforms characterized by large bandwidth, e.g.,
ultrawide-band (UWB) ones, exploiting prior knowledge of
the environment, selecting reliable measurements, and using a
wide range of signal processing tools [34]–[37].

The UWB technology, and in particular its impulse ra-
dio (IR) version characterized by the transmission of a few
nanoseconds duration pulses [38]–[45], offers an extraordinary
resolution and localization precision in harsh environments,
due to its ability to resolve multipath and penetrate obstacles
[46]–[49]. Additional advantages include low power consump-
tion, low probability of intercept, robustness to jamming, and
coexistence with a large number of systems in the ever increas-
ing spectrum exploitation [50]–[52]. These features, together
with the property of IR-UWB devices to be light-weight,
cost-effective, and characterized by low power emissions,
have contributed to make UWB an ideal candidate for non-
collaborative object detection in short-range radar sensor net-
work (RSN) applications [53]–[65]. UWB has been employed
in through wall imaging, which has the ability to locate indoor
moving targets with a radar situated at a standoff range outside
buildings [66]–[73]. It has also been successfully adopted in a
number of related applications including, e.g., radio-frequency
identification [74]–[76], search and rescue of trapped victims
[77]–[81], vital sign detection and estimation [82], [83], stroke
detection [84], people counting [85], environmental imaging
[86], [87], and non-destructive testing [88]. In the sensor radar
field a number of papers have addressed several aspects related
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TABLE I
LIST OF ACRONYMS

AWGN additive white Gaussian noise
CA-CFAR cell averaging CFAR
c.d.f. cumulative distribution function
CFAR constant false alarm rate
CPHD cardinalized PHD
DP direct path
DTB-CFAR double threshold and buffer CFAR
EM expectation-maximization
ER empty-room
G-CFAR global CFAR
IoT Internet-of-Things
IR impulse radio
LOS line-of-sight
LS least square
MHT multiple hypothesis tracking
MIMO multiple-input multiple-output
MTI moving target indicator
p.d.f. probability density function
PHD probability hypothesis density
PSD power spectral density
RCS radar cross section
RE residual error
RFS random finite set
RMSE root mean-square error
RSN radar sensor network
Rx receiver
SNR signal-to-noise ratio
SUT sample under test
ToA time-of-arrival
Tx transmitter
UWB ultrawide-band

to the use of UWB, e.g., clutter removal and channel modeling
[89], [90], detection [91]–[95], target recognition [96], tracking
[97]–[111], sensors deployment [57], [112], [113], sensors
power allocation [114], and cognitive mechanisms [115]–
[118].

The localization of non-collaborative objects poses several
problems at different levels of the processing chain, ranging
from clutter removal, ghost mitigation, detection and clus-
tering, within each sensor, to measurement combining (data
fusion), clustering, measurement selection and tracking, at
the network level. Finding a way to carry out all of these
processing steps and to exploit their mutual relationships
is a hard task and requires an almost holistic view of the
system. For this reason, this paper aims at presenting the main
aspects that involve detection, localization and tracking of non-
collaborative objects in indoor environments using off-the-
shelf IR-UWB technology. The most challenging problems at
different system levels are presented and possible solutions are
proposed. The presentation is kept at introductory level, pro-
viding in-depth references for the interested reader. A sensor
radar demonstrator is used to address step-by-step processing
of actual signals and data, which have been collected in a
real indoor environment through an experimental campaign.
The use of real equipments is important to gain insights from
real-world waveforms and the associated challenging practical
aspects. The paper describes all steps from actual raw signal
acquisition to object tracking through the complex processing
chain of the network. The localization error performance will
confirm the effectiveness of the performed processing.
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Fig. 1. Block diagram illustrating the processing performed by the RSN.

The paper is organized as follows. A system overview is
provided in Sec. II and basic equations addressing system
coverage are presented in Sec. III. Waveform processing within
each sensor is detailed and illustrated in Sec. IV, and all
processing steps for data fusion are presented in Sec. V. A
case study analysis for human being tracking is provided in
Sec. VI. Conclusions are drawn in Sec. VII. A list of frequently
used abbreviations is provided in Table I.

II. SYSTEM OVERVIEW

A. Multistatic radar sensor networks

We consider a RSN based on a UWB multistatic radar
system. The RSN is aimed at detecting, locating, and tracking
moving objects (also called targets in the radar jargon) within
a given monitored area. The network is composed of one
transmitter (Tx), Nr receivers (Rxs) or sensors, and one central
node. Each Tx-Rx pair forms a monostatic or a bistatic radar
depending on whether or not the transmitter and the receiver
are co-located. In order for the RSN to be able to locate a
target in the monitored area, the number of sensors shall fulfill
Nr � 3 in two dimensions. In each bistatic pair, a single signal
transmission causes the reception of at least two signal replicas
in free-space propagation: the direct signal via the Tx-to-Rx
path and the reflected signal via the Tx-to-target-to-Rx path.

Fig. 1 shows a block diagram which summarizes the whole
processing performed by the RSN in each frame (i.e., scan pe-
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−Detection & localization
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−Object tracking
−Target association
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−Demodulation
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−Clutter removal
−Ghost mitigation
−CFAR detection
− 1D clustering
−Measurement select.

In-sensor processing

Fig. 2. A typical scenario for object tracking through a multistatic radar. The overall processing chain is divided into in-sensor processing and network
processing for data fusion,

riod). There are Nr yellow boxes, each representing a specific
sensor. The light red blocks in each “Sensor” box show all
processing steps that are performed individually by each Rx.
The light blue box labeled as “Network” represents the central
node, which fuses information from all sensors to perform
target detection and tracking; blocks included in it overview
all processing steps performed at central level. Every block in
Fig. 1 has one input and one output arrow, labeled with the data
before and after its processing, respectively. Moreover, blocks
are labeled with the number of the subsection in which the
corresponding processing is described. In each frame, the RSN
input is represented by the Nr received signals y1(t), y2(t),
. . . , yNr

(t), one per sensor, while its output is the current
estimate M̂ of the number of targets, the set {x̂1, x̂2, . . . , x̂M̂}
of current target state estimates, and the set T of current tracks.

A pictorial representation of a typical RSN application
scenario is provided in Fig. 2. Radio pulses generated by the
Tx node are scattered by a human target and their echoes are
received by Nr sensors (Nr = 3 in the example). Similarly to
Fig. 1, also Fig. 2 summarizes the processing steps that are
carried out by each sensor in each scan period, as well as the
ones carried out at network level.

B. The radar waveform

The transmitted signal is composed by a sequence of UWB
pulses organized in frames. A frame is a sequence of Ns pulses
at intervals TIP (the inter-pulse period), therefore its duration
is Tf = TIPNs. The pulse is usually very short, with a duration

of the order of a nanosecond. Several possible choices of the
transmitted pulse have been proposed. Most of them relies on
the first (or a higher order) derivative of a Gaussian monocycle
[47], [119]. Due to the processing described in Sec. IV-A, Ns

is called pulse integration factor.

The system is designed in such a way that the channel
response to a single pulse when a moving target is present
does not change appreciably during a frame time.1 If a target
is present inside the area, the received signal at each Rx node
corresponding to a transmitted pulse consists of the direct path
pulse followed by pulse replicas, due to both the clutter and the
target, and the additive white Gaussian noise (AWGN) [91].

