Sensor Ranking: A Primitive for Efficient Content-based
Sensor Search

B. Maryam Elahi, Kay Rémer,
Benedikt Ostermaier
Institute for Pervasive Computing, ETH Zurich
Zurich, Switzerland
elahib@ethz.ch, {roemer, ostermaier } @inf.ethz.ch

ABSTRACT

The increasing penetration of the real world with embedded
and globally networked sensors enables the formation of a
Web of Things (WoT), where high-level state information de-
rived from sensors is embedded into Web representations of
real-world entities (e.g. places, objects). A key service for
the WoT is searching for entities which exhibit a certain dy-
namic state at the time of the query, which is a challenging
problem due to the dynamic nature of the sought state infor-
mation and due to the potentially huge scale of the WoT. In
this paper we introduce a primitive called sensor ranking to
enable efficient search for sensors that have a certain output
state at the time of the query. The key idea is to efficiently
compute for each sensor an estimate of the probability that
it matches the query and process sensors in the order of de-
creasing probability, such that effort is first spent on sensors
that are very likely to actually match the query. Using real
data sets, we show that sensor ranking can significantly im-
prove the efficiency of content-based sensor search.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
Design, Algorithms

Keywords
Web of Things, Search, Ranking, Sensors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN’09, April 13-16, 2009, San Francisco, California, USA.

Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

Michael Fahrmair, Wolfgang Kellerer
Ubiquitous Networking Research, DOCOMO
Communications Laboratories Europe GmbH
Munich, Germany
{fahrmair, kellerer } @ docomolab-euro.com

1. INTRODUCTION

The increasing penetration of the real world with embed-
ded and globally networked sensors (e.g., built into mobile
phones), enables novel applications that take into account the
current state of the real world. This trend has led to the devel-
opment of middleware (e.g., GSN [4], SenseWeb [14]) that
offers unified interfaces to access such sensors. Given these
developments, we envision a Web of Things, where Web rep-
resentations of real-world entities (i.e., objects, places, and
creatures) are augmented with real-time state information
derived from sensors. For example, a Web page that rep-
resents a meeting room, containing static information on its
size and location, could be augmented with real-time state
information on the presence of people in the room. Another
example is social networking platforms, where users may
share their personal state (e.g., where they are, what they are
doing, whom they are with) with their friends by publishing
this dynamic state (e.g., derived from mobile phone sensors)
on their personal Web pages. As in these examples, we are
particularly interested in people-centric sensors whose out-
put is mainly controlled by the behavior of people.

In contrast to existing middleware such as GSN or
SenseWeb, the WoT is entity-centric rather than sensor-
centric: We believe that users are primarily interested in en-
tities of the real-world (e.g., places, objects, creatures) and
their high-level states (e.g., room is occupied) rather than in
sensors and their raw output.

As in the traditional Web, search is also a key service in the
WoT, enabling users to find real-world entities that exhibit a
certain current state (e.g., currently empty rooms of a certain
size, locations where many people sharing my interests are
currently hanging out). Searching the WoT is a challenging
problem as the sought information (i.e., real-time state of
entities) is highly dynamic, inherently distributed, and the
number of entities in the WoT is potentially huge.

The key problem that needs to be solved to realize a search
engine for the WoT is content-based sensor search, that is,
given a large number of sensors, efficiently find a subset of
sensors that output a sought value at a given point in time. In

this paper, we introduce a primitive called sensor ranking
that enables the implementation of efficient content-based
sensor search.

The basic idea is to compute a ranked list of sensors such
that the higher the rank of a sensor in this list, the likelier
this sensor matches the query. This way, a search engine can
process sensors in the order of their rank, spending effort on
sensors first that are most likely to match the query. Such
effort includes in particular reading the current output value
of the sensor over the Internet to check if it actually matches
the query. As the latter is a costly operation, sensor ranking
helps to avoid spending useless effort on sensors that are un-
likely to match the query anyway, and reduces the latency of
producing the result pages.

For this approach to be effective, we need to be able to
compute the ranking efficiently in the search engine without
the need for costly remote operations. To achieve this, we ex-
ploit the fact that people are creatures of habit and hence the
output of people-centric sensors tends to show periodic be-
havior [17]. Thus, we can apply a specific class of prediction
models that identify such periodic patterns in past output of
a sensor and allow to compute an estimate of the probability
that the sensor will output the sought value at a future point
in time. The ranking is then computed by sorting the sen-
sors by the probability estimates in descending order. Note
that with this approach, an inaccurate prediction does not af-
fect the correctness of the query result. Instead, it causes a
sensor to be ranked either too high or too low, which causes
an increased overhead in the search engine for downloading
current values of sensors that do not match eventually.

The idea is that sensor nodes (or gateway computers
that relay data streams from sensor nodes to the Internet)
autonomously create these prediction models, such that a
search engine can occasionally download these prediction
models and index them in a local database, much like cur-
rent Web search engines crawl the Web to download and
index static Web pages. This way, computing a ranking in
the search engine is a local operation that only accesses the
database of indexed prediction models.

To further improve the accuracy of the computed rankings,
we introduce a so-called adjustment process which measures
the overall accuracy of past rankings and adjusts future pre-
dictions (independent of the underlying prediction models)
such that the accuracy of future rankings is improved.

One may argue that some sensors may not show a periodic
behavior, thus rendering our approach inappropriate. How-
ever, our experience with different real-world data sets and
results published by others [17, 8] indicate that many people-
centric sensors do in fact show such a periodic behavior.
Hence, among a given set of sensors we can first identify
those with a periodic behavior and apply sensor ranking to
them. The remaining smaller set of sensors with aperiodic
output can be dealt with in a different, more costly way (e.g.,
frequently reading their current values over the network).

model search

construction l for le
Sensor 5
Output AVARA A ?
Time - 4 i3 t, to
\ AN J
Y

time window TW forecasting horizon

Figure 1: Sensor output time series and the query time.

The remainder of this paper is structured as follows. Sect.
2 introduces a detailed system model, while Sect. 3 presents
metrics to measure the accuracy of rankings. We describe
different prediction models in Sect. 4. The adjustment pro-
cess is introduced in Sect. 5. Finally, we evaluate sensor
ranking on two real-world data sets in Sect. 6.

2. SYSTEM MODEL

In this section we introduce a formal model of sensor rank-
ing. For this, we assume the existence of sensors that monitor
the state of real-world entities. A sensor s is represented by
the function

s:T—YV (D

where 7 denotes discrete time and V is the finite, discrete set
of possible sensor output values representing the high-level
state of a real-world entity, e.g., for a sensor monitoring the
occupancy of aroom V = {“free”, “occupied”}. Note that
this notion of a sensor abstracts from the fact that in practice
complex processing of low-level sensory data, perhaps from
multiple physical sensors, may be required to obtain such
high-level state information. However, for the purpose of
sensor ranking this is irrelevant and is therefore not reflected
in the model.
A prediction model is formally defined as a function

Pos.rw : T xV—[0,1] (2)

meaning that the model has been constructed at time ¢, tak-
ing into account the output of sensor s in a time window of
size T'W prior to t. as depicted in Fig. 1. We only consider
the past sensor readings in a time window T'W and not the
entire past readings available, since sensor values from the
distant past are often poor indicators of what can be expected
in the near future. What is more, if the system is going to run
for a considerably long time, the resource consumption could
prohibit us from using all the past sensor outputs.

