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Sensor Scheduling in Variance Based Event

Triggered Estimation with Packet Drops
Alex S. Leong, Subhrakanti Dey, and Daniel E. Quevedo

Abstract—This paper considers a remote state estimation
problem with multiple sensors observing a dynamical process,
where sensors transmit local state estimates over an independent
and identically distributed (i.i.d.) packet dropping channel to
a remote estimator. At every discrete time instant, the remote
estimator decides whether each sensor should transmit or not,
with each sensor transmission incurring a fixed energy cost. The
channel is shared such that collisions will occur if more than
one sensor transmits at a time. Performance is quantified via an
optimization problem that minimizes a convex combination of
the expected estimation error covariance at the remote estimator
and expected energy usage across the sensors. For transmission
schedules dependent only on the estimation error covariance at
the remote estimator, this work establishes structural results on
the optimal scheduling which show that 1) for unstable systems,
if the error covariance is large then a sensor will always be
scheduled to transmit, and 2) there is a threshold-type behaviour
in switching from one sensor transmitting to another. Specializing
to the single sensor case, these structural results demonstrate
that a threshold policy (i.e. transmit if the error covariance
exceeds a certain threshold and don’t transmit otherwise) is
optimal. We also consider the situation where sensors transmit
measurements instead of state estimates, and establish structural
results including the optimality of threshold policies for the single
sensor, scalar case. These results provide a theoretical justification
for the use of such threshold policies in variance based event
triggered estimation. Numerical studies confirm the qualitative
behaviour predicted by our structural results. An extension of
the structural results to Markovian packet drops is also outlined.

I. INTRODUCTION

The concept of event triggered estimation of dynamical sys-

tems, where sensor measurements or state estimates are sent to

a remote estimator/controller only when certain events occur,

has gained significant recent attention. By transmitting only

when necessary, as dictated by performance objectives, e.g.,

such as when the estimation quality at the remote estimator

has deteriorated sufficiently, potential savings in energy usage

can be achieved, which are important in networked estimation

and control applications.

Related Work: Event triggered estimation has been inves-

tigated in e.g. [2]–[13], while event triggered control has

also been studied in e.g. [14]–[18]. Many rules for deciding
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when a sensor should transmit have been proposed in the

literature, such as if the estimation error [3], [5], [7], [10],

error in predicted output [6], [13], other functions of the

estimation error [4], [11], [12], or the error covariance [9],

exceeds a given threshold. These transmission policies often

lead to energy savings. However, the motivation for using

these rules are usually based on heuristics. Another gap in

current literature on event triggered estimation is that mostly

the idealized case, where all transmissions (when scheduled)

are received at the remote estimator, is considered. Packet

drops [19], which are unavoidable when using a wireless

communication medium, are neglected in these works, save

for some works in event triggered control [16], [18].

In a different line of research, sensor scheduling problems,

where one wants to determine a schedule such that at each time

instant, one or more sensors are chosen to transmit in order to

minimize an expected error covariance performance measure,

have been extensively studied, see e.g. [20]–[24]. However,

these schedules are often constructed ahead of time in an

offline manner and do not take into account random packet

drops or variations in the state estimates, i.e. are not event

triggered. Covariance based switching for scheduling between

two sensors was investigated in [25]. Structural results were

derived for infinite horizon sensor scheduling problems in [26],

[27], which showed that optimal schedules are independent of

initial conditions and can be approximated arbitrarily closely

with periodic schedules of finite length, with [26] also extend-

ing these results to networks with packet drops.

Summary of Contributions: In this paper, we consider a

multi-sensor event triggered estimation problem with i.i.d.

packet drops, and derive structural properties on the optimal

transmission schedule. In particular, the main contributions of

this paper are:

• In contrast to previous works on event-triggered estima-

tion, we allow for the more practical situation where

sensor transmissions experience random packet drops.

• Rather than specifying the form of the transmission

schedule a priori, in this work the transmission decisions

are determined by solving an optimization problem that

minimizes a convex combination of the expected error

covariance and expected energy usage.

• We derive structural results on the form of the subsequent

optimal transmission schedule. For transmission sched-

ules which decide whether to transmit local state esti-

mates based only on knowledge of the error covariance

at the remote estimator, our analysis shows that 1) for

unstable systems, if the error covariance is large, then

a sensor will always be scheduled to transmit, and 2)

http://arxiv.org/abs/1511.04792v4
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there is a threshold-type behaviour in switching from one

sensor transmitting to another.

• Specializing these structural results to the single sensor

case shows that a threshold policy, where the sensor

transmits if the error covariance exceeds a threshold and

does not transmit otherwise, is optimal. This result has

also been proved different techniques in our conference

contribution [1], and, in a related setup, in [28]. For

noiseless measurements and no packet drops, similar

structural results were derived using majorization theory

for scalar [29] and vector [30] systems respectively.

• In the situation where sensor measurements (rather than

local estimates) are transmitted, related structural results

are derived, in particular the optimality of threshold

policies in the single sensor, scalar case. These structural

results provide a theoretical justification for the use of

such variance based threshold policies in event triggered

estimation. However, for vector systems, we provide

counterexamples to show that in general threshold-type

policies are not optimal.

• The structural results are extended to Markovian packet

drops, where we show that for a single sensor there exist

in general two different thresholds, depending on whether

packets were dropped or received at the previous time

instant.

The remainder of this paper is organized as follows. Section

II presents the system model, while the optimization problems

are formulated in Section III. Structural results on the optimal

transmission scheduling are derived in Sections IV-A and

IV-B. The special case of a single sensor is then studied

in Section IV-C. The situation where sensor measurements

are transmitted is studied in Section V. Numerical studies,

including comparisons of our approach with schemes where

transmission decisions are made using current sensor mea-

surements, are presented in Section VI. An extension of our

structural results to Markovian packet drops is outlined in

Section VII.

II. SYSTEM MODEL AND REMOTE ESTIMATION SCHEMES

A diagram of the system model is shown in Fig. 1. Consider

a discrete time process

xk+1 = Axk + wk (1)

where xk ∈ R
n and wk is i.i.d. Gaussian with zero mean and

covariance Q. There are M sensors, with each sensor having

measurements

ym,k = Cmxk + vm,k, m ∈ {1, . . . ,M} (2)

where ym,k ∈ R
nm and vm,k is Gaussian with zero mean

and covariance Rm. The noise processes {wk}, {vm,k},m =
1, . . . ,M are assumed to be mutually independent.

Each sensor has some computational capability and can

run a local Kalman filter. The local state estimates and error

Fig. 1. System model

covariances

x̂sm,k|k−1 , E[xk|ym,0, . . . , ym,k−1]

x̂sm,k|k , E[xk|ym,0, . . . , ym,k]

P s
m,k|k−1 , E[(xk − x̂sm,k|k−1)(xk − x̂sm,k|k−1)

T

|ym,0, . . . , ym,k−1]

P s
m,k|k , E[(xk − x̂sm,k|k)(xk − x̂sm,k|k)

T |ym,0, . . . , ym,k]

can be computed using the standard Kalman filtering equations

at sensors m = 1, . . . ,M . For the results in Sections II-IV,

we will assume that each pair (A,Cm) is detectable and the

pair (A,Q1/2) is stabilizable. In Section V we will relax

this assumption when we consider transmission of sensor

measurements, and consequently only detectability of the

overall system is required. Let P̄ s
m be the steady state value

of P s
m,k|k−1, and P̄m be the steady state value of P s

m,k|k, as

k → ∞, which both exist due to the detectability assumptions.

Let νm,k ∈ {0, 1},m = 1, . . . ,M be decision variables

such that νm,k = 1 if and only if x̂sm,k|k is to be transmitted

to the remote estimator at time k. Transmitting state estimates

when there are packet drops generally gives better estimation

performance than transmitting measurements [31], [32], and

in the case of a single sensor is the best non-causal strategy

[33]. We will focus on the situation where νm,k are computed

at the remote estimator at time k−1 and communicated to the

sensors without error via feedback links before transmission at

the next time instant k,1 see Section II-C on how to take into

account losses in the feedback links. Since our interest lies

in decision making at the remote estimator, we shall assume

that the decisions νm,k do not depend on the current value of

xk (or functions of xk such as measurements and local state

estimates). In particular, in this paper we will assume that νm,k

depends only on the error covariance at the remote estimator,

similar to the variance based triggering schemes of [9], see

Section III.

1This requires synchronization between each sensor and the remote esti-
mator, though not between individual sensors. Note that in wireless commu-
nications, online computation of powers at the base station which is then fed
back to the mobile transmitters is commonly done in practice [34], at time
scales on the order of milli-seconds.
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At time instances when νm,k = 1, sensor m transmits its

local state estimate x̂sm,k|k over a packet dropping channel. Let

γm,k,m = 1, . . . ,M be random variables such that γm,k = 1
if the transmission from sensor m at time k is successfully

received by the remote estimator, and γm,k = 0 otherwise. It

is assumed that the channel is shared such that if more than one

sensor transmits at any time, then collisions will occur. Thus,

γm,k = 0 and γn,k = 0 with probability one if both νm,k =
νn,k = 1. We will assume that {γm,k} are i.i.d. Bernoulli with

P(γm,k = 1) = λm, m = 1, . . . ,M.

See Section VII for some results with Markovian packet drops.

A. Optimal Remote Estimator

At instances where νm,k = 1, it is assumed that the remote

estimator knows whether the transmission was successful or

not, i.e., the remote estimator knows the value γm,k. While if

νm,k = 0, since sensor m is not scheduled to transmit at this

time, the corresponding γm,k is assumed to be of no use to

the remote estimator. We can define

Ik ,{ν1,0, . . . , ν1,k, ν1,0γ1,0, . . . , ν1,kγ1,k,

ν1,0γ1,0x̂
s
1,0|0, . . . , ν1,kγ1,kx̂

s
1,k|k, . . . . . . ,

νM,0, . . . , νM,k, νM,0γM,0, . . . , νM,kγM,k,

νM,0γM,0x̂
s
M,0|0, . . . , νM,kγM,kx̂

s
M,k|k}

as the information set available to the remote estimator at

time k. Denote the state estimates and error covariances at

the remote estimator by:

x̂k|k , E[xk|Ik]

x̂k+1|k , E[xk+1|Ik]

Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)
T |Ik]

Pk+1|k , E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |Ik].

If a sensor m̆ ∈ {1, . . . ,M} has been scheduled by the

remote estimator to transmit at time k,2 then the state estimates

and error covariances at the remote estimator are updated as

follows:

x̂k+1|k = Ax̂k|k

x̂k|k = x̂k|k−1 + γm̆,kKm̆,k(x̂
s
m̆,k|k − x̂k|k−1)

Pk+1|k = APk|kA
T +Q

Pk|k = (I − γm̆,kKm̆,k)Pk|k−1(I − γm̆,kKm̆,k)
T

+ γm̆,k(I−γm̆,kKm̆,k)P0m̆,k(I−K
s
m̆,kCm̆)TKT

m̆,k

+ γm̆,kKm̆,k(I−K
s
m̆,kCm̆)PT

0m̆,k(I−γm̆,kKm̆,k)
T

+ γm̆,kKm̆,k(I−K
s
m̆,kCm̆)P s

m̆,k|k−1(I−K
s
m̆,kCm̆)TKT

m̆,k

+ γm̆,kKm̆,kK
s
m̆,kRm̆K

sT
m̆,kK

T
m̆,k

P0m̆,k+1 = A(I−γm̆,kKm̆,k)P0m̆,k(I−K
s
m̆,kCm̆)TAT

+γm̆,kAKm̆,k(I−K
s
m̆,kCm̆)P s

m̆,k|k−1(I −Ks
m̆,kCm̆)TAT

+Q+ γm̆,kAKm̆,kK
s
m̆,kRm̆K

sT
m̆,kA

T

P0m,k+1 = A(I−γm̆,kKm̆,k)P0m,k(I−K
s
m,kCm)TAT

2Since collisions occur if more than one sensor transmits at the same time,
we clearly should not schedule more than one sensor to transmit at a time.