III. AREA COVERAGE

Let us consider a bistatic pair composed of one Tx and
one Rx and let us denote by ` the distance between the two
radio nodes (baseline). Moreover, let us denote by `t and
`r the distances between the Tx and the target and the Rx
and the target, respectively. Assuming for the moment free-
space propagation, the received energy per pulse due to target
scattering of the generic pulse emitted by the Tx, conditional
on a specific (frequency dependent) realization �(f) of the

1This condition can be guaranteed by a proper parameter setting as detailed
in Sec. IV-A.
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target radar cross section (RCS), may be expressed as

E =

fL+BZ

fL

E(f)Gt(f)Gr(f)�(f)

(4⇡)
3
(`t`r)

2

✓
c

f

◆2

df . (1)

In (1), E(f) is the energy spectral density of the transmitted
pulse, Gt(f), Gr(f) are the (frequency dependent) antenna
gains, (fL, fU) is the signal band, B = fU � fL is the signal
bandwidth, and c is the speed of light.2

The signal-to-noise ratio (SNR) is defined as

SNR =
ENs

N0
=

Γ

(`t`r)2
(2)

where N0 is the one-sided noise PSD and

Γ = Ns

fL+BZ

fL

E(f)Gt(f)Gr(f)�(f)

(4⇡)
3
N0

✓
c

f

◆2

df (3)

is often referred to as the bistatic radar constant.3 Denoting
by SNRmin the minimum SNR necessary to achieve required
missed detection and false alarm probabilities, the largest value
of the product `t`r to meet the desired performance is given by

(`t`r)max =

r
Γ

SNRmin
(4)

and is often referred to as the bistatic range of the Tx-Rx pair.
From (2), over any plane containing both the Tx and the

Rx, the geometric curve corresponding to a constant product
`t`r may be thought as associated with a constant value of the
SNR.4 Geometrically, such a curve is named a Cassini oval

and is defined as the locus of the points in a plane such that
the product of their distances from two fixed points, called
foci, is a constant. The distance between the foci is usually
denoted by 2a and the constant by b2. For a bistatic pair, the
positions of the two foci coincide with the Tx and Rx ones,
hence we have 2a = ` (baseline) and b2 = `t`r. The shape of
a Cassini oval depends on the ratio

b

a
=

p
`t`r

`/2
. (5)

In particular, the curve consists of two loops around the foci
when

p
`t`r < `/2, it assumes a lemniscate shape whenp

`t`r = `/2, and it is a single loop with a “dog bone” or an
oval shape when

p
`t`r > `/2. Examples of Cassini ovals are

depicted in Fig. 3, where both axes are normalized with respect
to a = `/2. Using (2) and letting Γ = 5`4 (arbitrarily), the

2An example of measured power spectral density (PSD), St(f), of the
UWB apparatus adopted in our test-bed (see Sec. VI) can be found in [120].
An experimental investigation of the RCS, �(f), of the human body can be
found in [121], [122].

3A related definition is the ratio Pr/(N0Beq) of the peak received
target-scattered power to the average noise power (Beq is the equivalent
noise bandwidth of the pre-detection Rx filter). We have Pr/(N0Beq) =
(E/N0)PRF/(Beqd) where PRF is the pulse repetition frequency and d is
the duty cycle (ratio of the pulse duration to TIP).

4A constant SNR over the curve assumes availability of a line-of-sight
(LOS) radio path between both the Tx and the target and the Rx and the
target, as well as invariant RCS and antenna gains. Although this may not
be the case in reality, the model remains useful to introduce the concept of
coverage.

−2 −1 0 1 2
−2

−1

0

1

2

�

target

`t `r

x/a

y
/
a

SNR = 24.0 dB

SNR = 19.0 dB

SNR = 15.2 dB

SNR = 10.9 dB

Fig. 3. Examples of Cassini ovals (iso-SNR curves for a bistatic pair). Both
the x- and the y-axis are normalized with respect to a = `/2. The Tx and
the Rx are in positions (−`/2, 0) and (`/2, 0). From the innermost curve
to the outermost one:

√

`t`r/(`/2) = 0.75 (two loops),
√

`t`r/(`/2) = 1
(lemniscate),

√

`t`r/(`/2) = 1.25 (“dog bone”),
√

`t`r/(`/2) = 1.6 (oval).

innermost Cassini oval in the figure (two loops) is associated
with SNR = 24.0 dB while the outermost one (single oval)
with SNR = 10.9 dB.

By definition, the maximum Cassini oval for a bistatic
pair is the Cassini oval whose points are associated with
SNR = SNRmin. Equivalently, it is the Cassini oval whose
parameter b2 = `t`r is equal to (`t`r)max. Note that the
maximum Cassini oval depends, through the bistatic constant
Γ, on system parameters involving the Tx and the Rx, the
target, and the system noise; it also depends on the required
performance (in terms of missed detection and false alarm)
through the quantity SNRmin. Any point belonging to the
interior of the maximum Cassini oval is said to be covered

by the bistatic pair, as for a target located in that point the
required performance can be achieved. A point is said to be
covered by an RSN whenever it is covered by a number of
bistatic pairs that is sufficient to localize the target position.5

In a UWB bistatic pair, the estimate performed by the Rx
of the time-of-arrival (ToA) of both the pulse received along
the direct path and the pulse reflected by the target6 yields an
estimate of the sum distance `t+`r. Based on it, the Rx is able
to locate the target on an ellipsoid whose foci are in the Tx and
Rx positions (hence, the distance between the foci equals the
baseline `) and whose major axis equals the estimate of `t+`r.
The intersection of the ellipsoid with any plane containing
both the Tx and the Rx is an ellipse with the same foci and
the same major axis, representing an iso-range (equivalently,
an iso-ToA) curve for the Tx-Rx pair. Examples of iso-ToA
curves are shown in Fig. 4 in which, similarly to Fig. 3, both

5In a two-dimensional environment the number of such bistatic pairs is
typically equal to three, although the blind zone problem (see Sec. IV-G)
may impose some redundancy.

6Examples of such procedures are described in Sec. IV-C and Sec. IV-E.
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−4

−2
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2
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`t `r

x/a

y
/
a

ToA = 21.2 ns

ToA = 13.3 ns

Fig. 4. Examples of iso-ToA ellipses for a bistatic pair. Both the x- and the
y-axis are normalized with respect to a = `/2. The Tx and the Rx are in
positions (−`/2, 0) and (`/2, 0). Inner curve: (`t + `r)/(`/2) = 4.0. Outer
curve: (`t + `r)/(`/2) = 6.4. The ToA values in the legend are defined as
(`t + `r)/c and are relevant to the case `/2 = 1.

axes are normalized with respect to a = `/2. Importantly, over
any plane containing the Tx and Rx positions iso-SNR curves
(Cassini ovals) and iso-ToA curves (ellipses) do not coincide:
the SNR changes when the target moves along any iso-range
curve and, similarly, the target ToA changes when the target
moves along any iso-SNR curve.

To see how the SNR changes along an iso-ToA curve, let
us denote by � the Tx-target-Rx angle (see Fig. 3). This
angle, usually dubbed the bistatic angle, ranges between zero
(when the target is located on the extended baseline) and
�max = 2arcsin (`/(`t + `r)) along any iso-ToA ellipse. We
have `2 = `2t + `2r � 2`t`r cos� from which, after simple
algebraic manipulation we obtain

`t`r =
(`t + `r)

2 � `2

2(1 + cos�)
(6)

and therefore, from (2),

SNR =
4Γ(1 + cos�)2

((`t + `r)2 � `2)
2 . (7)

Equation (7) expresses the SNR as a function of the bistatic
angle �, of the bistatic radar constant Γ, and of the bistatic
range `t + `r. When a target moves along any iso-ToA curve
(for a constant value of Γ), the SNR is a decreasing function
of �. Therefore, the SNR assumes its maximum value, equal
to 16Γ/((`2t + `r)

2 � `2)2, when the target is located on the
extended baseline (� = 0); it assumes its minimum value,
equal to 16Γ/(`t + `r)

4, when the target is equidistant from
the two radio nodes (� = �max).

Taking the dual approach, we can look at the bistatic range
variation along an iso-SNR curve. From (7) we have

`t + `r =

q
`2 + 2(1 + cos�)

p
Γ/SNR (8)

where now the bistatic angle � may take all values in [0,⇡]
when

p
`t`r  `/2 (two loops or lemniscate), and all values

between 0 and �max = 2arcsin((`/2)(Γ/SNR)1/4) whenp
`t`r > `/2 (single oval). From (8) we may conclude that for

a constant SNR and constant Γ, the parameter `t + `r takes
its maximum value (`2 + 4

p
Γ/SNR)1/2 when the target is

located on the extended baseline (� = 0). For
p
`t`r > `/2

it takes its minimum value (2(Γ/SNR)1/4) when the target
is equidistant from the two radio nodes (� = �max). Forp
`t`r  `/2, it takes its minimum value when the target is

on the baseline (� = ⇡).
All of the above considerations have been carried out for

free-space propagation and presence of AWGN only. Although
in real propagation environments (especially indoor ones) the
channel model deviates radically from the simple AWGN
one, the above ideas turn out to remain essentially valid, as
far as the path loss channel component is concerned. This
fact is also supported by the reference channel model for
UWB indoor (residential, office, industrial environments) and
outdoor (suburban environment) propagation [123], featuring
a frequency-dependent path loss model in the form

PL(f, d) = PL0 ⇥ (f/fc)
2(κ+1) (d/d0)

ρ (9)

where fc is the center-band frequency, PL0 is a constant
term depending on the environment, the coefficient  models
the frequency dependence of the channel, the coefficient ⇢

is the path loss exponent, and d0 = 1m is the reference
distance between the Tx and the Rx. Averaging out the
fading channel components in the received PSD, and therefore
exploiting the above path loss model to modify (1), it is still
possible to obtain an expression of the SNR in the form (2),
upon appropriately modifying the definition of bistatic radar
constant Γ, where the SNR decays with the `t`r product as
(`t`r)

�ρ.