Given a point in time g > t. (the query time) and a sen-
sor value vy € V (the query value), P(tg, vg) returns an
estimate of the probability that s(tg) = vg holds. We call
hg = tg — t. the forecasting horizon of the query.

Note that we make on purpose no statement about the type
of prediction model used. In fact, every sensor may use a
different type of prediction model (e.g., one that gives the
best prediction accuracy for that particular sensor).

To perform a content-based sensor search looking for sen-
sors that output value vg at time tg, the search engine first
identifies a subset of sensors R that can possibly match the
query. For example, this may be based on static meta in-
formation on the type of sought sensors given in the query.
However, as the details of this step are not relevant for sensor
ranking, it is not reflected in the model.

Next, the ranked list S = s1,59,...,5,, is computed
where s; € R such that Vs;,s;41 € S9 : Py, (tg,vq) >
Py, .. (tq, vq).

Finally, sensors in the ranked list are consulted to check
whether indeed s(tg) = vg holds by reading the current
value s;(tg) of sensor s; over the network starting with
i = 1 until a sufficient number of matching sensors have
been found. To reduce the latency of this step at the cost of
increased communication overhead, multiple sensors from
the top of the ranked list can be checked in parallel (e.g.,
using multiple threads).

3. METRICS

To be able to compare the performance of different predic-
tion models, we need to define metrics to measure the accu-
racy of the rankings computed using the different prediction
models.

In an optimal ranking, all sensors that actually match the
query would be positioned on top of the list, while all sen-
sors that do not match the query are at the bottom. In a sub-
optimal ranking, a matching sensor is ranked lower than a
non-matching sensor. When the search engine processes the
ranked list from top to bottom, reading the current value of
a sensor over the network to check if it actually matches the
query, then a suboptimal ranking causes extra overhead as
the search engine has to consider additional non-matching
sensors before it has found enough matching sensors. Hence,
to assess the quality of a ranking for a query for value v at
time ¢, we define our basic error metric e(¢,v) to measure
the overhead for checking non-matching sensors imposed
by this ranking. For this, we lookup the last sensor in the
ranked list that matches the query and count the number of
non-matching sensors that are ranked above this last match.
To normalize, we divide this number by the rank of the last
match, which gives the ratio of checked sensors that do not
match the query.

Let S = s1,59,...,5, be a ranked list of sensors as
defined in Sect. 2. Let L denote the rank of the lowest-
ranked sensor that matches the query. We have

L = arg max(x(sk, t,v) x k) 3)
1<k<m

where x(s, ¢, v) is an indicator function checking if sensor s
outputs v at time ¢, such that,

R C R

We formalize the ranking error as follows:

0 Zﬁl X(Shtav) =0
e(t,v) = { L 1=x(sistw)
e else.
®)
Another interesting metric could show us the accuracy of the
predictions in terms of the quality of the topmost section of
the ranking. Typically, search results are shown to the user
in multiple pages, and the probability that user checks each
page quickly drops from the first page to the next pages (A
study by [13] claims that more than half of the users do not
browse the results after the first page). So it is most likely
that the search engine needs to find matches only enough to
fill the first few pages. Hence a prediction model that results
in a ranking in which the top segment of the ranked list has
less non-matching sensors, in practice is better than one that
results in a ranking with the same ranking error, but with a
less accurate top segment.
We define the top-m’ ranking error as the ratio of mis-
matches in the first m’ entries of the ranked list, i.e.

etop(t,v,m’) = (6)

, O:Z£1X(8i7t7v)20
Smn T X (si,tw)

min(L,m’) else.

4. PREDICTION MODELS

To implement sensor ranking, we need prediction models
to compute estimates of the probability that a given sensor
generates a given output value at a given point in time. To
be applicable for sensor ranking, prediction models have to
meet a number of requirements. Firstly, they need to operate
on categorical time series as the codomain) of sensors in
our system model is a discrete set of nominal values with-
out any inherent ordering. Secondly, given that existing Web
search engines crawl the Web with a frequency of days to
weeks, we cannot assume a search engine for the WoT to
be able to crawl the WoT to download and re-index predic-
tion models much faster than that. Hence, prediction models
should be able to produce accurate probability estimates for
a forecasting horizon in the order of days to weeks.

Our approach to prediction exploits the fact that many
people-centric sensors tend to show a periodic behavior [17,
8]. However, this periodic behavior is far from being perfect
(e.g., period lengths change over time). Therefore, thirdly,
prediction models need to be able to deal with such imper-
fect periodic behavior.

In this section we first discuss the characteristics of the
output of people-centric sensors and the resulting challenges
for prediction models. Then, we present two specific predic-
tion models.

4.1 Challenges

Although the output of people-centric sensors usually re-
flects on the periodic nature of people’s behavior and thus

follows periodic patterns, perfect periodic patterns are rarely
observable in these outputs.

The output of many sensors that monitor real-world
entities is often affected by multiple real-world processes
with different period lengths. For example a meeting room
could host weekly group meetings, and daily briefings. The
state of some entities might only be affected by one person,
e.g., the occupancy of an office room is usually affected by
the behavior of the owner of the office, but the behavior of a
person is also a composition of several intermittent periodic
processes. For example, every day the person goes out for
dinner and lunch. Every week she could go to meetings on
Monday and she does not work during the weekends.

When we have multiple periodic processes in the time
series of our sensor outputs, they can overlap at some points
and even have conflicts. For example, a person leaves her
office for lunch every day at lpm, but on Tuesdays she
has lunch with her friends, therefore she leaves the office
at 2pm. So the office is empty almost every day at 1pm,
but not on Tuesdays. Deviations from plans and schedules
are very common for people, so exceptions in the periodic
behavior are also frequent in the output of people-centric
sensors. What is more, periodic patterns usually change over
time and are replaced by new patterns. For example, the
occupancy pattern for a classroom changes at the beginning
of each semester.

So the output of people-centric sensors are often not
a composition of perfectly periodic patterns, but rather a
combination of overlapping, semi-periodic, and partially
periodic patterns with exceptions and noise. We call a state
semi-periodic with regard to a period length, if it reoccurs
almost every period with exceptions from time to time. A
partially periodic pattern is a pattern in which some elements
reoccur with the same period length, while the other ele-
ments does not repeat with regard to that period length. For
example, the occupancy of an office room has a partial pe-
riodic pattern with period length of a day, in which the state
of the room is always empty during the nights, but the room
could have different states in the morning from day to day.

To make accurate predictions for such sensor outputs, we
need to detect periodic patterns that are indicative of an ac-
tual real-world periodic process. Furthermore we need to de-
tect changes in the underlying periodic processes over time
and decide what is the dominant state when patterns overlap,
and possibly cope with exceptions and noise as well.

This proves to be a hard problem since the future of high-
entropy sensor outputs is not easily predictable [8]. We say
a sensor output has high entropy if it is composed of many
overlapping periodic processes with frequent exceptions and
changes over time.