+γm̆,kAKm̆,k(I−K
s
m̆,kCm̆)Pm̆m,k(I−K

s
m,kCm)TAT

+Q, m 6= m̆

Pmn,k+1 = A(I −Ks
m,kCm)Pmn,k(I −Ks

n,kCn)
TAT +Q,

m, n > 0,m 6= n (3)

where Ks
m,k , P s

m,k|k−1C
T
m(CmP

s
m,k|k−1C

T
m+Rm)−1 is the

local Kalman filter gain of sensor m at time k, Km̆,k = I
if Pk|k−1 −P0m̆,k(I −Ks

m̆,kCm̆)T − (I −Ks
m̆,kCm̆)PT

0m̆,k +

(I −Ks
m̆,kCm̆)P s

m̆,k|k−1(I −Ks
m̆,kCm̆)T +Ks

m̆,kRm̆K
sT
m̆,k =

Pk|k−1 − P0m̆,k(I − Ks
m̆,kCm̆)T , and Km̆,k =

(

Pk|k−1 −

P0m̆,k(I−K
s
m̆,kCm̆)T

)(

Pk|k−1−P0m̆,k(I−K
s
m̆,kCm̆)T−(I−

Ks
m̆,kCm̆)PT

0m̆,k+(I−Ks
m̆,kCm̆)P s

m̆,k|k−1(I−K
s
m̆,kCm̆)T +

Ks
m̆,kRm̆K

sT
m̆,k

)−1

otherwise. The last three equations in (3)

compute the quantities:

P0m,k , E[(xk − x̂k|k−1)(xk − x̂sm,k|k−1)
T |Ik]

Pm0,k , E[(xk − x̂sm,k|k−1)(xk − x̂k|k−1)
T |Ik]

Pmn,k , E[(xk − x̂sm,k|k−1)(xk − x̂sn,k|k−1)
T |Ik]

for m,n = 1, . . . ,M, where we note that P0n,k = PT
n0,k, and

Pnn,k = P s
n,k|k−1.

If no sensors are scheduled to transmit at time k, then the

state estimates and error covariances are simply updated by:

x̂k+1|k = Ax̂k|k, x̂k|k = x̂k|k−1

Pk+1|k = APk|kA
T +Q, Pk|k = Pk|k−1,

P0m,k+1 = AP0m,k(I−K
s
m,kCm)TAT +Q, m = 1, . . . ,M

(4)

The derivation of the optimal estimator equations (3)-(4) can

be found in Appendix A.

Remark II.1. In (3), the terms P0m,k+1 and Pmn,k+1 for

m,n 6= m̆ also need to be computed, since the scheduled

sensor m̆ will in general change over time.

B. Suboptimal Remote Estimator

The estimator equations (3) are optimal, but difficult to an-

alyze and derive structural results for. A suboptimal estimator

that often performs well is a constant gain estimator, which has

the form (3) but with Km̆,k replaced by the constant gain Km̆

whenever sensor m̆ ∈ {1, . . . ,M} is scheduled to transmit.

Suppose the constant gains Km,m = 1, . . . ,M are chosen

using a similar procedure to [32], where (P, P0m,Km) is a

fixed point of the following set of equations:

P = λmA(I −Km)P (I −Km)TAT + (1− λm)APAT

+ λmA(I −Km)P0m(I −Ks
mCm)TKT

mA
T

+ λmAKm(I −Ks
mCm)P0m(I −Km)TAT

+ λmAKm(I −Ks
mCm)P̄ s

m(I −Ks
mCm)TKT

mA
T

+ λmAKmK
s
mRmK

sT
m KT

mA
T +Q

P0m = A(I − λmKm)P0m(I −Ks
mCm)TAT

+ λmAKm(I −Ks
mCm)P̄ s

m(I −Ks
mCm)TAT

+Q+ λmAKmK
s
mRmK

sT
m AT
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Km =
(

P − P0m(I −Ks
mCm)T

)(

P − P0m(I −Ks
mCm)T

− (I−Ks
mCm)PT

0m+(I−Ks
mCm)P̄ s

m(I−Ks
mCm)T

+Ks
mRmK

sT
m

)−1

, (5)

with Ks
m , P̄ s

mC
T
m(CmP̄

s
mC

T
m + Rm)−1 being the steady

state local Kalman gain of sensor m. The equations (5) are

obtained by averaging over γm̆,k in the recursion for Pk|k (as

well as the associated quantities P0m̆,k and Km̆,k) in (3), and

taking the steady state.

Then we have the following result:

Theorem II.2. Suppose that A is either (i) stable, or (ii)

unstable but with λm > 1 − 1
maxi |σi(A)|2 ,m = 1, . . . ,M ,

where σi(A) is an eigenvalue of A. Then for each m ∈
{1, . . . ,M}, amongst all possible constant gains Km sat-

isfying maxi |σi(A(I − λmKm))| < 1, there is a unique

fixed point (Km, P0m, P ) to the set of equations (5) with

Km = I, P0m = P̄ s
m, and P being the unique solution to the

equation P = (1−λm)APAT+Q+λmA(I−K
s
mCm)P̄ s

m(I−
Ks

mCm)TAT + λmAK
s
mRmK

sT
m AT .

Proof: See Appendix B

By Theorem II.2, and in particular the fact that Km = I
for each m ∈ {1, . . . ,M}, the constant gain estimator x̃k with

gains chosen by solving (5) is easily seen to simplify to the

following:

x̃k|k =

{

Ax̃k−1|k−1 , νm,kγm,k = 0
x̂sm,k|k , νm,kγm,k = 1

P̃k|k =

{

f(P̃k−1|k−1) , νm,kγm,k = 0
P s
m,k|k , νm,kγm,k = 1

(6)

where

f(X) , AXAT +Q. (7)

For the case of two sensors estimating independent Gauss-

Markov systems, a similar estimator to (6) was also studied in

[23]. We now give some examples comparing the performance

of the suboptimal estimator (6) with the optimal estimator (3).

Consider a two sensor system with parameters

A =

[

1.1 0.2
0.2 0.8

]

, Q = I (8)

The other parameters are randomly generated: C1 and C2 are

1×2 matrices with entries drawn from the uniform distribution

U(0.5, 2), R1 and R2 are scalars drawn from U(1, 10), λ1
and λ2 are drawn from U(0.5, 1). The sensor that transmits is

randomly chosen, with each sensor equally likely to be chosen.

Table I gives E[Pk|k] for the optimal (Opt.) and suboptimal

(Subopt.) estimators for 20 different randomly generated sets

of parameters, where E[Pk|k] are obtained by taking the time

average over a Monte Carlo simulation of length 100000. We

also give values of E[Pk|k] for the case where measurements

are transmitted (Tx. Meas.), which will be studied in Section

V. We see that the suboptimal estimator often gives good

performance when compared to the optimal estimator.

Due to its simplicity which makes it amenable to analysis,

and its good performance in many cases, we will concentrate

on the estimator (6) in Sections III-IV.

TABLE I
E[Pk|k] FOR DIFFERENT RANDOMLY GENERATED SETS OF PARAMETERS

Opt. Subopt. Tx. Meas. Opt. Subopt. Tx. Meas.

3.1410 3.2216 3.2441 2.9906 3.0736 3.0705

3.9206 4.1434 4.2254 3.4654 3.6203 3.5358

3.6410 3.6990 3.8116 4.3822 4.6349 4.7211

3.2056 3.3040 3.3117 3.1704 3.2737 3.2766

4.9104 5.0146 5.1417 5.5227 5.6810 5.7757

3.5692 3.7251 3.7227 4.5079 4.6076 4.8558

4.1598 4.2227 4.2522 3.9006 4.0154 4.0603

3.8327 3.9082 3.9827 3.2849 3.3567 3.3775

2.9210 3.0015 2.9704 7.0825 7.4793 7.8819

3.7504 3.9277 3.9376 3.9697 4.1427 4.1661

Remark II.3. For the case of a single sensor (M = 1), the

estimator (6) corresponds to the optimal estimator, see, e.g.,

[31], [32].

C. Imperfect Feedback Links

We have assumed that the feedback links are perfect, which

models the most commonly encountered situation where the

remote estimator has more resources than the sensors and

can transmit on the feedback links with very low probability

of error, e.g., the remote estimator can use more energy or

can implement sophisticated channel coding. But interestingly,

imperfect feedback links can also be readily incorporated into

our framework.

Recall that at each discrete time instant k, the remote

estimator feeds back the values (ν1,k, . . . , νM,k) to notify

which sensors should transmit, with at most one νm,k = 1
in order to avoid collisions. If the feedback command is lost,

then the sensor m̆ that may have been scheduled to transmit

at time k will no longer do so, while the other sensors

not scheduled to transmit still remain silent. Thus, from an

estimation perspective, a dropout in the feedback signal is

equivalent to a dropout in the forward link from the sensor to

the remote estimator. Assume that the feedback link from the

remote estimator to sensor m is an i.i.d. packet dropping link

with packet reception probability λfbm ,m = 1, . . . ,M , with

the packet drops occurring independently of the forward links

from the sensors to the remote estimator. Then for the sensor

m̆ that is scheduled to transmit, the situation is mathemati-

cally equivalent to this sensor transmitting successfully with

probability λm̆λ
fb
m̆ . Thus, the case of imperfect feedback links

can be modelled as the case of perfect feedback links with

lower packet reception probabilities λmλ
fb
m ,m = 1, . . . ,M .

III. OPTIMIZATION OF TRANSMISSION SCHEDULING

In this section we will formulate optimization problems

for determining the transmission schedules, that minimize a

convex combination of the expected error covariance and ex-

pected energy usage, and describe some numerical techniques

for solving them. Structural properties of the optimal solutions

to these problems will then be derived in Section IV.

Define the countable set

S , {fn(P s
m,k|k)|m = 1, . . . ,M, n = 0, 1, . . . , k = 1, 2, . . . },

(9)
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where fn(.) is the n-fold composition of f(.), with the

convention that f0(X) = X . Then it is clear from (6) that S
consists of all possible values of P̃k|k at the remote estimator.

Note that if the local Kalman filters are operating in steady

state, then S simplifies to

S = {P̄1, f(P̄1), f
2(P̄1), . . . , . . . , P̄M , f(P̄M ), f2(P̄M ), . . . }.

(10)

As foreshadowed in Section II, we will consider transmission

policies where νm,k(P̃k−1|k−1),m = 1, . . . ,M depends only

on P̃k−1|k−1, similar to [9]. From the way in which the error

covariances at the remote estimator are updated, see (6), such

policies will not depend on xk, cf. [11]. To take into account

energy usage, we will assume a transmission cost of Em for

each scheduled transmission from sensor m (i.e., when νm,k =
1).3 We will consider the following finite horizon (of horizon

K) optimization problem:

min
{(ν1,k,...,νM,k)}

K
∑

k=1

E

[

βtrP̃k|k + (1− β)

M
∑

m=1

νm,kEm

]

= min
{(ν1,k,...,νM,k)}

K
∑

k=1

E

[

E

[

βtrP̃k|k + (1− β)
M
∑

m=1

νm,kEm

∣

∣

∣

∣

P̃0|0, Ik−1, ν1,k, . . . , νM,k

]]

= min
{(ν1,k,...,νM,k)}

K
∑

k=1

E

[

E

[

βtrP̃k|k + (1− β)
M
∑

m=1

νm,kEm

∣

∣

∣

∣

P̃k−1|k−1, ν1,k, . . . , νM,k

]]

(11)

for some design parameter β ∈ (0, 1), where the last line

holds since P̃k−1|k−1 is a deterministic function of P̃0|0 and

Ik−1, and P̃k|k is a function of P̃k−1|k−1, ν1,k, . . . , νM,k, and

γ1,k, . . . , γM,k. Problem (11) minimizes a convex combination

of the trace of the expected error covariance at the remote

estimator and the expected sum of transmission energies of

the sensors. Due to collisions when more than one sensor is

scheduled to transmit, we have

E[trP̃k|k|P̃k−1|k−1, ν1,k, . . . , νM,k]

=

M
∑

m=1

νm,k

∏

n6=m

(1−νn,k)
[

λmtrP s
m,k|k+(1−λm)trf(P̃k−1|k−1)

]

+

(

1−

M
∑

m=1

νm,k

∏

n6=m

(1−νn,k)

)

trf(P̃k−1|k−1)

=

M
∑

m=1

νm,k

∏

n6=m

(1− νn,k)λmtrP s
m,k|k

+

(

1−

M
∑

m=1

νm,k

∏

n6=m

(1− νn,k)λm

)

trf(P̃k−1|k−1)

3The transmission cost Em could represent the energy use in each trans-
mission, but can also be regarded as a tuning parameter to provide some
control on how often different sensors will transmit, e.g. increasing Em will
make sensor m less likely to transmit.

where f(.) is defined in (7).