IV. IN-SENSOR PROCESSING

This section describes the main processing steps carried out
within a single sensor radar, focusing on the transmission
between two sensors. Such steps may be summarized as
pre-filtering of the received signal y(t), coherent processing,
envelope extraction, ToA estimation, clutter removal, ghost
mitigation, CFAR detection, and one-dimensional clustering.

A. Received signal

With reference to Fig. 1, the received signal y(t) is first
processed by a band-pass filter, having the same center fre-
quency and bandwidth as y(t), to remove out-of-band noise
spectral components. After filtering, the waveform associated
with a frame may be written as7

er(t) =
Ns�1X

n=0

Lp�1X

l=0

�l pl(t� nTIP � ⌧l) + ew(t) (10)

7Since we consider UWB signals, equivalent baseband notation is not
adopted and all signals are real.
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where Lp is the number of received multipath components,
each with gain �l and delay ⌧l, pl(t) is the lth received pulse,8

and ew(t) is the filtered AWGN. Note that the coefficients �l
are assumed to be constant over a frame, a realistic assumption
in typical object tracking scenarios.

Next, let us denote by r(t) the coherent average of the Ns

pulses received within a frame. Such an averaging operation,
also known as pulse integration, yields a significant improve-
ment of the SNR at the receiver. This turns out to be very
beneficial for the whole detection and localization process as
object echoes may be very weak. After pulse integration the
received signal relevant to a single frame, also referred to as
a scan, may be written from (10) as

r(t) =

Lp�1X

l=0

�l pl(t� ⌧l) + w(t). (11)

Note that w(t) has a power reduced by a factor Ns with respect
to ew(t) in (10), resulting in an SNR increase by the same
factor. Note also that the scan waveform has a duration equal to
TIP but the collection of the Ns pulses to form a scan requires
an entire frame of duration Tf.

The received scan waveform (11) is sampled at frequency
fs = 1/Ts, and its samples are collected into a vector r =
(r1, . . . , rN ) of length N = Tf/Ts, where

rk = r(kTs) =

Lp�1X

l=0

�l pl(kTs � ⌧l)+w(kTs) k = 1, . . . , N.

(12)
To better illustrate the in-sensor processing steps depicted

in Fig. 1, we show in Fig. 5 an example of the signal captured,
after each processing block, in a real indoor scenario through
the test-bed described in Sec. VI. The sampling frequency
is fs = 16.4GHz which corresponds to a sampling time
Ts = 61 ps. The number of pulses per frame is Ns = 20480
and the scan length is N = 1920 samples. Note that the
time required to collect samples for a scan is approximately9

Ns N Ts = 2.4ms. Such a duration is small enough to ensure
that the environment (including the target) is quasi-static and,
therefore, that coherent integration is effective.

Fig. 5a shows the sampled scan waveform (12), rer, when
the target is not present, namely, in empty-room (ER) condi-
tions. The scan presents a very high peak at ToA ⌧0 = 20ns
due to the direct path (DP), as well as additional multipath
components induced by reflections in the propagation envi-
ronment. In presence of a target in the monitored area, the
sampled scan waveform r may look like the red one in Fig. 5b.
As the figure emphasizes, the target produces an extra path,
which is rather weak in the example waveform. This makes
the subsequent steps crucial for reliable detection and precise
localization of the object. The target echo ToA is ⌧ = 32.6 ns.

B. Non-coherent demodulation

By processing vector r, whose kth element is given by
(12), it is possible to extract the ToA ⌧0 of the DP. Since the

8pl(t) may account for distortions due to antennas, reflections, frequency-
dependent RCS of the target, and filtering in the receiver front-end.

9The actual scan duration is slightly higher as an inter-frame period is
present.

transmission is IR-based with a very large bandwidth, as the
echo pulse is very short, ToA information may be extracted
even relying on non-coherent demodulation techniques, i.e.,
the carrier phase needs neither to be estimated nor tracked
[124]. This feature is very beneficial, as the pulse pl(t)
is usually unknown at the receiver because of unavoidable
distortions introduced by the channel and the antennas, due
to its very large bandwidth. A simple envelope detector may
thus be applied both to the ER scan rer and to the current scan
r to extract their envelopes ✏er and ✏.10 Envelope extraction
may be easily implemented by a squaring block followed by
a low-pass filter. The result is exemplified in Fig. 5c, where
the target echo is again detailed.

C. Direct path ToA estimation

To perform clutter removal (see next subsection), after
envelope extraction we need to provide an estimate ⌧̂0 of
the DP ToA, for both ✏er and ✏. In fact, once the two
DP ToA estimates are available, the two vectors can be
aligned by shifting one of them by the appropriate amount
b|⌧̂0 � ⌧̂0,er|/Tsc = b|∆⌧̂0|/Tsc.

There are numerous techniques for ToA estimation in UWB-
IR systems; a detailed review may be found in [47]. A simple
technique to detect the first arriving path is threshold crossing,
where the signal envelope is compared with a threshold and
the first crossing gives the ToA [125], [126]. The thresh-
old crossing detector performance is heavily influenced by
the threshold value, which needs to be carefully designed
according to the operating conditions. A simple criterion to
determine a sub-optimal threshold, based on the evaluation
of the probability of early detection and knowledge of noise
power, may be found in [125]. Several other sub-optimum
approaches have been proposed to reduce early detections
threshold-based estimation such as jump back and search

forward criterion (exploiting the detection of the strongest
sample and a forward search procedure over a predefined time
window), and serial backward search criterion (based on the
detection of the strongest sample and a search-back procedure
over a predefined time window) [126], [127]. A comprehensive
framework for the analysis and design of threshold-based ToA
estimators was developed in [128]. More robust techniques,
which do not require knowledge of the signal statistics and
noise power, are investigated in [49], [129].

D. Clutter removal and ghost mitigation

After alignment of the ER and the current scan, clutter
removal is performed as11

d = ✏� ✏er . (13)

10As opposed to ✏, which is computed in each frame, ER envelope ✏er is
extracted only any time a new ER scan is acquired.

11In some cases, the alignment based on the DP ToA estimation of the
two scans is not sufficiently accurate to perform an effective clutter removal.
Since the two scans are very similar (see, e.g., Fig. 5c) cross-correlation peak
searching is an effective approach to estimate the relative temporal shift used
for a finer alignment. Such approach can be further improved by performing
interpolation of the two scans at a higher sampling rate, before alignment,
and then decimation after the scans subtraction, (13), to return to the initial
sampling rate.
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(a) Received vector rer relative to the ER.
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clustering.

Fig. 5. In-sensor processing steps at Rx4 for the 32nd scan in the reference scenario depicted in Fig. 7. The received waveform is processed following the
steps from (b) to (f). The measurement vector at the output of the sensor will be processed by the fusion center as illustrated in Sec. V.

Vector d is expected to contain the target echo immersed in
a clutter residue that was not removed due to imperfect DP
ToA estimation and waveform alignment, and because clutter
is non-static (e.g., due to moving foliage in outdoor or other
undesired moving objects within the area). Apart from residual
clutter, the obtained signal samples may also be impaired by
additional echoes named ghosts, typically appearing when a
target obscures a clutter echo which is present in the ER scan.
Ghost echoes manifest as negative peaks in the difference
vector (13). To mitigate ghost effects, a half-wave rectifier
is applied to d (see an example in Fig. 5d). With some abuse
of notation, hereafter the rectified vector is still denoted by d.