4.2 Single-Period Model

If we assume that there is a dominant period with length
p, after which the sensor output is likely to repeat, we could

expect different points in time with the same phase (offset in
the period) to have similar values. For example, we would
expect the occupancy of a class room to follow almost the
same pattern every week and the occupancy of a class room
is likely to be different on Mondays than on Sundays. As-
suming that the time window T'W is an integral multiple of
p, and that the forecasting horizon is smaller than p, we con-
sider the following single-period prediction model':
iy X(s,t —ipv)
TW/p

Pyr. 7w (t,v) = @)
With this approach we compute the probability of a state v
at time ¢ by considering all points ¢; in the time series that
have the same phase as t with respect to period length p. In
other words, the prediction model computes the fraction of
the instances of ¢; for which s(¢;) = v, for all ¢; € [t1,t.],
where ¢; = ¢t mod p.

To determine the dominant period length, we can either
use domain knowledge, or we can automatically extract can-
didate periods by spectral analysis of the sensor output val-
ues by methods such as those presented in [6, 12].

This model is both simple and computationally efficient,
however, it ignores the fact that sensor output is usually
composed of many periodic processes with different period
lengths.

4.3 Multi-Period Model

The state of many real world entities is often affected by
different periodic activities, so sensor outputs are usually the
collective result of several periodic processes with different
period lengths.

Below we introduce a multi-period prediction model
which takes into account that multiple periodic real-world
processes with different period lengths affect the output of
a people-centric sensor. The model consists of two major
steps. In the first step, we discover so-called periodic sym-
bols in a time window of past sensor output. Each such peri-
odic symbol is a tuple (v, p, [, ¢), where v is a sensor output,
p is a period length, [is a phase (i.e., offset in a period), and
0 < ¢ < 1is the support of the periodic symbol in the input
time series. For example, the periodic symbol (“occupied”,
7 days, day 4, 0.8) means that the sensor output “occupied”
repeats every week (period of 7 days) on Friday (fifth day in
the week starting from zero) with a support of 0.8.

In the second step, we use the discovered set of periodic
symbols to make a prediction at time t¢. For this, we filter
periodic symbols that map to the query time, i.e., to = [
mod p. Using the support values of the remaining periodic
symbols, we compute the probability estimate, i.e., the out-
put of the prediction model.

"Note that the model can be easily extended to work with any pe-
riod length and forecasting horizon, but the resulting formula is
somewhat more complex and obfuscates the underlying principle,
so we show this simplified version here.

The algorithm to efficiently discover periodic symbols is
based on previous work by Elfeki [9]. However, as this al-
gorithm wasn’t originally intended for making predictions,
we introduce several modifications to the algorithm. We first
summarize the original algorithm and then describe our mod-
ifications. Finally, we describe how the resulting set of peri-
odic symbols is used to make predictions.

4.3.1 Discovery of Periodic Symbols

To make the paper self-contained, we summarize the al-
gorithm for discovery of periodic symbols presented in [9]
and point out where we modified their algorithm. The actual
modifications are detailed in the subsequent sections.

The input of the algorithm consists of the contents of the
time window V = wvg,v1,...,0n_1, Where v; € V =
{ap, a1, ...,as—1}. The value of an element v; in this time
series is called a symbol over the alphabet V. We borrow the
notion of symbol periodicity from [9] and call oy, a periodic
symbol with period p, if it appears roughly every p times-
tamps in the time series. We say roughly and not exactly ev-
ery p time units, since we assume that V' is a composition of
imperfect patterns as discussed in Sect. 4.1. This assumption
is due to the fact that although human-centric activities and
states tend to follow repetitive patterns, they are very much
prone to exceptions and temporary or permanent changes.

For every state v; of the time series V' we like to find the
possible period lengths with which v; reoccurs in V. For
example, in a time series of room occupancy, if we have
the state “occupied” for a Monday, we like to know if this
state is part of a periodic weekly, two-weekly, etc. pattern,
i.e., we want to compute the probability of the room being
“occupied” every Monday, every other Monday, every third
Monday, etc. In other words, if state v; at time ¢; in the
time series V' is equal to symbol oy, we want to compute the
probability or the support for oy, reoccurring with regard to
different period lengths p. Note that for each period length p,
timestamp ¢; maps to a different offset [in the period, such
that [= ¢; mod p.

We define symbol periodicity support SPS as a function

SPS:Vx L x O [0,1] (8)

where V is the set of possible symbols, £ = {1,2,...,n/2}is
the set of possible period lengths p, and O = {0, 1, ...,p—1}
is the set of possible offsets in the period.

A primitive way of finding symbol periodicity support is
to take a statistical approach. We can iterate over all possi-
ble periods p and for each offset [in the period compute the
ratio of appearances of symbol ay. To explain this, let us de-
note the projection of a time series V' according to a period
p starting from position [with 7, ;(V') [9]. We have

7T'1),l(‘/) = V1, Vi4p; Vi42p5 - - - s Vi+mp (9)

where l < p,m = [(n —1)/p].
For a time series V' = 131 Qa1 X3\ (X1 (X1 o (X3 (1,

7T371(V) = Q20202(X2 and 7T3_’0(V) = 1131 (1. So we
say the probability or the support for ay being periodic with
period 3 at the second position is SPS(az, 3,1) = 1 and the
support for ai; being periodic with period 3 at the first offset
is SPS(a1,3,0) = 4/5.

A more elaborate approach is introduced by [9] to compute
the support for symbol periodicity that considers only con-
secutive appearances of a symbol in a projection. This allows
for a stronger support for close to perfect periodic symbols
and a weaker support for patterns with frequent intermittent
exceptions and outliers. The number of consecutive appear-
ances of a symbol «ay, in a projection series mp, ; (V) is de-
noted as F (o, mp,1(V)). Based on this approach, we define
our symbol periodicity support ¢ as follows.

DEFINITION 1. In a time series V' of length n, for each
symbol «y; at offset | of period p, the symbol periodicity sup-

port is ¢ = SPS (o, p,l) = W

With this definition, for the time series of the above example,
SPS(a1,3,0) =2/4 and SPS(as,3,1) = 1.

We refer to the set of periodic symbols as PS where
each periodic symbol ps; € PS is a quadruple of the form
(g, p,l,¢). In [9], the set PS is considered to contain
only periodic symbols whose symbol periodicity support ¢
is greater than a periodicity threshold. This is to prune weak
and possibly useless periodic symbols. However, for our pur-
pose which is building a prediction model, for every possi-
ble query time ¢ and for every possible query value v, we
need to have at least one periodic symbol that corresponds
to the queried value and maps to the query time. Therefore,
periodic symbols with low supports are not considered use-
less in our case, although some of the periodic symbols with
low or medium supports could have undesirable effects on
the prediction phase. So we devise a more elaborate prun-
ing mechanism, which we discuss later when we introduce
period dominance in Sect. 4.3.3.

To find a periodic symbol ps; = (ag,p,l, ¢), we need
to compute JF,, the number of consecutive occurrences of
the symbol in the projection 7, ;(V') of the time series V.
With an approach somewhat similar to autocorrelation, [9]
shows that we can compute F» (o, mp, (V') by comparing
V with V®) at positions t; in the time series, where v®
is V shifted p positions to the right and [= ¢; mod p. By
comparing V to V), we are comparing every symbol at
timestamp ¢; with the symbol at the timestamp ¢;,,,, thus
we can detect consecutive occurrences of a symbol. To mine
all periodic symbols, we need to shift and compare the time
series for all possible periods. Introducing a proper mapping
scheme for the symbols in the time series, [9] uses the con-
cept of convolution to efficiently shift and compare the time
series for all possible periods. We briefly go over the concept
of convolution and describe the modified algorithm used to
mine periodic symbols.