Let the functions Jk(.) : S → R be defined recursively as:

JK+1(P̃ ) = 0

Jk(P̃ ) = min
(ν1,...,νM )

{

β
[

M
∑

m=1

νm
∏

n6=m

(1 − νn)λmtrP s
m,k|k

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1− νn)λm

)

trf(P̃ )
]

+ (1−β)

M
∑

m=1

νmEm+

M
∑

m=1

νm
∏

n6=m

(1−νn)λmJk+1(P
s
m,k|k)

+
(

1−
M
∑

m=1

νm
∏

n6=m

(1− νn)λm

)

Jk+1(f(P̃ ))

}

,

k = K,K − 1, . . . , 1. (12)

Problem (11) can then solved using the dynamic pro-

gramming algorithm by computing Jk(P̃k−1|k−1) for k =
K,K − 1, . . . , 1, providing the optimal (ν∗1,k, . . . , ν

∗
M,k) =

argminJk(P̃k−1|k−1). Further call e0 , (0, 0, . . . , 0), e1 ,

(1, 0, . . . , 0), e2 , (0, 1, 0, . . . , 0), . . . , eM , (0, . . . , 0, 1),
and

V , {e0, e1, . . . , eM}. (13)

Then it is clear that the minimization in (12) can be carried

out over the set V (with cardinality M + 1) instead of the

larger set {0, 1}M (with cardinality 2M ).

Note that the finite horizon problem (11) can be solved

exactly via explicit enumeration, since for a given initial P̃0|0,

the number of possible values for P̃k|k, k = 1, . . . ,K , is finite.

When the problem has been solved (which only needs to be

done once and offline), a “lookup table” will be constructed at

the remote estimator which allows for the transmit decisions

νm,k (for different error covariances) to be easily determined

in real time.

We will also consider the infinite horizon problem:

min
{(ν1,k,...,νM,k)}

lim sup
K→∞

1

K

K
∑

k=1

E

[

E

[

βtrP̃k|k + (1− β)

×

M
∑

m=1

νm,kEm

∣

∣

∣

∣

P̃k−1|k−1, ν1,k, . . . , νM,k

]]

(14)

where we now assume that the local Kalman filters are operat-

ing in the steady state regime, with P s
m,k|k = P̄m, ∀k. Problem

(14) is a Markov decision process (MDP) based stochastic

control problem with (ν1,k, . . . , νM,k) as the “action” and

P̃k−1|k−1 as the “state” at time k.4 The Bellman equation for

problem (14) is

ρ+ h(P̃ ) = min
(ν1,...,νM )∈V

{

β
[

M
∑

m=1

νm
∏

n6=m

(1 − νn)λmtrP̄m

4In (14), “limsup” is used instead of “lim” since in some MDPs the limit
may not exist. However, if the conditions of Theorem III.1 are satisfied then
the limit will exist.
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+
(

1−

M
∑

m=1

νm
∏

n6=m

(1 − νn)λm

)

trf(P̃ )
]

+ (1 − β)

M
∑

m=1

νmEm +

M
∑

m=1

νm
∏

n6=m

(1 − νn)λmh(P̄m)

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1 − νn)λm

)

h(f(P̃ ))

}

(15)

where ρ is the optimal average cost per stage and h(.) is the

differential cost or relative value function [35, pp.388-389].

For the infinite horizon problem (14), existence of optimal

stationary policies can be ensured via the following result:

Theorem III.1. Suppose that A is either (i) stable, or (ii)

unstable but with λm > 1 − 1
maxi |σi(A)|2 for at least one

m ∈ {1, . . . ,M}, where σi(A) is an eigenvalue of A. Then

there exist a constant ρ and a function h(.) satisfying the

Bellman equation (15).

Proof: See Appendix C.

Remark III.2. In the case of a single sensor and unstable

A, the condition λ1 > 1 − 1
maxi |σi(A)|2 in Theorem III.1

corresponds to the necessary and sufficient condition for

estimator stability when the sensor transmits local estimates

over an i.i.d. packet dropping link, see [31], [32].

Remark III.3. Dynamic programming techniques have also

been used to design event triggered estimation schemes in,

e.g., [3]–[5]. However, these works assume a priori that the

transmission policy is of threshold-type, whereas here we don’t

make this assumption but instead prove in Section IV that the

optimal policy is of threshold-type.

As a consequence of Theorem III.1, Problem (14) can

be solved using methods such as the relative value iteration

algorithm [35, p.391]. In computations, since the state space

is (countably) infinite, one can first truncate S in (10) to

SN , {P̄1, f(P̄1), . . . , f
N−1(P̄1), P̄2, f(P̄2), . . . , f

N−1(P̄2),

. . . , . . . , P̄M , f(P̄M ), . . . , fN−1(P̄M )},
(16)

which will cover all possible error covariances with up to N−1
successive packet drops or non-transmissions. We then use the

relative value iteration algorithm to solve the resulting finite

state space MDP problem, as follows: For a given N , define

for l = 0, 1, 2, . . . the value functions Vl(.) : S
N → R by:

Vl+1(P̃ ) , min
(ν1,...,νM )∈V

{

β
[

M
∑

m=1

νm
∏

n6=m

(1− νn)λmtrP̄m

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1− νn)λm

)

trf(P̃ )
]

+ (1− β)

M
∑

m=1

νmEm +

M
∑

m=1

νm
∏

n6=m

(1− νn)λmVl(P̄m)

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1− νn)λm

)

Vl(f(P̃ ))

}

.

Let P̃f ∈ SN be a fixed state (which can be chosen arbitrar-

ily). The relative value iteration algorithm is then given by

computing:

hl+1(P̃ ) , Vl+1(P̃ )− Vl+1(P̃f ) (17)

for l = 0, 1, 2, . . . . As l → ∞, we have hl(P̃ ) → h(P̃ ), ∀P̃ ∈
SN , with h(.) satisfying the Bellman equation (15). In

practice, the algorithm (17) terminates once the differences

hl+1(P̃ ) − hl(P̃ ) become smaller than a desired level of

accuracy ε. One then compares the solutions obtained as N
increases to determine an appropriate value of N for truncation

of the state space S, see Chapter 8 of [36] for further details.

IV. STRUCTURAL PROPERTIES OF OPTIMAL

TRANSMISSION SCHEDULING

Numerical solutions to the optimization problems (11) and

(14) via dynamic programming or solving MDPs do not

provide much insight into the form of the optimal solution.

In this section, we will derive some structural results on

the optimal solutions to the finite horizon problem (11) and

the infinite horizon problem (14) in Sections IV-A and IV-B

respectively. To be more specific, we will prove that if the error

covariance is large, then a sensor will always be scheduled to

transmit (for unstable A), and show threshold-type behaviour

in switching from one sensor to another. In Section IV-C,

we specialize these results to demonstrate that, in the case

of a single sensor, a threshold policy is optimal, and derive

simple analytical expressions for the expected energy usage

and expected error covariance.

Preliminaries: For symmetric matrices X and Y , we say

that X ≤ Y if Y − X is positive semi-definite, and X < Y
if Y −X is positive definite. In general, “ ≤ ” only gives a

partial ordering on the set S defined in (9). Let S denote the

set of all positive semi-definite matrices. In this section, we

will say that a function F (.) : S → R is increasing if

X ≤ Y ⇒ F (X) ≤ F (Y ). (18)

Note that (18) does not take into account the situations where

neither X ≤ Y nor Y ≤ X holds under the partial order

“ ≤ ”.

Lemma IV.1. The function trf(X) = tr(AXAT + Q) is an

increasing function of X .

Proof: This is easily seen from the definition.

A. Finite Horizon Costs

Lemma IV.2. The functions Jk(P̃ ) defined in (12) are in-

creasing functions of P̃ .

Proof: The proof is by induction. The case of JK+1(.)
is clear. Now assume that JK+1(P̃ ), JK(P̃ ), . . . , Jk+1(P̃ )
are increasing functions of P̃ . Then Jk(P̃ ) given in (12) is

increasing in P̃ by Lemma IV.1 and the induction hypothesis,

noting that
(

1−
∑M

m=1 νm
∏

n6=m(1− νn)λm

)

≥ 0.

Since the minimization in (12) is over the set V given in

(13), Jk(P̃ ) can also be expressed as:

Jk(P̃ ) = min
{

β[λ1trP s
1,k|k + (1 − λ1)trf(P̃ )] + (1− β)E1
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+ λ1Jk+1(P
s
1,k|k) + (1 − λ1)Jk+1(f(P̃ )),

...

β[λM trP s
M,k|k + (1− λM )trf(P̃ )] + (1− β)EM

+ λMJk+1(P
s
M,k|k) + (1− λM )Jk+1(f(P̃ )),

βtrf(P̃ ) + Jk+1(f(P̃ ))
}

. (19)

Theorem IV.3. (i) The functions defined by

φm,k(P̃ ) , βtrf(P̃ )+Jk+1(f(P̃ ))−β[λmtrP s
m,k|k+(1−λm)

× trf(P̃ )]−(1−β)Em−λmJk+1(P
s
m,k|k)−(1−λm)Jk+1(f(P̃ ))

for m = 1, . . . ,M , k = 1, . . . ,K , are increasing functions of

P̃ .

(ii) Define

ψm,k(P̃ ) , β[λmtrP s
m,k|k + (1 − λm)trf(P̃ )] + (1− β)Em

+ λmJk+1(P
s
m,k|k) + (1 − λm)Jk+1(f(P̃ ))

for m = 1, . . . ,M , k = 1, . . . ,K . Suppose that for some

m,n ∈ {1, . . . ,M}, and P̃ , P̃ ′ ∈ S with P̃ ′ ≥ P̃ , we have

ψm,k(P̃ ) ≤ ψn,k(P̃ ) and ψm,k(P̃
′) ≥ ψn,k(P̃

′). (20)

Then for P̃ ′′ ≥ P̃ ′, we have ψm,k(P̃
′′) ≥ ψn,k(P̃

′′).

Proof: (i) We can simplify the functions to

φm,k(P̃ ) = βλmtrf(P̃ ) + λmJk+1(f(P̃ ))− [βλmtrP s
m,k|k

+ (1− β)Em + λmJk+1(P
s
m,k|k)]

(21)

which are increasing in P̃ by Lemmas IV.1 and IV.2.

(ii) Rewrite (20) as

(1− λm)[βtrf(P̃ ) + Jk+1(f(P̃ ))]

+ βλmtrP s
m,k|k + (1− β)Em + λmJk+1(P

s
m,k|k)

≤ (1− λn)[βtrf(P̃ ) + Jk+1(f(P̃ ))]

+ βλntrP s
n,k|k + (1− β)En + λnJk+1(P

s
n,k|k)

(22)

and

(1− λm)[βtrf(P̃ ′) + Jk+1(f(P̃
′))]

+ βλmtrP s
m,k|k + (1− β)Em + λmJk+1(P

s
m,k|k)

≥ (1− λn)[βtrf(P̃ ′) + Jk+1(f(P̃
′))]

+ βλntrP s
n,k|k + (1− β)En + λnJk+1(P

s
n,k|k).