In the presence of strong moving clutter and a moving
target, several clutter removal techniques have been developed,
often under the name moving target indicator (MTI), ranging
from a simple frame-to-frame subtraction to more sophisti-
cated approaches, some of which exploit features of the human
motion [92], [130]–[134].

E. CFAR detection

Once the signal samples have been processed by the clutter
removal and ghost mitigation algorithms, the rectified vector d
is further processed to make a sample-wise decision between
the null hypothesis, H0, and the alternative hypothesis, H1,
thus generating a binary vector b̂ = (b̂1, b̂2, . . . , b̂N ) to be
processed by the subsequent steps.

A naïve sample-wise detector consists of comparing each
sample with a fixed threshold. If the sample under test (SUT),
dk, is above the threshold, the corresponding decision vector
sample b̂k will be set to 1, otherwise b̂k = 0. The choice of the
threshold is crucial and may depend on several aspects, such
as noise and residual clutter powers as well as their statistics,
the number and location of the targets, etc. It is worth noting
that increasing the threshold causes false alarm rate to reduce
but at the same time misdetections to raise, and vice versa.

CFAR detectors feature an adaptive threshold aimed at
maximizing the detection probability while keeping the false
alarm rate approximately constant [135]. The most well-known
approach is cell averaging CFAR (CA-CFAR) detection [26],
[119], [136], [137]. Here the sample-specific threshold is
calculated by estimating the level of residual clutter and noise
around the SUT. The estimation is performed by considering
two blocks of reference samples (of length Nref samples each)
around the SUT (one on the right and the other on the left
of it) and by calculating their average power ignoring Nguard

guard samples immediately adjacent to dk. Guard samples are
discarded to avoid over-estimating the clutter and noise power
due to the target itself. In fact, the target echo usually involves
several samples as exemplified in Fig. 5c. Then this average
power is compared with the squared SUT multiplied by the
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threshold ↵ as

d2k

H1

?
H0

↵

P
i2Sk

d2i
2Nref

k = 1, . . . , N (14)

where Sk = {k�Nguard�Nref, . . . , k�Nguard�1, k+Nguard+
1, . . . , k+Nguard+Nref}\{1, 2, . . . , N} is the set of reference
samples.

A drawback of CA-CFAR is target masking, a problem
arising when another target falls into the reference set Sk,
thus increasing considerably the reference power and leading
to a wrong decision for H0. To overcome such a limita-
tion, several variants of the CA-CFAR detector have been
introduced, depending on the specific type of waveform and
on the scenario. A simple variation of CA-CFAR is global
CFAR (G-CFAR) where the reference samples are extended
to all scan samples except for the guard ones. Formally,
the detector still has the structure (14) in which Sk =
{1, . . . , k �Nguard � 1, k +Nguard + 1, . . . , N}. This way the
SUT is compared with an estimated power which depends
on the whole scan (and not on local reference samples), thus
averaging out the echoes from the other targets over a larger
interval. This approach turns out to be effective only when
the number of targets inside the monitored area is small and
the scan period is long enough. As a drawback, moreover, the
information associated with neighbor samples, which could
be useful for a better decision based on local residual clutter,
is now overlooked. This last aspect is quite important, as in
an indoor scenario clutter is non-homogeneous [138]–[140].
In these contexts, a more sophisticated variant of CA-CFAR,
named ordered statistics (OS-CFAR), performs ordering of the
reference samples Sk according to their magnitude and by
selecting a certain predefined value from the ordered sequence
[135]. Thanks to ranking, OS-CFAR is proven to be more
robust than CA-CFAR and G-CFAR in the presence of outliers,
has happens in non-homogeneous clutter.

In the context of UWB indoor radar tracking, a recent pro-
posal called double threshold and buffer CFAR (DTB-CFAR)
allows overcoming the above limitations by means of an
adaptive threshold setting strategy [65]. For each sample dk
of the rectified vector d, the detector takes a binary decision

d2k

H1

?
H0

↵lLp + ↵g Gp k = 1, . . . , N (15)

where Lp and Gp are defined as the local and the global

power respectively, whereas ↵l and ↵g are weighting factors.
The reference powers Lp and Gp, and thus the threshold
⌘ = ↵lLp + ↵g Gp, are calculated through Algorithm 1. In
particular, Gp = (1/N)

PN
i=1 d

2
i is the average power of the

rectified vector d, whereas Lp is the average power of a first
in first out buffer, s = (s1, . . . , sNb), of length Nb, filled with
the already processed d samples that were found to be below
threshold. This way we reduce the misdetection rate in case
of multiple-target scenarios as we keep track of the decisions
previously taken during the scan. Keeping Nb short, it is
possible to get a local estimate of the noise and residual clutter
power level for the near-SUT samples. However, since target

echo has a length of several samples, the overall threshold
(due to Lp) increases very quickly, causing misdetections. To
avoid this phenomenon, if the increment of the SUT with
respect to the previous sample is larger than a predefined
value, ∆⌘, for at least qmax consecutive samples, then Lp is
not updated. Thus, since residual clutter and target presence
are characterized by similar echoes with the only difference
that the latter ones are generally significantly larger than the
former ones, ⌘ is expected to increase quickly enough to avoid
false alarms but also be frozen soon enough to properly detect
the target. Later, the value of Lp is unfrozen when a waveform
decrease occurs.

To further decrease misdetections, because of the asymmet-
ric target echo, DTB-CFAR is applied to the scan twice in
opposite directions. Then, the two outputs are merged through
an element-wise OR operator to form the final vector. It has
been experimentally verified that DTB-CFAR provides better
performance than conventional approaches (e.g., CA-CFAR) in
case of multiple human targets in densely cluttered environ-
ments. Hereafter, we denote by b̂ the binary vector generated
by DTB-CFAR from processing of d (see Fig. 1). An example
is depicted in Fig. 5e when ↵l = 5, ↵g = 8, Nb = 25,
and qmax = 4. In the example, b̂ exhibit three bursts of
‘1’s corresponding to three possible targets. Such vector will
be further processed within the sensor by one-dimensional
clustering.12

F. One-dimensional clustering

The generic vector b̂ returned by the detector is typically
characterized by bursts of ‘1’s, each due to a specific target
or (to a lesser extent) to residual clutter. To further filter out
false alarms due to residual clutter and limit the computational
complexity of network processing, a clustering algorithm is
applied to the vector b̂, resulting in a new binary vector
denoted by b. We call this clustering step one-dimensional
clustering (see Fig. 1). Since no a priori knowledge of the
number of clusters is available, hierarchical clustering is an
effective approach [141], [142].

In the beginning, each ‘1’ forms a singleton cluster. Then,
iteratively as long as the minimum distance between two
clusters is less than a preset distance threshold, dthr, the two
clusters at minimum distance are merged.13 At the end, each
survived cluster is replaced by a single ‘1’ in the median
position. Furthermore, a weight ! equal to the number of
clusterized ‘1’s is associated with every final cluster. As the
clusters associated with targets typically exhibit higher weights
than those related to clutter or noise, it is useful to set also
a weight-based threshold, !min, so that the lightest survived
clusters (having a weight less than !min), are discarded and
the corresponding elements of b are set to ‘0’.

12It is worthwhile remarking that the vector b̂ computed by each sensor
node contains detection information for all targets in the area. As the quality
of the channel between the Tx, a specific target, and a specific Rx depends on
the target position (e.g., this is true for the SNR given by (2)), different sensor
nodes are likely to deliver detection information with a different quality per
each target. This consideration applies to any in-sensor detector.