Let X = xg,21,...,2,—1 and let X' = af,z},..., 2} _4

be two sequences of length n. The convolution of X and
X' is defined as a sequence (X ® X') of length n such that
(X®X'); = Z;’:o xjx;_ ;. Assume xj = Tp_1j, i€, X'
is the reverse of X. We define sequence CX as the reverse
of convolution of X and X’, i.e. CX = (X ® X')’. In such
a sequence, component ¢; of CX corresponds to positioning
X over X and “comparing” corresponding symbols, i.e.,
X = (XX, =" a1y Ty

Back to our goal which is mining periodic symbols, we
want to count the number of consecutive occurrences of a
symbol in time series V' with regard to period p and position
1, by comparing V and V(?). We showed that we can com-
pare V' with the corresponding elements in the shifted series
V(®) for all possible values of p by computing the convolu-
tion C'"'. For comparison of V and V(?) we need a mecha-
nism to figure out which symbols are matching at what po-
sition in the period p. To locate matches, [9] devises a map-
ping ®(V) such that only matching symbols in V and V()
contribute to ¢} = Z?;Olﬂ D(vp_1-5) P(v—1-i—j), Le.,
®(vp—1-j) - P(vp—1-i—;) contributes 1 if symbols v, _1_;
and v,,_1—;—; are the same and 0 otherwise.

To map symbols, [9] uses the binary representation of in-
creasing powers of two [5], such that oy, is mapped to the
binary presentation of 2* using o bits. That is, V = ®(V)
is a sequence of zeros and ones of length on, where v; = 1
if v /0) = (; mod o) Applying convolution on V, a se-
quence CV of length on is constructed in a such way that
¢/ = c¢Y,. This is equivalent to using the projection function
9 onV,ie.,CV =m,0(V).

With this mapping, we can determine the number of
matches when V' is compared to V(i), however, it does not
reveal the matching symbols and their positions in the period.
To address this problem, a subtle modification is applied to
the definition of convolution by [9]. The modified convo-
lution is defined such that (X ® X'); = Yo Paal_ .
Coefficient 27 contributes a distinct value for each match,
based on the position of the match and the matching sym-
bol. Next, we will explain how the identity of the matching
symbols and their positions are computed.

For time series V' of length n, let V = «ag,a1,...,00-1
denote the set of its possible symbols. V is constructed by
mapping each symbol «ay, to the o-bit binary representation
of 2%, The modified convolution sequence C"' is composed
of components 2 ¢} = Z?:_()l_z 20 V1 Up—1—i—; for

i=0,1,...,0n — 1. The sequence C'"V is computed using
the projection function represented in equation (9), such that
CV = 7T070(CV).

To find the matching symbols and their positions for pe-
riod p, we extract W), the set of powers of 2 that indicate the

In [9], to compute ¢! the upper limit of the summation and the
timestamp indexes are incorrectly set similar to the original defini-
tion of convolution, while C'V is defined to be the reverse of the
convolution of V' with its reverse. The correct indexes and limit is
presented here.

matches when V' is compared to V(?). For non-zero com-
ponents of CV', W), = {w, 1,wp2,...} denotes the set of
powers of 2 such that ¢j = 3°, 2vr".

Each power of 2 in W, is contributed by a pair of match-
ing symbols when comparing V' to its shifted version V ®),
so the cardinality of W), represent the number of matching
symbols for the period p. This could be an indicator to show
whether period p is a dominant period in time series V' or
not. We exploit this later for pruning in Sect. 4.3.3.

For a period length p, to find symbols that occur in at
least two consecutive periods at offset [of the period and
to compute the value of the symbol periodicity support
SPS(ag,p, 1), we first extract the set of powers of two that
corresponds to symbol ay, i.e.

Wy = {wpn : wpp € Wy Awpp, modo =k} (10)

Then for each offset [in period p, we find a subset of W, j,
that maps to position [of the period p;

Wpki = {U)p,h Cowpn € Wy A (11D
(n—p—1—w/o))modp =1}

The cardinality of W), ;. ; is equal to the number of consec-

utive occurrences of symbol «ay, at offset [of period p, in

other words, |W), 11| = Fa(au, mp,1 (V). Having Fy we can

compute the symbol periodicity support ¢ = SPS(a,p,l)
based on definition (1).

4.3.2 Time Window Selection

To compute the symbol periodicity support for all period
lengths, the original algorithm in [9] considers the entire time
series, thus supports for small periods are computed consid-
ering many instances of the period in the past while for large
period lengths a small number of period instances are avail-
able. This has undesirable consequences on the accuracy of
the computed periodicity supports and reduces the compara-
bility of these support values. Hence, we introduce a new
approach for selecting the time window from which to dis-
cover periodic symbols.

When considering too few instances for computing the
supports for periodicity and dominance, we mine periodic
symbols with too high or too low supports, without enough
supporting evidence. That is because for the few instances
available, some symbols happen to shape a pattern and for
some symbols who actually follow a close to perfect pat-
tern, the presence of noise or exceptions could undermine
this periodic behavior to a great extent. For example if we are
only considering three instances for a large period length, if
a symbol happens to reoccur just twice in these instances, it
would have a relatively high support of 2/3, while a close to
perfectly periodic symbol, which happens not to occur in the
middle of the three instances we are considering due to an
exception, would cause the support to become 0. This prob-
lem is more visible when we have a small number of pos-
sible symbols. To alleviate this problem, we define a lower

limit wy,;, for the minimum number of period instances that
should be taken into account for mining periodic symbols.
We enforce this lower limit by limiting the maximum length
of a period to n/wWyyin.

Considering too many period instances also reduces the
accuracy of the support. This is due to the fact that peri-
odic behavior may change over time or a periodic symbol
may seize reappearing from a certain point in the time se-
ries. For example, if a class room is occupied every Monday
morning of every week for a Calculus I class in the win-
ter semester, it could become free for almost all the spring
semester when there are no classes held there. If we consider
too many instances for a period, we run the risk of incorpo-
rating the effects of an old periodic pattern that has changed
over the course of time into another pattern. So we impose
an upper bound w4, on the number of period instances that
are taken into account for computing the support for periodic
symbols and period dominances. For this, we modify the up-
per bounds in the convolution formula, such that for each pe-
riod length p, i = op, ¢/ = 02 U1 Opm1ijs
where the upper bound u; = min(on — 1 — 4,4 - Wyae — 1).

4.3.3 Pruning and Weighting

With the help of the modified convolution we compute the
power set W), for all possible periods, and consequently ob-
tain the set of periodic symbols PS. Since we did not prune
these periodic symbols with a symbol periodicity support
threshold as done in [9], all possible periodic symbols are
included in PS. However, we are only interested in indica-
tive periodic symbols. We call a periodic symbol indicative,
if it reflects the existence of a real-world periodic process in
the time series. For example, if there is a class scheduled
every Monday morning in a classroom, we obtain a periodic
symbol for state “occupied” with a support close to 1 and
a periodic symbol for state “free” with support close to 0
(assuming there could be exceptions like holidays). These
periodic symbols are considered indicative.