(23)

Since P̃ ′ ≥ P̃ , expressions (22)-(23) and Lemmas IV.1 and

IV.2 imply that λm ≤ λn. Thus, for P̃ ′′ ≥ P̃ ′ we have

(1− λm)[βtrf(P̃ ′′) + Jk+1(f(P̃
′′))]

+ βλmtrP s
m,k|k + (1− β)Em + λmJk+1(P

s
m,k|k)

≥ (1− λn)[βtrf(P̃ ′′) + Jk+1(f(P̃
′′))]

+ βλntrP s
n,k|k + (1− β)En + λnJk+1(P

s
n,k|k).

Theorem IV.3 characterizes some structural properties of the

optimal transmission schedule over a finite horizon. Theorem

IV.3(i) and expression (19) allow one to conclude that for

unstable A and sufficiently large P̃ one will always schedule

a sensor to transmit. This is because trf(P̃ ) → ∞ as P̃

increases, so that (21) is always positive for sufficiently large

P̃ . On the other hand, for stable A, we could encounter the

situation where sensors are never scheduled to transmit if the

costs of transmission Em are large, since now trf(P̃ ) is always

bounded (where the bound could depend on the initial error

covariance).

Theorem IV.3(ii) and expression (19) further show that

the optimal schedule exhibits threshold-type behaviour in

switching from one sensor to another: If for some P̃ , sensor

m is scheduled to transmit, while for some larger P̃ ′, sensor

n (with n 6= m) is scheduled to transmit, then sensor m will

not transmit ∀P̃ ′′ > P̃ ′. Note however that Theorem IV.3 may

not cover all possible situations, since the set S given by (9)

is in general not a totally ordered set.

For scalar systems (or systems with scalar states xk and

hence scalar P̃k|k), the set S is totally ordered, and Theorem

IV.3 and (19) can be used to provide a fairly complete char-

acterization.5 For example, in the situation with two sensors,

we have:

Corollary IV.4. For a scalar system with two sensors, for

each k ∈ {1, . . . ,K}, the behaviour of the optimal ν∗1,k and

ν∗2,k falls into exactly one of the following four scenarios:

(i) There exists a P̃ th
1,k−1 such that ν∗2,k = 0, ∀P̃k−1|k−1,

ν∗1,k = 0 for P̃k−1|k−1 < P̃ th
1,k−1, and ν∗1,k = 1 for

P̃k−1|k−1 ≥ P̃ th
1,k−1.

(ii) There exists a P̃ th
2,k−1 such that ν∗1,k = 0, ∀P̃k−1|k−1,

ν∗2,k = 0 for P̃k−1|k−1 < P̃ th
2,k−1, and ν∗2,k = 1 for

P̃k−1|k−1 ≥ P̃ th
2,k−1.

(iii) There exists some P̃ th
1,k−1 and P̃ th

2,k−1 such that ν∗2,k = 0

for P̃k−1|k−1 < P̃ th
2,k−1, ν∗2,k = 1 for P̃ th

2,k−1 ≤ P̃k−1|k−1 <

P̃ th
1,k−1, and ν∗1,k = 1 for P̃k−1|k−1 ≥ P̃ th

1,k−1.

(iv) There exists some P̃ th
1,k−1 and P̃ th

2,k−1 such that ν∗1,k = 0

for P̃k−1|k−1 < P̃ th
1,k−1, ν∗1,k = 1 for P̃ th

1,k−1 ≤ P̃k−1|k−1 <

P̃ th
2,k−1, and ν∗2,k = 1 for P̃k−1|k−1 ≥ P̃ th

2,k−1.

From numerical simulations, one finds that each of the

above four scenarios can occur (for different parameter val-

ues), see Section VI-B.

B. Infinite Horizon Costs

For the infinite horizon problem (14), we have the following

counterpart to Theorem IV.3.

Lemma IV.5. (i) The functions defined by

φm(P̃ ) , βtrf(P̃ ) + h(f(P̃ ))− β[λmtrP̄m + (1 − λm)trf(P̃ )]

− (1− β)Em − λmh(P̄m)− (1− λm)h(f(P̃ ))

for m = 1, . . . ,M , are increasing functions of P̃ .

(ii) Define

ψm(P̃ ) , β[λmtrP̄m + (1 − λm)trf(P̃ )] + (1− β)Em

+ λmh(P̄m) + (1− λm)h(f(P̃ ))

for m = 1, . . . ,M . Suppose that for some m,n ∈ {1, . . . ,M},

and P̃ , P̃ ′ ∈ S with P̃ ′ ≥ P̃ , we have ψm(P̃ ) ≤ ψn(P̃ ) and

5The set S is also totally ordered in the vector system, single sensor
situation in steady state, see Section IV-C.
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ψm(P̃ ′) ≥ ψn(P̃ ′). Then for P̃ ′′ ≥ P̃ ′, we have ψm(P̃ ′′) ≥
ψn(P̃ ′′).

Proof: Recalling the relative value iteration algorithm

(17), one can show using similar arguments as in the proof of

Theorem IV.3, that the properties in Theorem IV.3 also hold

when Jk+1(.) is replaced with hl(.). Since hl(P̃ ) → h(P̃ ) as

l → ∞, the result follows.

In the infinite horizon situation, any thresholds (which for

the finite horizon situation are generally time-varying) become

constant, i.e. do not depend on k. Thus for example, with the

scalar system, two sensor situation considered in Corollary

IV.4, one may replace P̃ th
1,k−1 and P̃ th

2,k−1 with P̃ th
1 and P̃ th

2

respectively, see also Theorem IV.8.

Remark IV.6. The structural results derived above allow for

significant reductions in the amount of computation required

to solve problems (11) and (14). For example, by Theorem IV.3

or IV.5, if for some P one has ν∗m = 1, and for a larger P ′

one has ν∗m = 0, then one can automatically set ν∗m = 0 for

all P ′′ ≥ P ′. See also [37] for a related discussion.

When the covariance matrices are not comparable in the

positive semi-definite ordering, then the full dynamic program-

ming or value iteration algorithm will need to be run in order

to solve the optimization problems. Nevertheless, when the

remote estimator (6) is used the computational complexity is

not prohibitive. In the case where the local Kalman filters have

converged to steady state, which is likely when the horizon K
is large or if we’re interested in the infinite horizon, the “state

space” S simplifies to (10), which in numerical approaches is

truncated to the set SN defined in (16). The cardinality of SN

is NM , which is not exponential in the number of sensors M
or the horizon K . Furthermore, the “action space” V defined

in (13) has cardinality M + 1, which is also linear in M .

C. Single Sensor Case

In this subsection we will focus on a vector system with

a single sensor, and where the local Kalman filter operates

in steady state, to further characterize the optimal solutions to

problems (11) and (14). For notational simplicity, we will drop

the subscript “1” from quantities such as ν1,k, P̄1, P1,k−1|k−1.

Recall the set S defined by (9), which in the multi-sensor case

is not totally ordered in general. For the single sensor case in

steady state, S becomes:

S , {P̄ , f(P̄ ), f2(P̄ ), . . . }. (24)

Lemma IV.7. In the single sensor case, there is a total

ordering on the elements of S given by

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ . . . .

Proof: We use induction. We have that f(P̄ ) ≥ P̄ from,

e.g., [38]. Now assume that fn(P̄ ) ≥ fn−1(P̄ ). Then

fn+1(P̄ ) = f(fn(P̄ )) ≥ f(fn−1(P̄ )) = fn(P̄ )

where the inequality comes from Lemma IV.1 and the induc-

tion hypothesis. Hence, by induction,

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ . . . .

Using (19), Theorems IV.3, IV.5, and Lemma IV.7, we then

conclude the following threshold behaviour of the optimal

solution:

Theorem IV.8. (i) In the single sensor case, the optimal

solution to the finite horizon problem (11) is of the form:

ν∗k =

{

0 , Pk−1|k−1 < P th
k−1|k−1

1 , Pk−1|k−1 ≥ P th
k−1|k−1

for some thresholds P th
k−1|k−1, k = 1, . . . ,K , where the

thresholds may be infinite (meaning that ν∗k = 0, ∀Pk−1|k−1 ∈
S) when A is stable.

(ii) In the single sensor case, the optimal solution to the infinite

horizon problem (14) is of the form:

ν∗k =

{

0 , Pk−1|k−1 < P th

1 , Pk−1|k−1 ≥ P th (25)

for some constant threshold P th, where the threshold may be

infinite when A is stable.

Remark IV.9. In Theorem IV.8, we could have P th
k−1|k−1 or

P th equal to P̄ , in which case ν∗k = 1, ∀Pk−1|k−1 ∈ S.

Remark IV.10. As mentioned in the Introduction, Theorem

IV.8 was proved in our conference contribution [1] using the

theory of submodular functions. Under a related setup that

minimizes an expected error covariance measure subject to

a constraint on the communication rate, the optimality of

threshold policies over an infinite horizon was also proved

using different techniques in [28].

Thus in the single sensor case the optimal policy is a

threshold policy on the error covariance. This also allows us

to derive simple analytical expressions for the expected energy

usage and expected error covariance for the single sensor case

over an infinite horizon. A similar analysis can be carried out

for the finite horizon situation but the expressions will be more

complicated due to the thresholds P th
k−1|k−1 in Theorem IV.8

being time-varying in general.

Let t ∈ N be such that f t(P̄ ) = P th ∈ S, see (25). Note that

t will depend on the value of β chosen in problem (14). Then

the evolution of the error covariance at the remote estimator

can be modelled as the (infinite) Markov chain shown in Fig.

2, where state i of the Markov chain corresponds to the value

f i(P̄ ), i = 0, 1, 2, . . . , with f0(P̄ ) , P̄ .

Fig. 2. Markov chain for threshold policy

The transition probability matrix P for the Markov chain
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can be written as:

P=

























0 1 0 . . . . . . . . .
0 0 1 0 . . . . . .
...

. . .
. . .

0 . . . . . . 0 1 0 . . . . . .
λ 0 . . . 0 1− λ 0 . . . . . .
λ 0 . . . 0 1− λ 0 . . .
...

...
. . .

























.

For λ ∈ (0, 1), one can easily verify that this Markov chain

is irreducible, aperiodic, and with all states being positive

recurrent. Then the stationary distribution

π =
[

π0 π1 π2 . . . πt πt+1 πt+2 . . .
]

,

where πj is the stationary probability of the Markov chain

being in state j, exists and can be computed using the relation

π = πP. We find after some calculations that πj = π0, j =
1, . . . , t, and πj = (1− λ)j−tπ0, j = t+ 1, t+ 2, . . . , and so

π0 =
1

t+ 1/λ
=

λ

λt+ 1
.

Hence

πj =

{

λ
λt+1 , j = 0, . . . , t

(1−λ)j−tλ
λt+1 , j = t+ 1, t+ 2, . . . .

We can now derive analytical expressions for the ex-

pected energy usage and expected error covariance. For

the expected energy usage, since the sensor transmits only

when the Markov chain is in states t, t + 1, . . . , an energy

amount of E is used in reaching the states corresponding to

P̄ , f t+1(P̄ ), f t+2(P̄ ), . . . . Hence

E[energy] = E[π0 + πt+1 + πt+2 + . . . ]

= Eπ0[1 + 1− λ+ (1− λ)2 + . . . ]

=
Eπ0
λ

=
E

λt+ 1
.

(26)

For the expected error covariance, we have

E[trPk|k] = π0tr(P̄ ) + π1tr(f(P̄ )) + π2tr(f2(P̄ )) + . . . (27)

which can be computed numerically. Under the assumption

that λ > 1− 1
maxi |σi(A)|2 , E[trPk|k] will be finite, by a similar

argument as that used in the proof of Theorem III.1.

V. TRANSMITTING MEASUREMENTS

In this section we will study the situation where sensor

measurements instead of local state estimates are transmitted

to the remote estimator. In particular, we wish to derive

structural results on the optimal transmission schedule. An

advantage with transmitting measurements is that detectability

at each sensor is not required, but just the detectability of

the overall system [9]. In addition, local Kalman filtering at

the individual sensors is not required. The optimal remote

estimator when sending measurements also has a simpler

form than the optimal remote estimator derived in (3) when

sending state estimates (though not as simple as the suboptimal

estimator (6)), which makes it amenable to analysis. Our

descriptions of the model and optimization problem below

will be kept brief, in order to proceed quickly to the structural

results.