13We define the distance between two clusters as the distance between their
centroids (i.e., the median positions among the ‘1’s which compose those
clusters at the current iteration).
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Algorithm 1: DTB-CFAR
Data: d, N , ↵l, ↵g, Nb, ∆⌘, qmax

Result: b̂

1 Gp  (1/N)
PN

i=1 d
2
i , s (d1, . . . , dNb

);
2 (b̂1, . . . , b̂Nb

) 0, freeze 0, q  0;
3 for k = Nb + 1, . . . , N do

4 if !freeze then

5 Lp  (1/Nb)
PNb

i=1 s
2
i ;

6 else

7 Lp  Lfrozen;
8 end

9 ⌘  ↵lLp + ↵g Gp;
10 if d2k > ⌘ then

11 b̂k = 1;
12 else

13 Update the buffer s with dk,
Lp  (1/Nb)

PNb

i=1 s
2
i ;

14 b̂k = 0;
15 if d2k > d2k�1 +∆⌘ then

16 q  q + 1;
17 else

18 if d2k < d2k�1 � ∆η

2 then

19 q  0;
20 end

21 end

22 if q > qmax & !freeze then

23 freeze 1,Lfrozen  Lp;
24 else

25 if freeze&Lp < Lfrozen then

26 freeze 0, q  0;
27 end

28 end

29 end

30 end

The output of one-dimensional clustering is exemplified
in Fig. 5f, where the weight threshold is set to !min = 4
and the minimum distance threshold is dthr = 65 samples,
corresponding to 65Ts = 3.97 ns. Note that the estimated ToA
of the target echo is ⌧̂ = 33 ns, which compared to the actual
one, ⌧ = 32.6 ns, confirms the good accuracy. However, there
is a second ‘1’ in vector b which corresponds to a false alarm.
Such an undesired measurement will be further processed and
hopefully filtered out by network processing.

We report in Fig. 6 the temporal evolution of the scan
waveforms obtained after clutter removal, DTB-CFAR detec-
tion, and one-dimensional clustering by one of the sensor
nodes (Rx4 in Fig. 7), in the framework of the case study
that will be described in Sec. VI. Specifically, Fig. 6a shows
the evolution of the actual (single) target ToA, while Fig. 6b,
Fig. 6c, and Fig. 6d show vertically stacked vectors d, b̂, and
b, respectively. Looking at Fig. 6d, we can see how the target
is detected in almost all frames (filling the gaps is a problem
deferred to tracking); false alarms in some of the frames are
also visible.

G. The blind zone problem

An issue deserving attention in sensor radar systems based
on UWB is represented by the existence of a blind zone for
each bistatic Tx-Rx pair, i.e., a region in the proximity of the
direct path between the Tx and the Rx where target detection
becomes problematic. Blind zones are due to concurrent
phenomena, as explained next.

A non-point-wise target (e.g., a human being) becomes
virtually undetectable by a bistatic pair when it is located
on the path between the Tx and the Rx node. Due to target
obstruction of the LOS between the two nodes, neither a
detectable direct signal nor a detectable target-scattered one
are received; whenever a detectable target echo is still received,
it is assumed to represent the direct signal.

A target is generally undetectable also when it is sufficiently
close to the LOS between the two bistatic nodes, although
the LOS is not shadowed by it. This is a consequence of
synchronization issues. Synchronization based on estimation
of the ToA of the direct-path pulse is the first operation
performed by the Rx node. This operation is essential both to
align the Ns pulse responses belonging to the same frame (to
achieve pulse integration gain) and to align successive frames
for clutter removal purposes, as addressed in Sec. IV-C. In
practice, imperfect ToA estimation turns into imperfect frame
alignment and, consequently, presence of a clutter residue after
clutter removal. Since the signal received along the direct
path is usually much stronger than the target echo and the
other clutter components, a direct-path pulse residue after
clutter removal is normally comparable to the echo of a target
close to the direct path between the Tx and the Rx, if not
even stronger.14 Due to residual clutter issues, received signal
samples with small delay with respect to the estimated ToA
are usually considered as unreliable and ignored for detection
purposes.

V. NETWORK PROCESSING

In Sec. IV we described a non-coherent detection algorithm
performed by each Rx node composing the sensor radar. This
algorithm yields, for each such node, a sparse binary vector
b in which each nonzero entry is associated with a detected
moving target in the surveilled area or with a false alarm. The
next step consists of network processing, in which the hard-
decision information individually generated by all Rx nodes
are fused together in order to complete target detection and
tracking. A set of measurements is first generated and then
a target tracking block is fed with such measurements. This
section focuses on a set of low-complexity network processing
algorithms.

A. Detection (measurement generation)

For ease of exposition we restrict the analysis to a two-
dimensional scenario, the extension to a three-dimensional one
being immediate. The detection step consists of generating a

14It is worth mentioning that a similar masking effect may experimentally
be observed when the ToA of the target echo is close to the ToA of the echo
of any object characterized by a considerably larger RCS.
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Fig. 6. Processing steps at Rx4 for the Nscan = 61 scans collected along the target trajectory depicted in Fig. 7: (a) Actual target ToA; (b) Vectors d after
clutter removal and rectification, where the lighter the color the larger the value of the corresponding sample; (c) Binary vectors b̂ after DTB-CFAR detection;
(d) Binary vectors b after one-dimensional clustering.

set of (x, y) pairs, each of which represents a measurement for
the current scan period. Detection starts from the Nr binary
vectors bi, i 2 {1, 2, . . . , Nr}, each one returned by a sensor
node in the network, and from the knowledge of the absolute
positions of all nodes (Tx and Rx) in the network. As every
nonzero entry in each vector is associated with a ToA value,
and therefore with an iso-ToA curve having the corresponding
Tx and Rx nodes as foci, target detection may be brought back
to an ellipse intersection problem.

Let (xt, yt) and (xi, yi) denote the absolute coordinates of
the Tx node and of the ith Rx node, i 2 {1, 2, . . . , Nr}, and
let us consider the binary vector bi returned by the ith Rx
node during the current scan. Moreover, let us index by h the
nonzero entries in bi, and denote by ⌧̂i,h the corresponding
estimated ToA. Based on the hth nonzero entry of bi, the
fusion center locates a target on the ellipse whose foci are in
the positions (xt, yt) and (xi, yi), and whose major axis is
q̂i,h = `i+ c ⌧̂i,h, where `i is the ith baseline. The equation of
the ellipse (iso-ToA curve) on which the fusion center locates
the target based on the hth nonzero entry of bi is therefore
q
(zx � xi)2 + (zy � yi)2 +

q
(zx � xt)2 + (zy � yt)2 = q̂i,h

(16)

where the generic point in the plane has been denoted by
(zx, zy). Squaring and reordering yields

zx(xi � xt) + zy(yi � yt) + pi,h

= q̂i,h

q
(zx � xt)2 + (zy � yt)2 (17)

where

pi,h =
1

2

�
q̂ 2
i,h � x2

i � y2i + x2
t + y2t

�
. (18)

We therefore obtain one equation in the form (17) for each Rx
node i 2 {1, 2, . . . , Nr} and for each nonzero entry in bi. A
least square (LS) approach followed by a filtering step to limit
false alarms and by a further clustering step is then employed
in order to generate the measurements. The LS approach is
described in the remainder of this subsection and the other
two steps in Sec. V-B and Sec. V-C, respectively.

A LS solution may be found by selecting ⌫ sensor nodes
and one nonzero entry in each of the corresponding ⌫ binary
vectors, where 3  ⌫  Nr. To this aim, let us denote by
I ✓ {1, 2, . . . , Nr} the set of indexes of the selected Rx nodes
and by hi, i 2 I, the index of the nonzero entry chosen in bi.
(Recall that associated with hi we have an ellipse with foci in
(xt, yt) and (xi, yi) and major axis q̂i,hi

.) Letting k 2 I, for
i = k equation (17) becomes

zx(xk � xt) + zy(yk � yt) + pk,hk

= q̂k,hk

q
(zx � xt)2 + (zy � yt)2 .

(19)

Next, for each i 2 I\{k} let us take the side-by-side difference
between (17) multiplied by q̂k,hk

and (19) multiplied by q̂i,hi
.

After simple algebraic manipulation, this leads to the Nr � 1
equations

ai,hi;k,hk
zx + bi,hi;k,hk

zy = gi,hi;k,hk
(20)

where

ai,hi;k,hk
= q̂i,hi

(xk � xt)� q̂k,hk
(xi � xt)

bi,hi;k,hk
= q̂i,hi

(yk � yt)� q̂k,hk
(yi � yt) (21)

gi,hi;k,hk
= q̂k,hk

pi,hi
� q̂i,hi

pk,hk
.

The previous equations (20) may be recast in compact vector
notation as

A z = g (22)

where z = [zx zy]
T , A is a (t � 1) ⇥ 2 matrix whose ith

row, i 2 I \ {k}, is given by [ai,hi;k,hk
bi,hi;k,hk

], and g is
a column vector with ⌫ � 1 elements whose ith component,
i 2 I \ {k}, is gi,hi;k,hk

.
Finally, using a LS approach, the target coordinates may be

estimated as

ẑ = argmin
z

kAz � gk
= (AT A)�1AT

g (23)

where k · k is the Euclidean norm. A measurement ẑ may be
generated by applying (23) for each choice of the 3  ⌫ 
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Nr nonzero elements, one per binary vector b created by a
specific sensor node as described in Sec. IV. The approach
here followed consists of choosing a value of ⌫, considering
all possible ⌫-tuples of nonzero vector elements, one per Rx
node, and generating one LS measurement per each ⌫-tuple.
The number of measurements generated with this approach is
denoted by Nd in Fig. 1.