For many sensor output time series, it is often not straight-
forward to distinguish between indicative and non-indicative
periodic symbols in PS, since many of the periodic symbols
have irrelevant period lengths, yet they gain relatively high
support due to the abundance of a symbol in the time se-
ries. We call a period length p irrelevant, if a periodic pattern
with period p exists in the time series, but there is no ac-
tual real-world periodic process with that period length. For
example, in the output time series of a sensor monitoring a
class room, state “free” is abundantly present, because of the
night hours, the weekends, the holidays, and several hours
during the day when no activities are scheduled in this room.
Therefore many periodic symbols for state “free”, with ir-
relevant period lengths such as 5 hours, obtain a relatively
high periodicity support of ¢ > 0.5. Irrelevant and non-
indicative periodic symbols that have supports greater than
0.5 can jeopardize the effect of indicative periodic symbols

in the prediction phase, so we need to filter them out of PS.

One approach for pruning non-indicative periodic symbols
is to define a set of relevant periods for the model, with which
periodic symbols with irrelevant period lengths are filtered
out. We can use domain knowledge to introduce relevant
period lengths to the model. For example, if we know that
the dominant periodic patterns for a library study hall have
daily and weekly period lengths, it is reasonable to only look
for periodic symbols with these periods.

If we do not have the domain knowledge about the behav-
ior of the sensor output in advance, or if there is a possibility
for periodic patterns with different period lengths to appear
and replace each other during the course of time, we need
to mine dominant periods automatically. To determine the
dominance of a period, we use the ratio of the symbols that
reoccur with respect to this period length. As mentioned be-
fore, cardinality of W), represent the number of symbol re-
occurrences with respect to period p, so with no extra com-
putational cost, we can determine the period dominance for
all possible periods in the time series.

DEFINITION 2. In a time series V of length n, for each
period of length p, if W, = {wp1,Wp2,...} denotes the
set of powers of 2 such that C;‘)/ = Y, 2%»", the period
dominance is defined as PD(p) = % If
PD(p) > 6, period p is called a dominant period with re-
spect to a period dominance threshold 0 < § < 1.

Based on the entropy of the sensor output, a period domi-
nance threshold ¢ should be chosen carefully in such a way
to both prune periodic symbols with irrelevant period lengths
and to keep indicative periodic symbols that belong to a less
dominant period. A less dominant period is one that shows
strong periodicity for some offsets and has arbitrary behav-
ior for the rest of the positions in the period. This results in
periodic symbols which are non-indicative but whose period
dominance is greater than the threshold to pass the pruning.
To alleviate the presence of non-indicative periodic symbols
with high supports, we weight the symbol periodicity sup-
ports with the dominance of their period, i.e. the output
of our algorithm is a set of periodic symbols PS’, which
is pruned and weighted by period dominances, such that
PS = {(ak7pa lv ¢/)|(O‘apa la ¢) € PSAPD(p) > 5/\(775/ =
¢-PD(p)}-

4.3.4 Inferring Prediction Estimates

To build the prediction model, first we run the modified pe-
riodic symbol mining algorithm on the input time series V,
which outputs a set PS’ of quadruples ps; = (ay,p, 1, ¢’).
As explained in the previous section, ps, means that the
probability estimate for symbol aj reoccurring with period
p at offset [is equal to ¢’. For example, if we have a sen-
sor monitoring the occupancy of a room with a time se-
ries resolution of one day, and assuming ¢y is a Monday,
ps, = (‘f',7,5,0.8) means that state ‘f* or “free” reoccurs

every Saturday (I = day 5) of every week (p = 7 days) with
a support equal to 0.8.

We want to infer predictions for the future sensor output
based on PS’, the set of mined periodic symbols. For a
query at time tg > t,, let PS; o, denote the set of periodic
symbols that map to time ¢¢, i.e. ’PS;Q = {(ak,p,l,¢') €
PS'|to mod p = [}. This is the set of periodic symbols
that could potentially influence the state of the sensor at time
tq. To make a prediction for the sensor output matching the
sought value v at time g, we use the periodic symbol that
has the maximum support ¢’ among PS; o as this periodic
symbol is most likely to determine the output of the sensor
at the time of the query, i.e.

P(tq,vq) = max{¢;|(ck,p, 1, ;) € PS;, Aoy = vq}
(12)

For sensors that can assume only two states o or «q, to
estimate the probability of a state v at a time ¢y, it could be
reasonable to assume that the state of the sensor at time ¢, is
most likely determined by the periodic symbol with the max-
imum support among those that map to time ¢, regardless of
the value of this symbol. If the value of this periodic symbol
matches the query value v, the prediction estimate is equal
to its support ¢’, otherwise, it is equal to 1 — ¢’. This is
only reasonable for sensors with two possible states, where
the periodic symbol with the maximum support could be a
good indicator for estimating the probability of both states,
i.e., a strong support ¢’ for state oy occurring at a point in
time, directly implies a weak probability equivalent to 1 — ¢’
for the other state g occurring at the same time. Obviously,
this is not applicable to sensors with more than two possible
states, because a strong ¢’ for state «v; only implies that the
probability for state oy is less than 1 — ¢,

The question arises, whether the maximum probability es-
timates for all possible sensor states occurring at time £ sum
up to 1. The answer is no, due to the fact that sensor output
is comprised of multiple periodic processes that overlap and
conflict at points in time. For example, a biology group hold
their weekly meetings every Friday. They also take field trips
every first day of each month without any exception. So for
a Friday that is also the first day of a month, we have two
periodic symbols: one for state “occupied” every week with
a strong support ¢/ > 0.5, and a perfectly periodic symbol
with support qb} = 1 for state “free” on the first day of ev-
ery month. It is obvious that in such a case for a query for
the state “occupied”, it is preferable to return the probability
estimate as 1 — ’f = 0 rather than ¢/ . For sensors monitor-
ing low-entropy subjects with non-conflicting periodic pro-
cesses, the sum of supports, however, is close to one and we
can safely return the maximum support of the periodic sym-
bol with the queried value as the probability estimate.

The complete algorithm for constructing a prediction
model has computational complexity O(n?), where n is the
size of the time window. However, by using additional space

in the order of O(n) for storing intermediate results, we can
reduce the computational complexity to O(n?).

5. ADJUSTMENT PROCESS

Using the prediction models introduced in the previous
section, a search engine would compute a rank list S con-
taining sensors s; sorted by decreasing probability of match-
ing a query for sensor value v at time ¢¢. In the best case,
all sensors actually matching the query are at the top of the
rank list, while all non-matching sensors are at the bottom.
Imperfect rankings result if a sensor s; is misranked due to
one of the following reasons. Firstly, s; matches the query
but is ranked lower than other sensors that do not match the
query. Secondly, s; does not match the query but is ranked
higher than other sensors that match the query. Formally,
we can measure this ranking error for sensor s; by count-
ing the number of non-matching sensors ranked higher than
a matching sensor s;, respectively by counting the matching
sensors ranked lower than a non-matching sensor s;. The
sign of the following metric indicates if s; should have been
ranked lower (< 0) or higher (> 0).

re(s;,vg,tg) = (13)

{ —|{s; € S5 > i As;(te) = vo}l : si(tq) # vq
[{s; € S9Uj <iNns;tq) #vall : siltq) = vq

During experiments with our system on realistic data sets
we observed that sudden changes in the periodic processes
underlying the data (e.g., end of a semester where room oc-
cupancy patterns in a university change drastically) typically
causes sensors to be consistently misranked until the old data
is shifted out of the time window, resulting in a decreased
performance of the search process.