A. System Model

The process and measurements follow the same model as

in (1)-(2). Instead of assuming that the individual sensors

are detectable, we will now merely assume that (A,C) is

detectable, where C ,
[

CT
1 . . . CT

M

]T
is the matrix

formed by stacking C1, . . . , CM on top of each other.

Let νm,k ∈ {0, 1},m = 1, . . . ,M be decision variables

such that νm,k = 1 if the measurement ym,k (rather than the

local state estimate) is to be transmitted to the remote estimator

at time k, and νm,k = 0 if there is no transmission. As before

(see Fig. 1), the transmit decisions νm,k are to be decided at

the remote estimator and assumed to only depend on the error

covariance at the remote estimator.

At the remote estimator, if no sensors are scheduled to

transmit, then the state estimates and error covariances are

updated by (4). If sensor m̆ ∈ {1, . . . ,M} has been scheduled

by the remote estimator to transmit at time k then the state

estimates and error covariances at the remote estimator are

now updated as follows:

x̂k+1|k = Ax̂k|k

x̂k|k = x̂k|k−1 + γm̆,kKm̆,k(ym̆,k − Cm̆x̂k|k−1)

Pk+1|k = APk|kA
T +Q

Pk|k = Pk|k−1 − γm̆,kKm̆,kCm̆Pk|k−1

(28)

where Km̆,k , Pk|k−1C
T
m̆(Cm̆Pk|k−1C

T
m̆ + Rm̆)−1. We can

thus write:

x̂k+1|k=

{

Ax̂k|k−1 , νm,kγm,k = 0
Ax̂k|k−1+AKm,k(ym,k−Cmx̂k|k−1) , νm,kγm,k = 1

Pk+1|k=

{

f(Pk|k−1) , νm,kγm,k = 0
gm(Pk|k−1) , νm,kγm,k = 1,

(29)

where f(X) , AXAT +Q as before, and

gm(X) , AXAT −AXCT
m(CmXC

T
m+Rm)−1CmXA

T +Q,
(30)

for m = 1, . . . ,M . In (29) the recursions are given in terms

of x̂k+1|k and Pk+1|k rather than x̂k|k and Pk|k, since the

resulting expressions are more convenient to work with.

B. Optimization of Transmission Scheduling

We consider transmission policies νm,k(Pk|k−1),m =
1, . . . ,M that depend only on Pk|k−1. The finite horizon

optimization problem is:

min
{(ν1,k,...,νM,k)}

K
∑

k=1

E

[

E

[

βtrPk+1|k + (1− β)
M
∑

m=1

νm,kEm

∣

∣

∣

∣

Pk|k−1, ν1,k, . . . , νM,k

]]

(31)
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where we can compute

E[trPk+1|k|Pk|k−1, ν1,k, . . . , νM,k]

=

M
∑

m=1

νm,k

∏

n6=m

(1− νn,k)λmtrgm(Pk|k−1)

+

(

1−

M
∑

m=1

νm,k

∏

n6=m

(1− νn,k)λm

)

trf(Pk|k−1)

with f(.) defined in (7) and gm(.) defined in (30). Let the

functions Jk(.) be defined as:

JK+1(P ) = 0

Jk(P ) = min
(ν1,...,νM )∈V

{

β
[

M
∑

m=1

νm
∏

n6=m

(1− νn)λmtrgm(P )

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1 − νn)λm

)

trf(P )
]

+ (1−β)

M
∑

m=1

νmEm+

M
∑

m=1

νm
∏

n6=m

(1−νn)λmJk+1(gm(P ))

+
(

1−

M
∑

m=1

νm
∏

n6=m

(1 − νn)λm

)

Jk+1(f(P ))

}

,

k = K,K − 1, . . . , 1. (32)

Problem (31) can be solved using the dynamic programming

algorithm by computing Jk(Pk|k−1) for k = K,K− 1, . . . , 1,

with the optimal (ν∗1,k, . . . , ν
∗
M,k) = argminJk(Pk|k−1).

The infinite horizon problem can be formulated in a similar

manner but will be omitted for brevity.

C. Structural Properties of Optimal Transmission Scheduling

Much of this subsection is devoted to proving Theorem V.2,

which is the counterpart of Theorem IV.3(i) for scalar sys-

tems, and in particular establishes the optimality of threshold

policies in the single sensor, scalar case. However, for vector

systems we will give a counterexample (Example V.4) to show

that, in general, the optimal policy is not a simple threshold

policy. The counterpart of Theorem IV.3(ii) also turns out to

be false when measurements are transmitted, and we will give

another counterexample (Example V.5) to illustrate this.

The following results will assume scalar systems, thus

A,Cm, Q,Rm, and P are all scalar.

Lemma V.1. Let F(.) be a function formed by composition (in

any order) of any of the functions f(.), g1(.), . . . , gM (.), id(.)
where

f(P ) , A2P +Q, gm(P ) , A2P +Q −
A2C2

mP
2

C2
mP +Rm

,

and id(.) is the identity function. Then:

(i) F(.) is either of the affine form

F(P ) = aP + b, for some a, b ≥ 0 (33)

or the linear fractional form

F(P ) =
aP + b

cP + d
, for some a, b, c, d ≥ 0 with ad− bc ≥ 0.

(34)

(ii) F(f(P ))−F(gm(P )) is an increasing function of P , for

m = 1, . . . ,M .

Proof: (i) We prove this by induction. Firstly, id(P ) = P
has the form (33), f(P ) = A2P +Q has the form (33), and

gm(P )=A2P+Q−
A2C2

mP
2

C2
mP+Rm

=
(A2Rm+C2

mQ)P+RmQ

C2
mP+Rm

has the form (34) since (A2Rm + C2
mQ)Rm − RmQC

2
m =

A2R2
m ≥ 0.

Now assume that F(.), which is a composition of the

functions f(.), g1(.), . . . , gM (.), id(.), has the form of ei-

ther (33) or (34). Then we will show that f(F(P )) and

gl(F(P )), l = 1, . . . ,M also has the form of either (33) or

(34). For notational convenience, let us write

f(P ) = āP + b̄

for some ā, b̄ ≥ 0, and

gl(P ) =
āP + b̄

c̄P + d̄

for some ā, b̄, c̄, d̄ ≥ 0 with ād̄−b̄c̄ ≥ 0, which can be achieved

as shown at the beginning of the proof.

If F(.) has the form (33), then

f(F(P )) = ā(aP + b) + b̄

is of the form (33), and

gl(F(P )) =
ā(aP + b) + b̄

c̄(aP + b) + d̄
=
āaP + āb+ b̄

c̄aP + c̄b+ d̄

has the form (34), since āa(c̄b+d̄)−(āb+b̄)c̄a = a(ād̄−b̄c̄) ≥
0.

If F(.) has the form (34), then

f(F(P )) =
ā(aP + b)

cP + d
+ b̄ =

(āa+ b̄c)P + āb+ b̄d

cP + d

has the form (34), since (āa+b̄c)d−(āb+b̄d)c = ā(ad−bc) ≥
0. Finally,

gl(F(P )) =
ā
(

aP+b
cP+d

)

+ b̄

c̄
(

aP+b
cP+d

)

+ d̄
=

(āa+ b̄c)P + āb + b̄d

(c̄a+ d̄c)P + c̄b + d̄d

has the form (34), since (āa+ b̄c)(c̄b+ d̄d)− (āb+ b̄d)(c̄a+
d̄c) = (ad− bc)(ād̄− b̄c̄) ≥ 0.

(ii) By part (i), we know that F(.) is either of the form (33)

or (34). If F(.) has the form (33), then

F(f(P ))−F(gm(P )) = a(f(P )− gm(P ))

will be an increasing function of P , since

f(P )− gm(P ) =
A2C2

mP
2

C2
mP +Rm

can be easily checked to be an increasing function of P .
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If F(.) has the form (34), then it can be verified after some

algebra that

d

dP
(F(f(P ))−F(gm(P )))=

d

dP

(

af(P )+b

cf(P )+d
−
agm(P )+b

cgm(P )+d

)

=
(ad−bc)A2C2

mP (d+cQ)
(

C2
mP (d+cQ)+2(d+c(A2P+Q))Rm

)

(d+ c(A2P +Q))2 (C2
mP (d+ cQ) + (d+ c(A2P +Q))Rm)

2

≥ 0

since ad − bc ≥ 0. Hence F(f(P )) − F(gm(P )) is an

increasing function of P .

Theorem V.2. The functions

φm,k(P ) , βf(P )+Jk+1(f(P ))−β[λmgm(P )+(1−λm)f(P )]

−(1−β)Em−λmJk+1(gm(P ))−(1−λm)Jk+1(f(P ))

for m = 1, . . . ,M, k = 1, . . . ,K , are increasing functions of

P .

Proof: The functions are equivalent to

φm,k(P ) = βλm[f(P )− gm(P )]− (1− β)Em

+ λm[Jk+1(f(P ))− Jk+1(gm(P ))].
(35)

As stated in the proof of Lemma V.1(ii), f(P )− gm(P ) can

be easily verified to be an increasing function of P . Thus

Theorem V.2 will be proved if we can show that Jk(f(P ))−
Jk(gm(P )) is an increasing function of P for all k and m.

In fact, we will prove the stronger statement (see Re-

mark V.3) that Jk(F(f(P ))) − Jk(F(gm(P ))) is an in-

creasing function of P for all k and m, where F(.) is

a function formed by composition of any of the functions

f(.), g1(.), . . . , gM (.), id(.). The proof is by induction. The

case of JK+1(F(f(.)))−JK+1(F(gm(.))) = 0 is clear. Now

assume that for P ′ ≥ P ,

Jk′(F(f(P ′))) − Jk′(F(gm(P ′)))

− Jk′(F(f(P ))) + Jk′(F(gm(P ))) ≥ 0

holds for k′ = K + 1,K, . . . , k + 1. We have

Jk(F(f(P ′)))− Jk(F(gm(P ′)))

− Jk(F(f(P ))) + Jk(F(gm(P )))

≥ min
(ν1,...,νM )

{

β
[

M
∑

l=1

νl
∏

n6=l

(1 − νn)λlgl(F(f(P ′)))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

f(F(f(P ′)))
]

+
M
∑

l=1

νl
∏

n6=l

(1− νn)λlJk+1(gl(F(f(P ′))))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

Jk+1(f(F(f(P ′))))

− β
[

M
∑

l=1

νl
∏

n6=l

(1− νn)λlgl(F(gm(P ′)))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

f(F(gm(P ′)))
]

−

M
∑

l=1

νl
∏

n6=l

(1 − νn)λlJk+1(gl(F(gm(P ′))))

−
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

Jk+1(f(F(gm(P ′))))

− β
[

M
∑

l=1

νl
∏

n6=l

(1− νn)λlgl(F(f(P )))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

f(F(f(P )))
]

−

M
∑

l=1

νl
∏

n6=l

(1 − νn)λlJk+1(gl(F(f(P ))))

−
(

1−
M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

Jk+1(f(F(f(P ))))

+ β
[

M
∑

l=1

νl
∏

n6=l

(1− νn)λlgl(F(gm(P )))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

f(F(gm(P )))
]

+

M
∑

l=1

νl
∏

n6=l

(1 − νn)λlJk+1(gl(F(gm(P ))))

+
(

1−

M
∑

l=1

νl
∏

n6=l

(1− νn)λl

)

Jk+1(f(F(gm(P ))))

}

.