The described measurement generation method inherently
creates a relatively large number of false alarms. If no target
is present in the area, false alarms are due to LS solutions
combining nonzero vector elements caused by noise or clutter
residues (i.e., by local false alarms at the ⌫ Rx nodes). We will
call these false alarms as type-1 false alarms. When only one
target is present, additional false alarms are due to LS solutions
that combine nonzero vector elements associated with the
target and nonzero vector elements being local false alarms.
These false alarms will be referred to as type-2 false alarms.
Finally, when multiple targets are present, additional false
alarms are generated by LS solutions that combine nonzero
vector elements associated with different targets. False alarms
of this type will be referred to as type-3 false alarms.

The behavior of the detection algorithm (in terms of missed
detections and number of generated false alarms) is sensitive to
choice of the parameter ⌫. To see this, we can look for example
at the number of generated type-3 false alarms. Under the
assumption that all M � 2 targets are detected by each of the ⌫
Rx nodes and that each target corresponds to a unique nonzero
element in each vector (perfect one-dimensional clustering),
the number of type-3 false alarms is readily given by

Nfa,3 =
Nr!

⌫!(Nr � ⌫)!
(Mν �M) . (24)

For Nr = 3, ⌫ is constrained to be equal to 3 yielding Nfa,3 =
M3�M . For Nr = 4, if M 2 {2, 3} then a smaller number of
type-3 false alarms is attained by ⌫ = 4, while it is attained by
⌫ = 3 for any M � 4. For Nr � 5, there exists M̄ = M̄(Nr)
such that: if M  M̄ then when ⌫ is increased from 3 to Nr

the value of Nfa,3 initially increases, then it reaches a peak and
finally decreases; if M > M̄ then the value of Nfa,3 increases
monotonically with ⌫ 2 {3, 4, . . . , Nr}.

B. Decreasing the false alarm rate

Due to the relatively large number of false alarms generated
by the LS-based detector, a method to substantially reduce
the false alarm rate at the input of the tracking filter becomes
of fundamental importance. In this respect, a measurement
selection is performed by introducing a notion of reliability
for LS solutions. This is possible by exploiting both the
weight ! associated with each nonzero entry in each of the
Nr binary vectors bi at the end of the in-sensor processing,
and the residual error (RE), a measure of reliability inherently
provided by the LS approach.

The RE associated with a LS solution (23) is

RE(ẑ) = kAẑ � gk . (25)

The idea is to keep a measurement if and only if its associated
weight is above some threshold and its associated RE is below

some other threshold, where both thresholds are invariant for
all measurements. The weight of a measurement is defined as
the sum of the weights of the ⌫ nonzero vector entries yielding
that measurement through (23), i.e., Ω =

P
i2I !i. Setting

a threshold Ωth on the minimum acceptable measurement
weight is effective in filtering out type-1 false alarms and those
type-2 false alarms that are mostly contributed by local false
alarms at Rx nodes. Type-3 false alarms, however, are most
often characterized by a weight above Ωth since they arise as
combinations of local detections of different targets. Setting a
threshold REth on the maximum tolerable RE is effective in
filtering out also type-3 false alarms.

The number of surviving measurements after comparison
of their weight and RE on the corresponding thresholds is
denoted by Nm  Nd. For the sake of notational sim-
plicity, surviving measurements will be simply denoted by
z1, z2, . . . , zNm

(see Fig. 1). Residual false alarms are possible
even after the described selection procedure. In particular,
while type-1 false alarms are usually filtered out, the type-
2 and type-3 ones being the result of combining some local
detections of the same target might survive. Since these false
alarms tend to generate measurements around the correspond-
ing target position, a two-dimensional clustering operation is
effective in reducing their rate. Two-dimensional clustering is
also useful in presence of imperfect one-dimensional cluster-
ing.

C. Measurement clustering

The Nm measurements passing the false alarm reduction
step tend to form clouds of points; this is particularly true when
the number of sensors in the radar network is larger than three.
Since the complexity of the processing to be performed in the
subsequent tracking and data association steps is dependent
on the number of measurements incoming from the detector,
a further clustering operation (besides the one performed at
node level) is applied to measurements. The approach is again
hierarchical, iterative, and without an a priori specified number
of clusters. It relies on the concept of distance between two
clusters, for which several definitions are in principle possible.

Letting Z1 = {z1,1, z1,2, . . . , z1,n} and Z2 =
{z2,1, z2,2, . . . , z2,m} be two clusters of measurements with
cardinality n and m, respectively, a common notion of distance
between Z1 and Z2, denoted by d

(c)
c (Z1,Z2), is

d(c)c (Z1,Z2) = kc(Z1)� c(Z2)k (26)

where c(Z ) is the centroid of cluster Z . It is defined as

c(Z ) =
1

|Z |

X

z2Z

z (27)

and in general does not coincide with any element of the
cluster.

As mentioned, (26) is not the only possible definition of
distance between clusters, as at least two other definitions
are of practical interest. The first one measures the distance
between two clusters Z1 and Z2 as the minimum Euclidean
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Algorithm 2: Measurement Clustering

Data: Nm, {z1, z2, . . . , zNm
}

Result: Ncluster, Z1,Z2, . . . ,ZNcluster

1 dmin  1; Ncluster  Nm; stop 0;
2 for i = 1, . . . , Nm do

3 Zi  {zi};
4 end

5 while (!stop) do

6 for i = 1, . . . , Ncluster � 1 do

7 for j = i+ 1, . . . , Ncluster do

8 if dc(Zi,Zj) < dmin then

9 dmin  dc(Zi,Zj);
10 imin = i;
11 jmin = j;
12 end

13 end

14 end

15 if dmin < dthr then

16 Zimin
 Zimin

[Zjmin
;

17 for j = jmin, . . . , Ncluster � 1 do

18 Zj  Zj+1;
19 end

20 Ncluster  Ncluster � 1;
21 else

22 stop 1;
23 end

24 end

distance between one element z1 2 Z1 and one element
z2 2 Z2, namely,

d(m)
c (Z1,Z2) = min

(z1,z2)2Z1⇥Z2

kz1 � z2k . (28)

The second one is similar but relies on the maximum Eu-
clidean distance between any two measurements of which one
belongs to the first cluster and the other to the second:

d(M)
c (Z1,Z2) = max

(z1,z2)2Z1⇥Z2

kz1 � z2k . (29)

The measurement clustering procedure is formalized in
Algorithm 2. As also shown in Fig. 1, its input is represented
by the set of all measurements generated by the detection
block and surviving the false alarm rate reduction step, along
with its cardinality Nm; its output is a partition of this set
along with the number of parts (i.e., clusters) Ncluster. In the
beginning each measurements zi forms a singleton cluster
{zi} and therefore Ncluster = Nm. At each iteration, the
minimum distance dmin between any two clusters is computed
and compared with a threshold dthr; if dmin < dthr then the
two corresponding clusters are merged to form a new cluster
of larger cardinality and the number of clusters Ncluster is
decreased by one. The algorithm terminates when no pair of
clusters is found whose distance is smaller than the threshold.
The Ncluster centroids of the finals clusters are forwarded to
the multitarget tracking algorithm (Sec. V-D).

From a complexity viewpoint, during the first iteration of
the algorithm, the one working on singleton clusters, we

need to compute
�
Nm

2

�
Euclidean distance values. Moreover,

if the centroid-based definition of distance between clusters
is adopted, during each subsequent iteration we need to
calculate one centroid (for the new cluster formed during the
previous iteration) through (27) and Ncluster � 1 Euclidean
distance values, where Ncluster is the number of clusters at the
beginning of the iteration.15 The number of Euclidean distance
values to be computed is then

✓
Nm

2

◆
+

NitX

i=2

(Nm � i)  (Nm � 1)2 (30)

where Nit is the number of iterations (which depends on the
measurements and on the threshold dthr) and where the upper
bound is obtained by observing that Nit  Nm� 1. Thus, the
right-hand side of (30) is the number of Euclidean distance
computations in case all measurements are clustered together.