To deal with this problem, we introduce an adjustment pro-
cess that modifies the probabilities computed by the predic-
tion models using the above-defined ranking error re() such
that systematic misranking is corrected. Essentially, we in-
troduce a control loop, where the ranking error of s; controls
the ranking of s; in future queries such that the future rank-
ing error is reduced. Formally, we compute an adjustment
term A7 for each sensor s; and sought value vg at query
time tg;:

AT (si,0Q,tq,;) = AT (si,vQ, tq,_,) + relsi,va, ;)

(14
where the size m of the rank list S% is used to normalize
the ranking error. The probability estimate for a sensor s;
holding a state v, at the time ¢, , of the subsequent query
is then modified using the above adjustment term:

]-E)Si (tQj+1) UQ) = Psi (tQj+1 , UQ) + AT(SZ'7 vQ, tQ]’) (15)
The rank list resulting from these adjusted probabilities is
then in turn used to update the adjustment terms according
to (14). To avoid the use of outdated adjustment values, A7

is reset to zero when a sensor hasn’t been queried for some
time or when the prediction model of the sensor is updated.

The adjustment process is most effective if the query is
executed frequently. However, if the query is executed infre-
quently, then its contribution to the overall performance of
the search engine will be small anyway. Note that the above
approach can be used with any prediction model.

6. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the predic-
tion models with respect to the resulting ranking accuracy.
First we introduce our evaluation method, then we describe
the data sets that have been used for the evaluation, next we
specify the model parameters that have been used during the
evaluation, and finally we present the evaluation results.

6.1 Evaluation Method

To evaluate the accuracy of sensor ranking for the predic-
tion models introduced in Sect. 4, we simulate the behavior
of a search engine in a C++ program using realistic data sets.

Recall from Sect. 2 that sensor nodes (or gateway com-
puters) autonomously construct prediction models and the
search engine periodically downloads and indexes these
models. The search engine then uses these indexed models
to compute rankings in response to queries with a maximum
forecasting horizon h before new models are downloaded,
indexed, and used to compute rankings.

In our evaluation we consider an interval [ty, .| from the
data sets. Attimes t; with tg = t; and ¢;41 = t; + h, models
are constructed for every sensor using sensor output in the
time interval [t; — TW,t;]. Here, h, is the maximum fore-
casting horizon and T'W the size of the time window. For
each point in time ¢; € [t;,¢; + h], a query is posed to the
simulated search engine for all possible sensor values in V.
In response to such a query, the sensor ranking is computed
using the current prediction models. The metrics introduced
in Sect. 3 are then applied to the ranking to compute the
ranking errors. Note that this approach is deterministic, that
is, each run of the experiment will produce the same results.

We then compute average ranking errors over all query in-
stances for the two metrics introduced in Sect. 3. In addi-
tion, we compute an average ranking error as a function of
the forecasting horizon g:

h (te_tb)/h_l
émod(Q7v) = t— tb Z

=0

e(ty+i-h—+qv) (16)

If the maximum forecasting horizon h is properly selected
(e.g., one week), then this gives us average ranking errors
for certain times of the day on certain days of the week (e.g.,
Monday 10 am).

6.2 Data Sets

We use two datasets of recorded traces of room occupancy

data to evaluate our models. The first one, ETH, is extracted
from the logs of our university’s online room reservation sys-
tem [10], and the the second one is extracted from the MERL
motion detector data set [22].

The online reservation system of ETH has recorded the
room reservations for seven seminar rooms starting from the
year 2002. To produce our ETH data set, we have down-
loaded the reservation states of these rooms and turned them
into a time series of room occupancy. We assumed if a sem-
inar room was marked as reserved, it had the state “occu-
pied” and if there was no reservation made, it had the state
“free”. The reservation system only considers the hours be-
tween 7am and 10pm, so we have inserted the state “free”
for the remaining night hours. The timestamp resolution in
this dataset is 1 hour.

The MERL data set [22] contains the output of more than
200 passive infrared (PIR) motion sensors deployed in an
office building. Each motion detection in this data set is a in-
stantaneous timestamped event indicating when motion has
been detected. We applied a simple filter to this data set to
deduce the occupancy status of the surrounding space of the
sensors. With this filter, a space is “occupied” if there have
been at least two movement events within the past seven min-
utes, such that there are at least two minutes between the
events. The space is “free” if there have been no events in
the past seven minutes. Our extracted dataset contains the
occupancy state (“free” or “occupied”) of 50 sensors with
the highest periodicity in [22], with a time resolution of 1
second.

6.3 Parameters

In this section we specify the choice of parameters during
the experiments. We run our experiments on the ETH and
MERL data sets for an evaluation interval of 3 months be-
tween April and June 2007 using a time window of 16 weeks
(one semester) for the input time series. The time resolu-
tion used in these experiments is one hour and the maximum
forecasting horizon is set to 168 hours or a week. For the
Single-Period Model (SPM), we set the period length to one
week, since we assume the periodic processes that dominate
the time series of both datasets follow a weekly pattern.

For the Convolution Prediction Model (CPM) we need to
define the period dominance threshold 4. As it is reasonable
to assume that all relevant period lengths are multiples of
one day in our datasets, the minimum period dominance for
our data sets will be in the order of 0.7 because most rooms
and office spaces are free outside the working hours (which
accounts for a fraction of about 0.7 of 24 hours), which is a
strong periodic pattern for any period length that is a multi-
ple of one day. Hence, dominant periods can be expected to
show a support greater than 70%. Initial experiments suggest
that 6 = 0.80 prunes most of the irrelevant period lengths
while keeping the important indicative periodic symbols in
the set of mined periodicities PS’.

Average Error
°
o

ETH ETH ETH | Syn ETH| Syn ETH | Syn ETH | Syn ETH [Syn ETH
Unsorted|ETH SPM|ETH CPM) 5oy, ap | cMp+AP |Unsorted| SPM_ | CPM | SPM+AP |CMP+AP

‘DFr.Q 0112 | 008 | 0064 | 0045 | 0048 | 0137 | 0093 | 0072 | 0047 | 0043
mOccupied| 0268 | 0155 | 0124 | 0084 | 0087 | 0395 | 0215 | 0154 | 0092 | 009t

Figure 2: Average ranking error using different models
on ETH data set and ETH synthetic data set.

0.7

0.6

0.5

0.4

0.3
0.2
0.1

0 MERL | MERL | MERL | MERL | MERL

Faulty | Faulty | Faulty | Fautty | Faulty
Unsorted | SPM CPM | SPM+AP | CMP+AP
‘D Free 0061 0021 0022 | o019 | o021 0073 | 0029 | o024 | oozt 0022

ied| 0283 | 0144 | 0154 | 0141 015 | oess | 0202 | 0232 | o154 | 0151

MERL | MERL | MERL | MERL | MERL
Unsorted | SPM CPM | SPM+AP | CMP+AP

Figure 3: Average ranking error using different models
on MERL data set, with and without the faulty sensor.