(36)

In the minimization of (36) above, if the optimal

(ν∗1 , . . . , ν
∗
M ) = e0 (recall the notation of (13)), then

Jk(F(f(P ′)))− Jk(F(gm(P ′)))

− Jk(F(f(P ))) + Jk(F(gm(P )))

≥ β
[

f(F(f(P ′))) − f(F(gm(P ′)))

− f(F(f(P ))) + f(F(gm(P )))
]

+ Jk+1(f(F(f(P ′)))) − Jk+1(f(F(gm(P ′))))

− Jk+1(f(F(f(P )))) + Jk+1(f(F(gm(P )))) ≥ 0

where the last inequality holds by Lemma V.1 (ii), the induc-

tion hypothesis, and the fact that f ◦F(.) is a composition of

functions of the form f(.), g1(.), . . . , gM (.), id(.). If instead

the optimal (ν∗1 , . . . , ν
∗
M ) = el, l = 1, . . . ,M , then by a

similar argument

Jk(F(f(P ′))) − Jk(F(gm(P ′)))

− Jk(F(f(P ))) + Jk(F(gm(P )))

≥ βλl
[

gl(F(f(P ′)))− gl(F(gm(P ′)))

− gl(F(f(P ))) + gl(F(gm(P )))
]

+ β(1 − λl)
[

f(F(f(P ′)))− f(F(gm(P ′)))

− f(F(f(P ))) + f(F(gm(P )))
]

+ λl
[

Jk+1(gl(F(f(P ′))))− Jk+1(gl(F(gm(P ′))))

− Jk+1(gl(F(f(P )))) + Jk+1(gl(F(gm(P ))))
]

+ (1 − λl)
[

Jk+1(f(F(f(P ′))))− Jk+1(f(F(gm(P ′))))
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− Jk+1(f(F(f(P )))) + Jk+1(f(F(gm(P ))))
]

≥ 0
(37)

Remark V.3. The reason for proving in Theorem V.2 the

stronger statement that Jk(F(f(P ))) − Jk(F(gm(P ))) is

an increasing function of P , is that if we carry out the

arguments in (36) using just Jk(f(P
′)) − Jk(gm(P ′)) −

Jk(f(P )) + Jk(gm(P )), then in (37) we end up need-

ing to show statements such as Jk+1(gl(f(P
′))) −

Jk+1(gl(gm(P ′)))−Jk+1(gl(f(P )))+Jk+1(gl(gm(P ))) ≥ 0
and Jk+1(f(f(P

′)))−Jk+1(f(gm(P ′)))−Jk+1(f(f(P )))+
Jk+1(f(gm(P ))) ≥ 0, neither of which are covered by the

weaker induction hypothesis that Jk′(f(P ′))−Jk′ (gm(P ′))−
Jk′(f(P ))+Jk′ (gm(P )) ≥ 0 holds for k′ = K+1,K, . . . , k+
1.

Theorem V.2 is the counterpart of Theorem IV.3(i), for

estimation schemes where measurements are transmitted. Re-

ferring back to (32), βf(P )+Jk+1(f(P )) is the cost function

when no sensors transmit, while β[λmgm(P )+(1−λm)f(P )]+
(1−β)Em+λmJk+1(gm(P ))+ (1−λm)Jk+1(f(P )) is the

cost function when sensor m transmits. Theorem V.2 thereby

establishes that the cost difference between not transmitting

and sensor m transmitting increases with P , and in particular

implies the optimality of threshold policies in the single sensor,

scalar case. This provides a theoretical justification for the

variance based triggering strategy proposed in [9].

For vector systems, it is well known from Kalman filtering

that when measurements are transmitted, the error covariance

matrices are only partially ordered. One might hope that

Theorem V.2 will still hold for vector systems, but in general

this is not the case, as the following counterexample shows.

Example V.4. Consider the case k = K and M = 1 sensor, so

that we are interested in the function (35) with JK+1(.) = 0:

φ1,K(P ) = βλ1tr[f(P )− g1(P )]− (1− β)E1

= βλ1tr[APCT
1 (C1PC

T
1 +R1)

−1C1PA
T ]− (1 − β)E1.

Suppose we have a system with parameters

A =

[

1.1 0.2
0.2 0.8

]

, C1 =
[

1 −0.9
]

,

Q = I , R1 = 1. Let

P = P̄1 =

[

7.8328 7.3915
7.3915 7.7127

]

, P ′ =

[

7.85 7.40
7.40 7.80

]

.

Then one can easily verify that P ′ > P , but that

tr[AP ′CT
1 (C1P

′CT
1 +R1)

−1C1P
′AT ] = 1.1970

< tr[APCT
1 (C1PC

T
1 +R1)

−1C1PA
T ] = 1.2862,

so the function φ1,K(P ) is not an increasing function of P .

For vector systems with scalar measurements, a threshold

policy was considered in [9], where a sensor m would

transmit if CmPC
T
m exceeded a threshold. Since P ′ > P

implies CmP
′CT

m > CmPC
T
m, the above example also shows

that such a threshold policy is in general not optimal when

measurements are transmitted (under our problem formulation

of minimizing a convex combination of the expected error

covariance and expected energy usage).

Recall the property implied by Theorem IV.3(ii), namely

that if for some P , sensor m is scheduled to transmit, while

for some larger P ′, sensor n (with n 6= m) is scheduled to

transmit, then sensor m will not transmit ∀P ′′ > P ′. As illus-

trated below, this property does not hold when measurements

are transmitted, even for scalar systems.

Example V.5. Consider a system with 2 sensors, with pa-

rameters A = 1.1, C1 = 1, C2 = 1, R1 = 1, R2 = 2,

Q = 0.1, λ1 = 0.6, λ2 = 0.7, E1 = 0.17, E2 = 0.1,

β = 0.5. Again look at the case k = K . Then comparing the

functions βf(P ), β(λ1g1(P ) + (1 − λ1)f(P )) + (1 − β)E1,

and β(λ2g2(P ) + (1−λ2)f(P )) + (1−β)E2 (corresponding

respectively to the cases when no sensor transmits, sensor

1 transmits and sensor 2 transmits), we can verify that the

optimal strategy is for no sensor to transmit when P < 0.5485,

sensor 2 to transmit when 0.5485 ≤ P < 0.8642, sensor 1 to

transmit when 0.8642 ≤ P < 3.9005, but sensor 2 will again

transmit when P ≥ 3.9005.

D. Transmitting State Estimates or Measurements

There are advantages and disadvantages to both scenarios

of transmitting state estimates or measurements, which we

will summarize in this subsection. Sending measurements

is more practical when the sensor has limited computation

capabilities. Furthermore, detectability at individual sensors is

not required. However, as mentioned in Section II, transmitting

state estimates outperforms sending of measurements. From

Table I, we can see that the optimal estimator when sending

estimates outperforms sending of measurements in all cases,

while the suboptimal estimator also outperforms the sending

of measurements in many cases.

The optimization problems in the infinite horizon situation

are also less computationally intensive in the case where state

estimates are transmitted and the remote estimator (6) is used.

As mentioned in Remark IV.6, the set S has a simple form

in steady state, which in practice can be easily truncated

to a finite set SN . On the other hand, when measurements

are transmitted, the set of all possible values of the error

covariance is difficult to determine in the infinite horizon case.

Hence it is difficult to discretize the set of all positive semi-

definite matrices (which the error covariance matrices will be

a subset of) efficiently, and the computational complexity of

the associated optimization problems can be very high.

VI. NUMERICAL STUDIES

A. Single Sensor

We consider an example with parameters

A =

[

1.1 0.2
0.2 0.8

]

, C =
[

1 1
]

, Q = I, R = 1,

in which case

P̄ =

[

1.3762 −0.9014
−0.9014 1.1867

]

.

The packet reception probability is chosen to be λ = 0.8, and

the transmission energy cost E = 1.
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We first consider the finite horizon problem, with K = 5
and β = 0.05, and with the local Kalman filter operating

in steady state. Figs. 3 and 4 plots respectively the optimal

ν∗1 and ν∗2 (i.e. k = 1 and k = 2) for different values of

fn(P̄ ), which we recall represents the different values that

the error covariance can take. In agreement with Theorem

IV.8, we observe a threshold behaviour in the optimal ν∗k . In

this example we have P th
0|0 = f3(P̄ ) and P th

1|1 = f2(P̄ ); the

thresholds are in general different for different values of k.

0 1 2 3 4 5 6 7 8 9

0

1

n

ν 1
*

Fig. 3. Finite horizon, K = 5. ν∗
1

for different values of fn(P̄ ).

n
0 1 2 3 4 5 6 7 8 9

ν
2
*

0

1

Fig. 4. Finite horizon, K = 5. ν∗
2

for different values of fn(P̄ ).

We next consider the infinite horizon problem, with β =
0.05. Fig. 5 plots the optimal ν∗k for different values of fn(P̄ ),
where we again see a threshold behaviour, with P th = f3(P̄ ).
In Fig. 6 we plot the values of the thresholds for different val-

0 1 2 3 4 5 6 7 8 9

0

1

n

ν k
*

Fig. 5. Infinite horizon. ν∗
k

for different values of fn(P̄ ).

ues of β. As β increases, the relative importance of minimizing

the error covariance (vs the energy usage) is increased, thus

one should transmit more often, leading to decreasing values

of the thresholds.

Finally, in Fig. 7 we plot the trace of the expected error

covariance vs the expected energy, obtained by solving the

infinite horizon problem for different values of β, with the

values computed using the expressions (26) and (27). Note

that the plot is discrete as t ∈ N in (26) and (27), see also

Fig. 6.

B. Multiple Sensors

We first consider a two sensor, scalar system with param-

eters A = 1.1, C1 = 1.5, C2 = 1, Q = 1, R1 = R2 = 1,

λ1 = 0.8, λ2 = 0.6. We solve the infinite horizon prob-

lem with β = 0.2. Fig. 8 plots the optimal ν∗1,k and ν∗2,k

10
−2

10
−1

10
0

0

1

2

3

4

5

6

β

t

Fig. 6. Infinite horizon. Threshold P th vs β, with f t(P̄ ) = P th.

E[energy]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[t
r(

P
k
|k

)]
2

3

4

5

6

7

8

9

10

Fig. 7. Infinite horizon. Expected error covariance vs expected energy.

for different values of Pk−1|k−1, with transmission energies

E1 = 1, E2 = 1. The behaviour corresponds to scenario (i)

of Corollary IV.4. Fig. 9 plots the optimal ν∗1,k and ν∗2,k for

P
k-1|k-1

2 4 6 8 10 12 14 16 18 20

ν
k
*

0

0.5

1

ν
1,k

*

ν
2,k

*

Fig. 8. Infinite horizon, ν∗
1,k

and ν∗
2,k

for different values of Pk−1|k−1.

E1 = 1, E2 = 1.

P
k-1|k-1

2 4 6 8 10 12 14 16 18 20

ν
k
*

0

0.5

1

ν
1,k

*

ν
2,k

*

Fig. 9. Infinite horizon, ν∗
1,k

and ν∗
2,k

for different values of Pk−1|k−1.

E1 = 1, E2 = 0.4.

different values of Pk−1|k−1, but with transmission energies

E1 = 1, E2 = 0.4. With these parameters, the behaviour

corresponds to scenario (iii) of Corollary IV.4. The remaining

scenarios (ii) and (iv) of Corollary IV.4 can be illustrated by,

e.g., swapping the parameter values of sensors 1 and 2.
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C. Performance Comparison

Here we will compare the performance of our approach with

a scheme similar to that investigated in [5] (see also [10]) that

transmits when the difference between the state estimates at

sensor m and the remote estimator exceeds a threshold Tm.6

In order to avoid collisions, which from simulation experience

will greatly deteriorate performance, we allow each sensor to

transmit (if it exceeds the threshold Tm) once every M time

steps in a round-robin fashion. Specifically,

νm,k =







1 , ||x̂sm,k−1|k−1 − x̌k−1|| > Tm
and it is sensor m’s turn to transmit

0 , otherwise

(38)

where x̌k is the remote estimate at time k.

When the decisions νm,k depend on the state estimates, the

optimal estimator is generally nonlinear [8], [11]. In the spirit

of (6), we consider a suboptimal estimator x̌k given by

x̌k =

{

x̂sm,k|k , νm,kγm,k = 1

Ax̌k−1 , otherwise.
(39)

With this scheme the decision on whether to transmit

is made by the sensor (rather than the remote estimator).