In Algorithm 2, the distance between two clusters Zi and
Zj has been generically denoted by dc(Zi,Zj). With respect
to the definition (26) based on cluster centroids, the definition
(28) based on the minimum distance between measurements
tends to generate a smaller number Ncluster of clusters of
relatively larger size, while the definition (29) based on the
maximum distance between measurements is more conser-
vative and tends to give rise to a larger number Ncluster of
clusters of relatively smaller size.

D. Object tracking

The output of the measurement clustering step at scan
period k is a finite set of (unordered) measurements Zk =
{z1, z2, . . . , zmk

}k, where mk = Ncluster and where (with
some abuse of notation) zi is the centroid of the ith cluster
out of the Ncluster final ones. Individual measurements in the
set Zk may be originated both by target detections and by false
alarms. An admissible value for Zk is ; (empty set, in case of
no false alarms and all targets missed) and its cardinality mk

is subject to variations from frame to frame. In the following,
the conventional notation Z(k) will be used to indicate the
sequence Z1, Z2, . . . , Zk of all observed measurement sets up
to scan period k. In the specific case of the LS detector com-
bining CFAR detections from individual sensors, if Zk 6= ;
then each measurement z 2 Zk comprises position coordinates
(z = [zx zy]

T in a simple two-dimensional scenario).
The state of a single target will be denoted by x and the

single target state space, to which x belongs, by X . The single
target state x may in principle include target position, velocity,
and acceleration components; in the RSN presented in this
paper, sticking to a simple two-dimensional scenario, we have
defined x = [x ẋ y ẏ]T . Rigorously, the multitarget state is
defined as a random finite set (RFS) X = {x1,x2, . . . ,xM}
whose cardinality M is the number of targets and whose
elements are the states of the M targets. Again, ; (no target)
is an admissible value for X .

A multitarget Bayesian filter would allow optimally track-
ing, in every scan period k, the a posteriori probability density

15The number of Euclidean distance values to be computed during all
iteration but the first one is not

�

Ncluster

2

�

since we only need to compute
the distance between the new cluster and the existing ones.
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function (p.d.f.) fk|k(X|Z(k)) of the multitarget state.16 Due to
intractable complexity of the theoretically optimum solution,
it is common to rely on approximations. A very popular
approximation of the multitarget Bayesian filter is represented
by Mahler’s probability hypothesis density (PHD) filter [145],
capable to recursively track the a posteriori multitarget state
PHD. This latter quantity, a function Dk|k(x|Z

(k)) : X 7! R

(hereafter also abbreviated to Dk|k(x)), represents the first-
order moment of the a posteriori p.d.f. fk|k(X|Z(k)) and is
operatively given by

Dk|k(x) =

1X

n=0

1

n!

Z

X

fk|k({x, ⇠1, . . . , ⇠n}) d⇠1 · · · d⇠n .

(31)

It may be interpreted as the density of targets in the sin-
gle target state space X . As such, its integral E[M ]k|k :=R
X
Dk|k(x|Z

(k)) dx represents the expected number of targets
in the scene given the whole measurements history Z(k).

Multitarget state tracking based on the measurements gen-
erated by the LS-based detector followed by the clustering
step has been performed by employing a basic single-sensor
PHD filter (i.e., not in its cardinalized version also tracking
the probability mass function of the number of targets in
the scene). The single-sensor version of the filter may be
employed since, although the sensor radar is composed of
several sensors, measurements generation is performed at the
fusion center. It should be remarked that the PHD filter
derivation (see [145]) is based on a multitarget motion model
in which target motions are statistically independent, targets
may disappear from the scene, new targets may appear in the
scene (independently of existing targets), and new targets may
be spawned from existing ones. Furthermore, it assumes a
measurement model where each target generates at most one
measurement, all measurements are independent conditionally
on the multitarget state X , missed detections are possible,
and the false alarm process is a multi-object Poisson process.
While the multitarget motion model seems not critical in
UWB sensor radar applications, we underline that fulfillment
of the condition of having no more than one measurement per
target heavily relies on the success of the described clustering
operations.

The basic PHD filter prediction and (approximate) correc-
tion equations are

Dk+1|k(x) = bk+1|k(x) +

Z

X

Fk+1|k(x|⇠)Dk|k(⇠) d⇠ (32)

and

Dk+1|k+1(x) ⇡ Dk+1|k(x)
h
1� pD(x)

+
X

z2Zk+1

pD(x)'k+1(z|x)

� ck+1(z) +
R
X
pD(⇠)'k+1(z|⇠)d⇠

i
.

(33)

16For a rigorous probabilistic approach to RFSs and multitarget Bayes
filtering the reader is referred, for example, to [143] or to [144].

In (32), bk+1|k(x) is the PHD of new targets appearing in
the scene17 while Fk+1|k(x|⇠) = ps,k+1|k(⇠)µk+1|k(x|⇠) +
�k+1|k(x|⇠), being ps,k+1|k(⇠) the probability that a target
existing at time k with state ⇠ survives at time k + 1,
µk+1|k(x|⇠) the single target motion model (transition den-
sity), and �k+1|k(x|⇠) the PHD of spawning targets.18 Fur-
thermore, in (33), pD(x) := pD,k+1(x) is the probability
that a measurement is collected at scan time k + 1 from a
target having state x, � := �k+1 is the average number of
false alarms, ck+1(z) is the false alarm distribution in the
measurement space, and 'k+1(z|x) is the measurement model
(or sensor likelihood function).

Equations (32) and (33) have been implemented using a
particle approach. The implemented particle filter comprises
the usual steps, i.e., prediction (existing particles at scan time
k are updated based on the motion model), correction (particle
weights are updated based on new measurements), resampling.
New particles are initialized in each iteration around each
measurement, in oder to track possible new targets appearing
in the scene, the sum of the weights of these newly introduced
particles being equal to

R
X
bk+1|k(x) dx as required. The

number of particles is maintained constant over time by
resampling. At the end of the correction step of each iteration
of the particle filter, the particles along with their weights form
a discretized version of the PHD Dk|k(x). As such, the sum
of all particle weights represents the particle approximation
of the (a posteriori) expected number of targets in the scene,
E[M ]k|k. We then define the estimated number of targets at
scan time k, M̂k|k, as the integer closest to E[M ]k|k and
the (a posteriori) estimated target states as the M̂k|k largest
peaks of the PHD function. This latter step is performed
through an expectation-maximization (EM) algorithm fitting
the discretized PHD with M̂k|k Gaussian functions.

E. Data association

In several RSN applications we may want to have one track
(sequence of target states) associated with each detected target.
When this is the case, a data association problem shall be
solved, consisting of performing an association between exist-
ing tracks and new filtered measurements. Popular solutions
for data association in multi-target tracking problems date
back to the Seventies [146]–[149]; another popular technique
is the multiple hypothesis tracking (MHT) algorithm [150].
Since a plain PHD filter does not automatically perform data
association, this problem has been the subject of several more
recent studies in the framework of PHD filtering [151]–[153].

The data association method designed for the proposed
sensor radar is a relatively-simple algorithm whose input at
scan time k is represented by the set of existing tracks inherited
from scan time k � 1 and by the M̂k|k target state estimates
(PHD peaks) returned by the PHD filter, and whose output is

17bk+1|k(x) =
P

∞

n=0
1
n!

R

X bk+1|k({x, ⇠1, . . . , ⇠n}) d⇠1 · · · d⇠n,
where bk+1|k(X) is the p.d.f. of new targets with multitarget state X
appearing at scan time k + 1.

18�k+1|k(x|⇠) =
P

∞

n=0
1
n!

R

X �k+1|k({x, ⇠1, . . . , ⇠n|⇠}) d⇠1 · · · d⇠n,
where �k+1|k(X|⇠) is the p.d.f. of new targets with multitarget state X
spawned at scan time k + 1 from a target with state ⇠ at time k.
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an updated set of tracks Tk (see Fig. 1). Thus, in the proposed
system data association is performed after PHD filtering.