Further, CPM requires parameters for the minimum and
maximum number of period instances wy,;, and wy,q, for
computing the support of periodic symbols. Initial experi-
ments on both data sets suggest that w,,q, = 6 gives the best
results. As it is reasonable to assume that a day and a week
are dominating period lengths in the two data sets, this maps
to an effective time window of six days for a one day period,
and six weeks for a one week period, which is reasonable
given the nature of the data sets. Also through experiments
we found w,,;, = 3 to give best results.

We also compared the performance of CPM with these pa-
rameters to the original version of the algorithm in [9] and
found a reduction of the ranking error in the order of 25%
for both data sets.

6.4 Results

Figure 2 and 3 show the average ranking error for queries
posed for the two states “free” and “occupied”, using differ-
ent models for evaluation over ETH and MERL.

We show the results for Single-Period Model (SPM) and
Convolution Prediction Model (CPM), both with and without
the application of the adjustment process introduced in Sect.
5. As a baseline for comparison we include the unsorted
case, where no sensor ranking is applied and the error metric
is computed on a randomized list of sensors. In particular, we
reshuffle the list of sensors after each query using the Fisher-

Yates algorithm [15]. As we compute averages over many
queries, this approach eliminates bias that may be introduced
by a specific ordering of the sensors.

Recall from Sect. 3 that the ranking error indicates the
fraction of the non-matching sensors that have to be checked
by the search engine. For example, to find free rooms in the
MERL dataset in the unsorted case, on average about 6% of
all checked sensors actually do not match the query. When
using the SPM model, only about 2% non-matching sensors
have to be checked.

Note that the overhead for finding occupied sensors is gen-
erally larger than that for finding free sensors. The reason is
that on average over all sensors and over the experiment du-
ration, a sensor is much more likely to be free (e.g., due to
nights and weekends) than occupied. Hence, on average it is
easier to find a free room than to find an occupied room.

A further observation is that without the adjustment pro-
cess, the CPM model performs better than the SPM model
on the ETH data sets, while CPM and SPM show similar per-
formance on the MERL data set. The reason for this is that
sensors in the MERL data set monitor offices with a domi-
nant period length of one week: with few exceptions, people
work from Monday to Friday and stay home on the weekend.
Hence, there is not much to be gained from using a prediction
model such as CPM that can deal with multiple periods. In
contrast, the ETH data has been obtained from seminar and
meeting rooms. While most activities also follow a weekly
pattern, there are certain meetings which take place once in
two or four weeks, violating SPM’s assumption of a single
dominant period. Hence, CPM performs better than SPM on
this data set.

To further investigate the potential of CPM, we have cre-
ated a variant of the ETH data set called ETH synthetic,
where one of the “sensors” is modified such that it has two
equally dominant period lengths of two and three weeks, re-
spectively. For this, we create two copies of the output of
one of the sensors with the time axis scaled by a factor of
two and tree, respectively. Then, we merge these two copies
using the following rule: the output of the merged sensor at
time t equals “occupied” if and only if at least one of the
scaled sensors is “occupied” at t. Otherwise, the output is
“free”. As shown in Fig. 2, the improvement of CPM over
SPM is larger for this synthetic data set when compared to
the original ETH data set.

When applying the adjustment process, CPM and SPM
achieve comparable results on both data sets. While for the
MERL data set adjustment does not show a significant im-
provement, it is quite effective on the ETH data set. The
reason for that and for the relatively greater improvement
achieved by the adjustment process for SPM (compared to
CPM) lies in the fact that the presence of period lengths dif-
ferent from one week leads to a poor accuracy of probability
estimates computed by SPM. For example, if a room is occu-
pied every other Monday, SPM will compute a probability of

— CPM Free
SPM Free

~57— Unsorted Free

=X='CPM Occupied

02r SPM Occupied

—&— Unsorted Occupied

015 IS

Average Error

01 - B

FA E=1 F =z E=13 49—=7
0051 4 —

20 25 30 35 40 45
Too Entries

Figure 4: Comparison of the average error for the top
entries of the rank list.

0.5 for the room being occupied on Monday, which is wrong
for both odd Mondays (where it should be one) and even
Mondays (where it should be zero). The adjustment pro-
cess is able to correct the resulting persistent systematic er-
ror. However, recall from Sect. 5 that adjustment only works
well when the query is executed rather frequently, which is
the case in our experiments, but may not be the case in real-
istic settings.

For both the ETH data set and the MERL data set, there ex-
ists some form of homogeneity in the list of candidate sen-
sors. Sensors in our two data sets follow similar periodic
patterns with similar dominant period lengths of a week or
multiples of it. For both of our two data sets the state during
nights and weekends is usually “free” and activities occur
during the working hours of the day. This similarity in the
periodic patterns of the sensors reduces the average error for
the unsorted case, since for some portion of the time there is
no match for the queries or every sensor matches the query,
and hence, the ranking error is equal to zero.

In the presented experiments, the subset of sensors that
match the static part of the query, or the candidate list, is
usually composed of sensors that monitor entities who share
similar properties. Although it could be expected that this
subset of sensors follow comparable periodic patterns, in the
real world settings there may be inaccurate data gathered by
some faulty sensors, or there are some entities whose be-
havior follow a completely different pattern. This introduces
some heterogeneity in the underlying periodic processes of
the candidate sensors and could increases the average rank-
ing error in the unsorted case. During initial experiments
with the MERL data set, we faced a special case where a
sensor had stopped producing data half way through the eval-
uation interval, and constantly showed the state “occupied”
afterwards. Figure 3 shows the results when this faulty sen-
sor is included, displaying a larger average ranking error for
the state “occupied” for the unsorted case in comparison to
the experiment with the MERL data set, excluding this faulty
sensor. We see that with the introduction of a sudden change
of schedule, the CPM model shows a larger improvement
in the ranking error over the SPM. We believe that the time

window selection with w,,,,; in the CPM model allows it to
adapt faster to this change of schedule.

So far, we have considered the case where we need to find
all sensors that match a given query. However, as noted in
Sect. 3, often it is sufficient to find a small subset of sensors
matching the query. This is where sensor ranking unfolds its
full potential. Fig. 4 shows average ranking errors using the
top-m metric introduced in Sect. 3, where we only consider
the m top-ranked sensors. The diagram shows the ranking
error for the MERL data set, the parameter on the x-axis is
the number m. One can see that the ranking error generally
decreases if we consider smaller m, which means that the
top-ranking entries have a relatively high probability of be-
ing matches. In the extreme case of m = 5 both CPM and
SPM achieve an improvement of a factor of 10 (5) over the
unsorted case for the “free” (“occupied”) state.