The sensor has access to its local state estimate, but also

requires knowledge of the remote estimate. In the single sensor

case, the sensor can reconstruct the remote estimate x̌k−1

provided the values of γk−1 are fed back to the sensor before

transmission at time k. However, in the multiple sensor case

simply feeding back γm,k−1 is not enough for the sensors

to reconstruct the remote estimate, and it appears that one

requires the entire state estimate x̌k−1 to be fed back to the

sensors in order to implemement this scheme. Thus the scheme

(38)-(39) is not intended as a practical scheme for the multi-

sensor case, but is only used here for performance comparison

with our approach that schedules transmit decisions at the

remote estimator.

We consider the two sensor, vector system with parameters

A =

[

1.1 0.2
0.2 0.8

]

, C1 =
[

1.5 1.5
]

, C2 =
[

1 1
]

,

Q = I, R1 = R2 = 1. The packet reception probabilities

are λ1 = 0.8, λ2 = 0.6, and the transmission energies

are E1 = 1, E2 = 0.4. In Fig. 10 we plot the trace of

the expected error covariance vs the expected total energy,

obtained by solving the infinite horizon problem (14) for

different values of β. We compare the performance with the

scheme (38)-(39) for different values of the thresholds T1
and T2, with T1 = T2. For smaller expected energies, the

scheme of (38)-(39) performs better due to the utilization

of additional information in the local state estimates, but

as stated before requires feedback of the full remote state

estimates in order to implement. The approach proposed in

Sections II-III performs better when a smaller expected error

covariance specification (with corresponding higher expected

energy) is required. Furthermore, scheduling at the remote

6The scheme is not exactly the same as in [5] since here we also consider
random packet drops.

E[total energy]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[t
r(

P
k
|k

)]

2

3

4

5

6

7

8

9

scheduling at remote estimator

threshold on difference in state estimates, round robin

Fig. 10. Infinite horizon, two sensors. Expected error covariance vs expected
total energy.

estimator doesn’t require feedback of the remote estimates,

but only feedback of the decision variables νm,k, which takes

values of either 0 or 1 (i.e., one bit of information).

VII. MARKOVIAN PACKET DROPS

So far we have considered i.i.d. packet drops. In this

section we briefly outline how our results extend to the

case when state estimates are transmitted and the packet

loss processes are Markovian. For notational simplicity, we

restrict ourselves to the single sensor situation with the local

Kalman filter operating in steady state, where the packet loss

process {γk} is a Markov chain, with transition probabilities

p , P(γk = 0|γk−1 = 1) and q , P(γk = 1|γk−1 = 0).
The probabilities p and q are also known as, respectively, the

failure and recovery rates [39]. We shall consider transmission

decisions νk(Pk−1|k−1, γk−1) dependent only on Pk−1|k−1

and γk−1, in which case the remote estimator equations will

still have the form

x̃k|k =

{

x̂sk|k , νkγk = 1

Ax̃k−1|k−1 , νkγk = 0

P̃k|k =

{

P̄ , νkγk = 1

AP̃k−1|k−1A
T +Q , νkγk = 0.

The finite horizon problem becomes:

min
{νk}

K
∑

k=1

E
[

βtrPk|k + (1 − β)νkE|Pk−1|k−1, γk−1, νk
]

(40)

for some β ∈ (0, 1), where now

E[trPk|k|Pk−1|k−1, γk−1, νk]

= νk
(

γk−1(1− p) + (1− γk−1)q
)

trP̄

+
(

1− νk(γk−1(1− p) + (1− γk−1)q)
)

trf(Pk−1|k−1).

The infinite horizon problem is:

min
{νk}

lim sup
K→∞

1

K

K
∑

k=1

E
[

βtrPk|k+(1−β)νkE|Pk−1|k−1, γk−1, νk
]

.

(41)

The following results can be derived:
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Lemma VII.1. Let the functions Jk(·, ·) : S ×{0, 1} → R be

defined recursively for k = 1, . . . ,K as:

JK+1(P, γ) = 0

Jk(P, γ) = min
ν∈{0,1}

{

β
[

ν(γ(1− p) + (1− γ)q)trP̄

+ (1 − ν(γ(1− p) + (1− γ)q))trf(P )
]

+ (1 − β)νE + ν(γ(1 − p) + (1− γ)q)Jk+1(P̄ , 1)

+
(

1− ν(γ(1 − p) + (1 − γ)q)
)

Jk+1(f(P ), 0)
}

.

and the functions L1
k(·, ·) : S×{0, 1} → R, k = 1, . . . ,K and

L0
k(·, ·) : S × {0, 1} → R, k = 1, . . . ,K as:

L1
k(P, ν) , β

[

ν(1−p)trP̄+(1−ν(1−p))trf(P )
]

+ (1− β)νE + ν(1− p)Jk+1(P̄ , 1)

+ (1− ν(1 − p))Jk+1(f(P ), 0)

L0
k(P, ν) , β

[

νqtrP̄ + (1 − νq)tr(f(P ))
]

+ (1− β)νE + νqJk+1(P̄ , 1)

+ (1− νq)Jk+1(f(P ), 0).

Then the functions L1
k(P, 1) − L1

k(P, 0) and L0
k(P, 1) −

L0
k(P, 0) are decreasing functions of P .

Proof: Similar to Lemma IV.2, we can show that Jk(P, 1)
and Jk(P, 0) are both increasing functions of P . One can also

easily verify that

L1
k(P, 1)−L

1
k(P, 0)

= β(1−p)trP̄+(1−β)E +(1−p)Jk+1(P̄ , 1)

− β(1 − p)trf(P )− (1− p)Jk+1(f(P ), 0)

and

L0
k(P, 1)− L0

k(P, 0) = βqtrP̄ + (1− β)E + qJk+1(P̄ , 1)

− βqtrf(P )− qJk+1(f(P ), 0)

which can both be shown to be decreasing functions of P .

Lemma VII.1 implies that in the finite horizon problem (40),

for each k ∈ {1, . . . ,K} there exist two (in general different)

thresholds P th,1
k−1|k−1 and P th,0

k−1|k−1 ∈ S, k = 1, . . . ,K , such

that when γk−1 = 1 then ν∗k = 0 if and only if Pk−1|k−1 <

P th,1
k−1|k−1; and when γk−1 = 0 then ν∗k = 0 if and only if

Pk−1|k−1 < P th,0
k−1|k−1.

For the infinite horizon problem (41), arguing in a similar

manner as in the proof of Lemma IV.5, the optimal policy

will be such that when γk−1 = 1 then ν∗k = 0 if and only

if Pk−1|k−1 < P th,1; and when γk−1 = 0 then ν∗k = 0 if

and only if Pk−1|k−1 < P th,0, for some constant thresholds

P th,1 and P th,0 ∈ S. Similar to Remark IV.6, knowing that

the optimal policy is a threshold policy can lead to significant

computational savings when solving problems (40) and (41).

VIII. CONCLUSION

This paper has studied an event based remote estimation

problem using multiple sensors, with sensor transmissions

over a shared packet dropping channel, where at most one

sensor may transmit at a time. By considering an optimiza-

tion problem for transmission scheduling that minimizes a

convex combination of the expected error covariance at the

remote estimator and the expected energy across the sensors,

we have derived structural properties on the form of the

optimal solution, when either local state estimates or sensor

measurements are transmitted. In particular, our results show

that in the single sensor case a threshold policy is optimal.

Possible extensions of this work include the consideration of

event triggered estimation with energy harvesting capabilities

at the sensors [30], [40], channels where multiple sensors can

transmit at the same time, and efficient ways to solve the

optimal transmission scheduling problem in the case when

measurements are transmitted.

APPENDIX

A. Derivation of Optimal Estimator Equations (3)

Note first that for the local Kalman filters at the sensors,

we have, ∀m ∈ {1, . . . ,M},

x̂sm,k+1|k = Ax̂sm,k|k

x̂sm,k|k = x̂sm,k|k−1 +Ks
m,k(ym,k − Cmx̂

s
m,k|k−1)

(42)

from which one can obtain

xk+1 − x̂sm,k+1|k

= A(I −Ks
m,kCm)(xk − x̂sm,k|k−1) + wk −AKs

m,kvm,k.

(43)

The remote estimator has the form

x̂k+1|k = Ax̂k|k

x̂k|k = x̂k|k−1 + γm̆,kKm̆,k(x̂
s
m̆,k|k − x̂k|k−1)

when sensor m̆ ∈ {1, . . . ,M} is scheduled to transmit. We

can write

xk+1 − x̂k+1|k

= Axk + wk −Ax̂k|k−1 − γm̆,kAKm̆,k(x̂
s
m̆,k|k − x̂k|k−1)

= A(I − γm̆,kKm̆,k)(xk − x̂k|k−1) + wk

+ γm̆,kAKm̆,k(xk − x̂sm̆,k|k)

= A(I − γm̆,kKm̆,k)(xk − x̂k|k−1) + wk

+γm̆,kAKm̆,k

[

(I−Ks
m̆,kCm̆)(xk−x̂

s
m̆,k|k−1)−K

s
m̆,kvm̆,k

]

(44)

where the last line comes from (42). Define A by (45). Using
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A =





















A(I − γm̆,kKm,k) 0 . . . γm̆,kAKm̆,k(I −Ks
m̆,kCm̆) . . . 0

0 A(I −Ks
1,kC1) 0 . . . 0

...
. . .

...

0 . . . A(I −Ks
m̆,kCm̆) . . . 0

...
. . .

...

0 . . . A(I −Ks
M,kCM )





















. (45)

(44) and (43), consider the augmented system























xk+1−x̂k+1|k
xk+1−x̂

s
1,k+1|k

...

xk+1−x̂
s
m̆,k+1|k

...

xk+1−x̂
s
M,k+1|k























=A























xk−x̂k|k−1
xk−x̂

s
1,k|k−1

...

xk−x̂
s
m̆,k|k−1

...

xk−x̂
s
M,k|k−1























+













I
...
...

I













wk

+





















γm̆,kAKm̆,kK
s
m̆,k

0
...

AKs
m̆,k
...

0





















vm̆,k+





















0
AKs

1,k

0
...
...

0





















v1,k+. . .

+





















0
0
...
...

0
AKs

M,k





















vM,k.

Let us use the shorthand Pk = Pk|k−1. Then we have the

recursion given in (46). The recursions for Pk, P0m,k, Pmn,k

in the optimal estimator equations (3) can then be extracted

from (46) and (45). It remains to determine the optimal gains

Km̆,k. When γm̆,k = 0, we have Pk|k = Pk irrespective of

Km̆,k. When γm̆,k = 1, we have

Pk|k = (I−Km̆,k)Pk(I−Km̆,k)
T +(I−Km̆,k)P0m̆,k

×(I−Ks
m̆,kCm̆)TKT

m̆,k+Km̆,k(I−K
s
m̆,kCm̆)PT

0m̆,k(I−Km̆,k)
T

+Km̆,k(I −Ks
m̆,kCm̆)P s

m̆,k|k(I −Ks
m̆,kCm̆)TKT

m̆,k

+Km̆,kK
s
m̆,kRm̆K

sT
m̆,kK

T
m̆,k

= Km̆,k

(

Pk − P0m̆,k(I −Ks
m̆,kCm̆)T − (I −Ks

m̆,kCm̆)PT
0m̆,k

+ (I −Ks
m̆,kCm̆)P s

m̆,k|k(I −Ks
m̆,kCm̆)T

+Ks
m̆,kRm̆K

sT
m̆,k

)

KT
m̆,k

+Km̆,k

(

−Pk+(I−Ks
m̆,kCm̆)PT

0m̆,k

)

+
(

−Pk+P0m̆,k(I−K
s
m̆,kCm̆)T

)

KT
m̆,k+Pk

Choosing Km̆,k to minimize the expression for Pk|k, e.g. by

differentiating trPk|k with respect to Km̆,k (see [41]), we find

that Km̆,k = I if

Pk|k−1−P0m̆,k(I−K
s
m̆,kCm̆)T −(I−Ks

m̆,kCm̆)PT
0m̆,k

+(I−Ks
m̆,kCm̆)P s

m̆,k|k(I−K
s
m̆,kCm̆)T +Ks

m̆,kRm̆K
sT
m̆,k

= Pk|k−1 − P0m̆,k(I −Ks
m̆,kCm̆)T

and

Km̆,k =
(

Pk − P0m̆,k(I −Ks
m̆,kCm̆)T

)(

Pk − P0m̆,k

× (I −Ks
m̆,kCm̆)T − (I −Ks

m̆,kCm̆)PT
0m̆,k

+ (I −Ks
m̆,kCm̆)P s

m̆,k|k(I −Ks
m̆,kCm̆)T +Ks

m̆,kRm̆K
sT
m̆k

)−1

otherwise.