The algorithm may be summarized as follows. At each scan,
a cost is calculated for each hypothesis, where an hypothesis
is an association between the M̂k|k state estimates and the
existing tracks. The hypothesis with minimum cost is then
considered. If its cost is lower than a maximum acceptable
cost, then the association is valid: a state estimate associated
with an existing track yields an updated track, a track not
associated with any state estimate is declared to be silent, an
estimated state not associated with any existing track yields
the initialization of a new track.19 In contrast, if the cost
of the minimum-cost hypothesis is larger than the maximum
acceptable value, a gating procedure is started in which
each association foreseen by the minimum cost hypothesis is
individually considered: the single association is declared to be
valid if and only if the estimated state belongs to a properly-
defined permitted region around the track head. For all single
associations declared to be invalid, the corresponding track
is declared to be silent, and a new track is initiated for the
corresponding estimated state.

A state is defined and updated for each track. Possible
track states are unconfirmed, confirmed, silent, dead; the set
Tk of existing tracks only comprises unconfirmed, confirmed,
and silent ones. The state of every newly initiated track is
unconfirmed. It is turned to confirmed after a certain number
of scans, in all of which the track has been updated. The
state of a confirmed track for which, at some scan, no valid
association with any PHD-estimated state is found, is turned
to silent. If a valid association is found between a target state
and a silent track within a certain number of scan periods, the
track state is reverted back to confirmed. Otherwise the silent
track state is turned to dead and the track is removed from the
set of existing tracks. (The silent state has been introduced to
cope with detected targets that suddenly stop their motion.)
An unconfirmed track, for which no valid association is found
in some scan before the track is declared confirmed, is directly
turned to a dead track. This way, we can cope with sporadic
false alarms not filtered out by the PHD filter.

VI. A CASE STUDY

A measurement campaign has been carried out for a single
target in an indoor scenario with a RSN composed of a Tx
and Nr = 6 Rxs placed at the sides of a rectangular area
of size 11.5m ⇥ 6m. A sketch of the environment with the
monitored area indicated in pink is provided in Fig. 2, and the
corresponding sensor node locations are depicted in Fig. 7.

The sensors adopted to transmit and collect UWB wave-
forms are the Time Domain’s PulsOn 410 [154]. Such
transceivers are designed for short range, low cost and rel-
atively low power applications. Each node has two antenna
ports, a power interface, and a port for data transmission and
control. The sensors are connected with a personal computer
to control the transmission and reception parameters as well

19In fact, the number M̂k|k may be equal to, lower than, or larger than the
number of existing tracks from scan time k − 1.

as to collect all the received waveforms (the vector r in Sec-
tion IV-A) through the Channel Analysis Tool (CAT) software
[154].

The PSD of the transmitted signal is centered at frequency
fc = 4.3GHz with bandwidth B = 2.2GHz, the transmit
power has been set to Pt = �12.64 dBm, and the receiver
noise figure is 4.8 dB. The antennas adopted in the experimen-
tal campaign are UWB omnidirectional dipoles with approx-
imately 0 dB gain. The human target, of 90Kg weight and
185 cm height, moves with uniform linear motion (constant
velocity) from right to left along the blue trajectory depicted
in Fig. 7, with speed 1.5m/s. The trajectory is 9.15m long
corresponding to Nscan = 61 scans, thus the spatial resolution
is 15 cm/scan.

With reference to the LS detector described in Sec. V-A,
the value ⌫ = 3 has been used for measurements generation.
To decrease the false alarm rate as proposed in Sec. V-B,
different measurement weight thresholds, Ωth, and RE thresh-
olds, REth, are considered. In particular, the target track has
been estimated with three parameter settings: A) Ωth = 40,
REth = 6 ·10�13 m3; B) Ωth = 56, REth = 4 ·10�13 m3; C)
Ωth = 56, REth = 6 ·10�13 m3. The remaining parameters of
the RSN can be found in Sec. IV.

The localization error is defined as the distance between the
true position of the target, pk = (xk, yk), and the estimated
one, p̂k = (x̂k, ŷk), in the kth scan, i.e., kpk � p̂kk. The
related root mean-square error (RMSE) is

RMSE =

vuut 1

Nscan

NscanX

k=1

kpk � p̂kk2 (34)

and the empirical cumulative distribution function (c.d.f.) is

F(") =
1

Nscan

NscanX

k=1

kpk�p̂kk6ε (35)

where A is the indicator function, i.e., A = 1 when A is
true and 0 otherwise.

The estimated tracks for the three parameter settings A, B,
and C, after the whole processing, are depicted in Fig. 7, and
the corresponding empirical c.d.f.s of the localization error are
shown in Fig. 8. As can be seen, the localization error is less
than 40 cm and 60 cm in almost 80% of the target trajectory
for the tracks A and C, respectively. The RMSE is 36 cm for
track A, 61 cm for track B, and 54 cm for track C. It is worth
noting that such error is less than the human target size, hence
it is relatively small.

Interestingly, track A in Fig. 7 is the one that appears
less smooth despite its RMSE is the lowest among the three
tracks. On the contrary, tracks B and C appear less spiky
although their empirical c.d.f.s are below that of track A.
This behavior is due in part to the fact that the localization
error can occur also along the target trajectory, a situation
which is not visible in the plots of Fig. 7. This trade-off
between accuracy and smoothness can be exploited by the
system designer to choose the proper set of parameters to meet
specific application requirements for the RSN.
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Fig. 7. The RSN configuration in the case study scenario depicted in Fig. 2,
the trajectory of the target, and the estimated tracks for different parameter
settings: A (green), B (red) and C (black). The monitored area is represented
as in Fig. 2 with the pink rectangle.

VII. CONCLUSIONS AND FINAL REMARKS

This paper presented the fundamental aspects of non-
collaborative object localization in indoor environments using
IR-UWB technology. To better understand the steps that lead
to object tracking, a RSN demonstrator has been used to illus-
trate the signals and data processed, when operating in a real
indoor scenario. The case study assessed that the localization
accuracy level that can be reached is very promising and in
the order of tens of centimeters.

Ubiquitous deployment of sensor radar systems is expected
to open new research directions and challenges. Examples are
represented by reliably tracking a large number of objects in
densely cluttered areas, the design of low-complexity archi-
tectures, real-time capabilities, and energy efficient in-sensor
processing design.

Concerning the specific steps described in this paper, it
has been highlighted how the first network processing step
(measurement generation, Sec. V-A) has the disadvantage to
give rise to a considerable number of false alarms, which
must then be carefully filtered out by a false alarm mitiga-
tion strategy (based on both measurement “weight” and RE)
and subsequently by measurement clustering. Although the
effectiveness of these strategies has been verified with actual
measurements, the overall network processing would benefit
from a lower number of false alarms in the detection step.
In this respect, it should be observed that different Rx nodes
generally experience different channel qualities with respect
to different targets and that performing a target-specific sensor
node ranking becomes feasible if a feedback from the tracking
filter is available. This is expected to enable the generation of
measurements for targets being tracked using only few selected
sensor nodes, leading to a reduced number of false alarms and
a lower computational burden on the false alarm mitigation
steps.
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Fig. 8. The empirical c.d.f. of the localization error of the estimated tracks
for different parameter settings: A (green), B (red) and C (black).

Readers may have noted that Doppler effect is not ex-
ploited by the described radar sensor network. This choice
has been dictated by the need to develop a low-complexity
processing and by challenges in effectively exploiting Doppler
effect when using UWB waveforms to detect targets having
similar velocity (as it is often the case in indoor applications).
Anyhow, a judicious processing allows extracting Doppler
information also in this challenging context (e.g., [155], [156]),
which opens interesting directions of investigations, for exam-
ple, concerning classification of detected targets that are being
tracked by the sensor radar.

Readers acquainted with multi-object tracking may also
wonder if a cardinalized PHD (CPHD) filter [157] or a multi-
Bernoulli filter [158]–[160] may be able to improve the sensor
radar performance. The use of a CPHD filter (propagating
the random set cardinality distribution and its probability
generating function along with the PHD) is expected to
improve performance, but at the cost of additional computa-
tional complexity. Multi-Bernoulli filters, which propagate the
parameters of a multi-Bernoulli distribution approximating the
a posteriori p.d.f. of the multitarget state instead of its first-
order moment, are characterized by a complexity similar to
that of the PHD filter. Their suitability with respect to the
measurement generated according to the proposed processing
should be carefully evaluated.
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