Finally, Fig. 5 shows the average ranking error as a func-
tion of the forecasting horizon for the MERL data set with
the inclusion of the faulty sensor. As the maximum forecast-
ing horizon in our experiments is one week (i.e., 168 hours),
we can see the daily activity patterns. One can clearly iden-
tify the nights when the error drops significantly. We can
see that the heterogeneity introduced by the inclusion of the
faulty sensor increases the overall ranking error for the un-
sorted case, especially during the night and weekends. The
prediction models are able to reduce the effect of this faulty
sensor, however, the error does not drop to zero because it
takes some time for the prediction models to adapt to the
change of schedule introduced by the faulty sensor. We can
see that CPM performs better than SPM in this regard, mir-
roring the results from Fig. 3. The application of the adjust-
ment process is able to further reduce the persistent error that
is present during the nights and the weekends.

Summarizing, we found that sensor ranking can provide an
improvement in the order of one magnitude over the baseline
case when searching for a small subset of sensors that match
a query. The MERL data set has a dominant period length of
one week, such that SPM’s assumption of a single dominant
period is met, resulting in similar performance of SPM and
CPM. The ETH data set includes a more diverse set of period
lengths, such that CPM can gain an improvement over SPM.
By further increasing the diversity of period lengths by in-
cluding a synthetic sensor in the ETH data set, the difference
between SPM and CPM is further pronounced. Experiments
with inclusion of a faulty sensor to the MERL data set sug-
gests that reducing the homogeneity of sensors increases the
average error in the unsorted case. If queries are executed
frequently, the adjustment process can result in substantial
improvements, especially in the presence of persistent inac-
curate predictions for some sensors.

7. RELATED WORK

Some work exists regarding web search engines that can
search for dynamic Web content. In [11], a system is pro-

"T—&— CPM-Occupied
—6— SPM-Occupied

0.9 Unsorted-Occupied
—+— CPM+AP-Occupied
0.8 —— SPM+AP-Occupied

Average Error

0 20 40 60 80 100 120 140 160
Forcasting Horizon

Figure 5: The average error over a maximum forecasting
horizon of a week.

posed that enables real-time search of web pages by using a
crawler for each request. For this, besides the actual search
term, starting points of the search in form of a list of URLs
and a time limit have to be specified in a SQL-like search
language. A very similar approach is taken in [21]. How-
ever, both approaches are not feasible to be applied to a Web
of Things due to its expected size.

Further web search engines that support dynamic Web
content include Google News [1] and Technorati [2]. While
the search space of the former is rather limited, as only pro-
fessional news sites are considered, Technorati claims that
they are currently tracking 112.8 million blogs. However,
Technorati seems to exploit certain hints to realize a near
real-time search, for example, by offering a web service (a
RPC-Ping) which is utilized by bloggers to inform the search
engine about new posts [3]. However, due to the expected
size of a Web of Things and frequent changes of sensor out-
put, we believe this approach is not applicable to the WoT.

Middleware such as GSN [4] or SenseWeb [14] offers uni-
fied interfaces to access heterogeneous sensors and sensor
networks and to execute queries on the sensor data streams.
However, these systems do not address content-based sensor
search. Instead, sensors can only be selected based on their
static meta information (i.e., type or location of the sensor).

In [18, 20] a search engine for the physical world has been
proposed which allows to index static information stored in
sensor nodes and to search for sensor nodes that store a par-
ticular static information. However, this system does not
support search for highly dynamic sensor output which is
the focus of our work.

Several projects investigate the output of people-centric
sensors (e.g., [17, 8]), in particular they study the periodic
nature and predictability of the data. However, they make no
effort to provide content-based sensor search.

Prediction models have been applied in the context of sen-
sor networks to reduce the amount of data that has to be
transmitted over the wireless network (e.g., [7, 19]). How-

ever, the prediction models used there differ substantially
from our work, as they focus on short-term prediction and
do not support categorical time series. Also, these models
produce a predicted sensor value as output, while our mod-
els produce probability that the sensor outputs a given value.

A survey of prediction methods for categorial time series
in [16] concludes that most existing methods are not suitable
for large scale and online applications. The convolution pat-
tern mining algorithm introduced by [9] — the foundation of
our work — is considered to be a promising approach.

8. CONCLUSIONS

We have introduced the sensor ranking primitive for effi-
cient content-based sensor search as an important building
block of a search engine for the Web of Things, where real-
time state information of real-world entities can be published
and searched. The key idea of sensor ranking is to exploit the
periodic nature of people-centric sensors by using appropri-
ate prediction models. Using these prediction models, we
can rank sensors according to their probability of matching a
content-based sensor search. Using two real-world data sets,
we could show that sensor ranking can significantly improve
the performance of a search engine compared to a baseline
method. Future work includes improvements of the predic-
tion models (e.g., automatic estimation of model parameters
and model selection) and incorporating sensor ranking into a
search engine for the WoT.

9. REFERENCES

1 Google News Search. http://news.google.de.

] Technorati. http://www.technorati.com.

] Technorati Ping Configurations. http://technorati.com/developers/ping/.

] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for data processing in

large-scale interconnected sensor networks. In MDM, 2007.

[5] Karl Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051, 1987.

[6] Christos Berberidis, Walid G. Aref, Mikhail J. Atallah, Ioannis P. Vlahavas, and Ahmed K.
Elmagarmid. Multiple and partial periodicity mining in time series databases. In ECAI, pages
370-374, 2002.

[71 A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Modeldriven data
acquisition in sensor networks. In VLDB 2004.

[8] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: Sensing complex social systems.
Personal Ubiquitous Comput., 10(4):255-268, 2006.

[9] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. Using convolution to mine
obscure periodic patterns in one pass. In EDBT, pages 605-620, 2004.

[10] ETH CS Dpt. Online Room Reservation System.
http://www.bookings.inf.ethz.ch.

[11] Augustine Chidi Ikeji and Farshad Fotouhi. An adaptive real-time web search engine. In
WIDM 99, pages 12-16. ACM, 1999.

[12] Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying representative trends in massive
time series data sets using sketches. In VLDB "00, pages 363—-372. Morgan Kaufmann
Publishers Inc., 2000.

[13] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real life information
retrieval: a study of user queries on the web. SIGIR Forum, 32(1):5-17, 1998.

[14] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: An infrastructure for shared
sensing. IEEE MultiMedia, 14(4):8-13, 2007.

[15] D. E. Knuth. The art of computer programming, v. 2 (3rd ed.): seminumerical algorithms.
1997.

[16] R.Mayrhofer. An Architecture for Context Prediction. PhD thesis, Johannes Kepler University
of Linz, Austria, October 2004.

[17] Jonathan Reades, Francesco Calabrese, Andres Sevtsuk, and Carlo Ratti. Cellular Census:
Explorations in Urban Data Collection. I[EEE Pervasive Computing, 6(3):30-38, 2007.

[18] C.C. Tan, B. Sheng, H. Wanh, and Q. Li. Microsearch: When search engines meet small
devices. In Pervasive 2008.

[19] D. Tulone and S. Madden. Paq: Time series forecasting for approximate query answering in
sensor networks. In EWSN 2006.

[20] H. Wang, C. C. Tan, and Q. Li. Snoogle: A search engine for the physical world. In Infocom
2008.

[21] Burr S. Watters. Development and performance evaluation of a real time web search engine.
Master’s thesis, University of North Florida, December 2004.

[22] Christopher R. Wren, Yuri A. Ivanov, Darren Leigh, and Jonathan Westhues. The merl motion

detector dataset. In MD "07: Proceedings of the 2007 workshop on Massive datasets, pages

10-14. ACM, 2007.