The equations (4) when no sensors are scheduled to transmit

can be obtained by e.g. setting γm̆,k = 0 in (3).

B. Proof of Theorem II.2

We first note that if Km = I , then the first equation of (5)

becomes

P = (1 − λm)APAT +Q + λmAK
s
mRm(Ks

m)TAT

+ λmA(I −Ks
mCm)P̄ s

m(I −Ks
mCm)TAT

=
√

(1−λm)AP
√

(1−λm)AT+Q+λmAK
s
mRm(Ks

m)TAT

+ λmA(I −Ks
mCm)P̄ s

m(I −Ks
mCm)TAT ,

which is a Lyapunov equation, that has a unique solution P
if either (i) A is stable, or (ii) A is unstable but with

λm > 1−
1

maxi |σi(A)|2
.

Next, we will show that the second equation of (5) also

has a solution P0m = P̄ s
m, irrespective of the value of Km.

We begin by recalling the following expressions for the error

covariance and Kalman gain for the local Kalman filter at

sensor m:

P̄ s
m = AP̄ s

mA
T +Q−AP̄ s

mC
T
m(CmP̄

s
mC

T
m+Rm)−1CT

mP̄
s
mA

T

Ks
m = P̄ s

mC
T
m(CmP̄

s
mC

T
m +Rm)−1.

(47)

Since we can use (47) to show that

AP̄ s
m(I−Ks

mCm)TAT+Q = AP̄ s
mA

T−AP̄ s
mC

T
mK

sT
m AT+Q

=AP̄ s
mA

T−AP̄ s
mC

T
m(CmP̄

s
mC

T
m+Rm)−1CT

mP̄
s
mA

T+Q= P̄ s
m

and

Ks
mCmP̄

s
m(I −Ks

mCm)T −Ks
mRK

sT
m

= Ks
mCmP̄

s
m −Ks

mCmP̄
s
mC

T
mK

sT
m −Ks

mRK
sT
m

=Ks
m(CmP̄

s
mC

T
m+Rm)KsT

m −Ks
mCmP̄

s
mC

T
mK

sT
m

−Ks
mRK

sT
m = 0,
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









Pk+1 P01,k+1 . . . P0M,k+1

P10,k+1 P11,k+1 . . . P1M,k+1

...
...

. . .
...

PM0,k+1 PM1,k+1 . . . PMM,k+1











= A











Pk P01,k . . . P0M,k

P10,k P11,k . . . P1M,k

...
...

. . .
...

PM0,k PM1,k . . . PMM,k











AT

+







Q . . . Q
...

. . .
...

Q . . . Q






+





















γm̆,kAKm̆,kK
s
m̆,kRm̆K

sT
m̆,kK

T
m̆,kA

T 0 . . . γm̆,kAKm̆,kK
s
m̆,kRm̆K

sT
m̆,kA

T . . . 0

0 0 . . . 0 . . . 0
...

...
...

γm̆,kAK
s
m̆,kRm̆K

sT
m̆,kK

T
m̆,kA

T 0 . . . AKs
m̆,kRm̆K

sT
m̆,kA

T . . . 0
...

...
...

...

0 0 . . . 0 . . . 0





















+











0 0 . . . 0
0 AKs

1,kR1K
sT
1,kA

T . . . 0
...

...
. . .

...

0 0 . . . 0











+ · · ·+











0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . AKs
M,kRMK

sT
M,kA

T











.

(46)

we have

A(I−λmKm)P s
m(I−Ks

mCm)TAT+λmAKm(I−Ks
mCm)

× P̄ s
m(I−Ks

mCm)TAT+Q+λmAKmK
s
mRmK

sT
m AT

=AP̄ s
m(I−Ks

mCm)TAT+Q−λmAKm

[

P̄ s
m(I−Ks

mCm)T

−(I−Ks
mCm)P̄ s

m(I−Ks
mCm)T −Ks

mRmK
sT
m

]

AT

=AP̄ s
m(I −Ks

mCm)TAT +Q− λmAKm

[

Ks
mCmP̄

s
m

× (I −Ks
mCm)T −Ks

mRK
sT
m

]

AT = P̄ s
m.

Thus the equation

P0m = A(I − λmKm)P0m(I −Ks
mCm)TAT

+ λmAKm(I −Ks
mCm)P̄ s

m(I −Ks
mCm)TAT

+Q+ λmAKmK
s
mRmK

sT
m AT

has P0m = P̄ s
m as a fixed point (irrespective of the value

of Km). Since for the local Kalman filters maxi |σi(A(I −
Ks

mCm))| < 1, and by assumption maxi |σi(A(I −
λmKm))| < 1, uniqueness of the fixed point P0m = P̄ s

m

can be shown by a similar argument as in p.65 of [42].

It remains to show that Km = I . With P0m = P̄ s
m, we now

have from (5) that

Km =
(

P − P̄ s
m(I −Ks

mCm)T
)(

P − P̄ s
m(I −Ks

mCm)T

− (I −Ks
mCm)P̄ s

m + (I −Ks
mCm)P̄ s

m(I −Ks
mCm)T

+Ks
mRmK

sT
m

)−1

.

Similar to above, we can show that

− (I −Ks
mCm)P̄ s

m + (I −Ks
mCm)P̄ s

m(I −Ks
mCm)T

+Ks
mRmK

sT
m

= −(I −Ks
mCm)P̄ s

mC
T
mK

sT
m +Ks

mRmK
sT
m = 0

and hence

Km = (P−P̄ s
m(I−Ks

mCm)T )(P−P̄ s
m(I−Ks

mCm)T )−1 = I.

C. Proof of Theorem III.1

We will verify the conditions (CAV*1) and (CAV*2) given

in Corollary 7.5.10 of [36], which guarantee the existence of

solutions to the Bellman equation for average cost problems

with countably infinite state space. Condition (CAV*1) says

that there exists a standard policy7 d such that the recurrent

class Rd of the Markov chain induced by d is equal to the

whole state space S. Condition (CAV*2) says that given U >
0, the set DU = {i ∈ S|c(i, a) ≤ U for some a} is finite,

where c(i, a) is the cost at each stage when in state i and

using action a.

We first restrict ourselves to the case of a single sensor m.

To verify (CAV*1), let d be the policy that always transmits,

i.e. νm,k = 1, ∀k. Let state i of the induced Markov chain

correspond to the value f i(P̄m), i = 0, 1, 2, . . . , where we

define f0(P̄ ) , P̄m. The state diagram of the induced Markov

chain is given in Fig 11, with state space S = {0, 1, 2, . . .}.

Fig. 11. Markov chain for policy of always transmitting

Let z = 0. Then the expected first passage time from state

i to state z = 0 is

τi,z = λm+2(1−λm)λm+3(1−λm)2λm+· · · =
1

λm
<∞.

The expected cost of a first passage from state i to state z = 0

7d is a standard policy if there exists a state z such that the expected first
passage time τi,z from i to z satisfies τi,z < ∞,∀i ∈ S, and the expected
first passage cost ci,z from i to z satisfies ci,z < ∞,∀i ∈ S.
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is

ci,z = βtrf i(P̄m) + (1 − β)Em + (1− λm)c(i+1),0

= βtrf i(P̄m) + (1− β)Em + (1− λm)
[

βtrf i+1(P̄m)

+ (1−β)Em

]

+(1−λm)2
[

βtrf i+2(P̄m)+(1−β)Em

]

+. . .

= β

∞
∑

n=0

(1− λm)ntrf i+n(P̄m) +
(1− β)Em

λm
.

(48)

For stable A, the infinite series above always converges.

To show convergence of the infinite series for unstable A,

note that the scenario where sensor m always transmits to the

remote estimator, with packet reception probability λm, corre-

sponds to the situation studied in [31], [32]. By computing the

stationary probabilities of the Markov chain in Fig. 11, we can

show that the expected error covariance E[Pk|k] can be written

as E[Pk|k] =
∑∞

n=0(1 − λm)nλmf
n(P̄m). From the stability

results of [31], [32], we know that E[Pk|k] is bounded if and

only if λm > 1− 1
maxi |σi(A)|2 . Thus

β

∞
∑

n=0

(1− λm)ntrf i+n(P̄m)

=
β

(1 − λm)iλm

∞
∑

n=0

(1− λm)i+nλmtrf i+n(P̄m) <∞

when λm > 1− 1
maxi |σi(A)|2 .

Hence d is a standard policy. Furthermore, one can see from

Fig. 11 that the positive recurrent class Rd of the induced

Markov chain is equal to S, which verifies (CAV*1).

Since the cost per stage c(i, a) corresponds to βtrP̃k|k +
(1−β)νm,kEm, condition (CAV*2) can also be easily verified.

This thus proves the existence of solutions to the infinite

horizon problem in the case of a single sensor m.

For the general case with multiple sensors, if at least one

sensor m′ satisfies λm′ > 1 − 1
maxi |σi(A)|2 , then solutions to

the infinite horizon problem will exist, since restricting to this

sensor m′ already guarantees the existence of solutions.
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[7] J. Weimer, J. Araújo, and K. H. Johansson, “Distributed event-triggered

estimation in networked systems,” in Proc. IFAC Conf. Analysis and
Design of Hybrid Systems, Eindhoven, Netherlands, Jun. 2012, pp. 178–
185.

[8] J. Sijs and M. Lazar, “Event based state estimation with time syn-
chronous updates,” IEEE Trans. Autom. Control, vol. 57, no. 10, pp.
2650–2655, Oct. 2012.

[9] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” IEEE Trans. Autom. Control, vol. 59, no. 12,
pp. 3266–3281, Dec. 2014.

[10] M. Xia, V. Gupta, and P. J. Antsaklis, “Networked state estimation
over a shared communication medium,” in Proc. American Contr. Conf.,
Washington, DC, Jun. 2013, pp. 4134–4319.

[11] J. Wu, Q.-S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor
data scheduling: Trade-off between communication rate and estimation
quality,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1041–1046,
Apr. 2013.

[12] D. Han, Y. Mo, J. Wu, B. Sinopoli, and L. Shi, “Stochastic event-
triggered sensor scheduling for remote state estimation,” in Proc. IEEE
Conf. Decision and Control, Florence, Italy, Dec. 2013, pp. 6079–6084.

[13] S. Trimpe, “Stability analysis of distributed event-based state estima-
tion,” in Proc. IEEE Conf. Decision and Control, Los Angeles, CA,
Dec. 2014, pp. 2013–2019.

[14] K. J. Åström and B. M. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in Proc. IEEE

Conf. Decision and Control, Las Vegas, NV, Dec. 2002, pp. 2011–2016.

[15] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, Sep.
2007.

[16] M. Rabi and K. H. Johansson, “Scheduling packets for event-triggered
control,” in Proc. Europ. Contr. Conf., Budapest, Hungary, Aug. 2009,
pp. 3779–3784.

[17] C. Ramesh, H. Sandberg, and K. H. Johansson, “Design of state-based
schedulers for a network of control loops,” IEEE Trans. Autom. Control,
vol. 58, no. 8, pp. 1962–1975, Aug. 2012.

[18] D. E. Quevedo, V. Gupta, W.-J. Ma, and S. Yüksel, “Stochastic sta-
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