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Abstract

Active information fusion is to selectively choose the
sensors so that the information gain can compensate
the cost spent in information gathering. However, de-
termining the most informative and cost-effective sen-
sors requires an evaluation of all possible sensor com-
binations, which is computationally intractable, par-
ticularly, when information-theoretic criterion is used.
This paper presents a methodology to actively select
a sensor subset with the best tradeoff between infor-
mation gain and sensor cost by exploiting the synergy
among sensors. Our approach includes two aspects: a
method for efficient mutual information computation
and a graph-theoretic approach to reduce search space.
The approach can reduce the time complexity signifi-
cantly in searching for a near optimal sensor subset.

Introduction
There has been a great deal of interest in the development of
systems capable of using many different sources of sensory
information (Waltz & Llinas 1990). In many applications,
e.g., battlefield situation assessment, a number of informa-
tion sources can be generated, but they are often constrained
by limited time and resources. The more sensors we use, the
more information we can obtain. On the other hand, every
act of information gathering incurs the cost of utilizing those
sensors, e.g., computational cost, operation cost, etc. In or-
der to efficiently provide information to a decision-maker, it
is important to avoid unnecessary or unproductive sensor ac-
tions. Thus, we must actively select a subset of sensors that
are the most informative yet cost-effective. An important is-
sue is how to determine a subset of sensors that is worth
to be instantiated at particular stage of information gather-
ing. There are numerous applications of sensor selection in-
cluding computer vision (Paletta & Pinz 2000; Denzler &
Brown 2002), control systems (Miller & Runggaldier 1997;
Logothetis & Isaksson 1999) and sensor networks (Zhao,
Shin, & Reich 2002; Ertin, Fisher, & Potter 2003), etc.

The strategies of sensor selection can be broadly classified
into two categories: search-based approach and decision-
theoretic approach. The search-based approach regards sen-
sor selection as a search problem to find the best solu-
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tion among all possible sensor combinations. Kalandros
et al. (Kalandros, Pao, & Ho 1999) proposed a super-
heuristics method, which begins with a base sensor com-
bination and then generates alternative solution via random
perturbations to the initial combinations. Fassinut-Mombot
et al. (Fassinut-Mombot & Choquel 2004) proposed an en-
tropy adaptive aggregation approach. After heuristically ob-
taining the initial subset, they iteratively aggregate and dis-
aggregate the current subset until it converges. However, the
search-based approach is computationally expensive due to
the combinatorial search space. The decision-theoretic ap-
proach regards sensor selection as a decision-making prob-
lem. Kristensen (Kristensen 1997) treats the problem of
choosing proper sensing actions as decision-making, and a
decision tree is used to find the best sensor action at each
step. Castanon (Castanon 1997) formulates the problem of
dynamical scheduling of sensor for multiple object classi-
fication as a partially observed Markov decision process.
However, it suffers from combinatorial explosion for a prob-
lem even in moderate size. Krishnamurthy (Krishnamurthy
2002) used dynamic programming to find an optimal sensor
in a Hidden Markov model; while the approach is feasible
only for the problems with a small number of sensors.

This paper focuses on the sensor selection problem with
information theoretic approach, where the selection criterion
is defined as a mixture of both expected information gain
and cost. However, there are two difficulties to use this crite-
rion. First, the computation of higher order mutual informa-
tion (information gain) generally requires time exponential
in the number of sensors to compute information gain ex-
actly. Second, selectingk sensors out ofn sensors is also a
NP-hard problem. These difficulties are the impediments for
real time application. For a fusion system containing many
sensors, it is practically infeasible to evaluate all sensor sub-
sets. To avoid the computational intractability of exact com-
putation of information gain, myopic approaches are often
used (Oliver & Horvitz 2003). The myopic procedure as-
sumes that the decision maker will act after observing only
one sensor. However, we should consider the fact that at
each time the decision maker may observe multiple sensors
before acting. So, Hecherman et al. (Heckerman, Horvitz,
& Middleton 1993) presented an approximate nonmyopic
computation for value of information by exploiting the sta-
tistical properties of large samples; while the approach is
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limited to binary hypothesis.
In this paper, we present a practical solution to circum-

vent computational difficulties in sensor selection when the
information-theoretic criterion is used. Towards the first dif-
ficulty, we utilize the sensor pairwise information to infer
the synergy among multiple sensors through exploiting the
properties of mutual information. We circumvent the com-
putational difficulty in computing higher order mutual in-
formation by efficiently computing their least upper bound
instead. Towards the second difficulty, we prune the sensor
synergy graph so that many weak sensor combinations are
eliminated while preserving the most promising ones, and
therefore the search space can be significantly reduced.

Active Information Fusion
We assume that the underlying fusion process is a dynamic
Bayesian network (DBN) to account for temporal changes of
the real-world as well as the sensor reliability, as shown in
Fig. 1. The root node of such a network contain the hypothe-
sis variable whose states correspond to multiple hypotheses
about the state of the environment. Sensors occupy the low-
est level nodes without any children. Evidences are gathered
through sensors. Conditional probabilities between informa-
tion variables and sensors quantify the reliability of sensor
measurements, and the sensor reliability may change over
time. In general, a network will have a number of interme-
diate nodes that are interrelated by cause and effect.
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Figure 1:An information fusion system with dynamic Bayesian
networks, whereΘ, X, I andS denote hypothesis variable, inter-
mediate variables, information variables and sensors, respectively.

Active information fusion is to selectively choose the sen-
sors so that the information gain can compensate the cost
spent in information gathering. A utility function used as
a selection criterion consists of two components: expected
information gain and sensor activation cost, and these two
components are mutually utility independent (Keeney &
Raiffa 1993). Therefore, we simply use a general multilinear
utility function as

U(u1, u2) = (k1u1 + 1)(k2u2 + 1), (1)

wherek1 and k2 are the preference parameters andk1 +
k2 = 1; u1 is the information gain (to be discussed later),
andu2 = 1 − C(S) is the cost saving. The activation cost
for sensorsS, denoted asC(S), needs to be normalized.

From the viewpoint of information theory (Cover &
Thomas 1991), the mutual informationI(Θ;S) between hy-
pothesis variableΘ and sensorsS measures the expected
information gain. Considering the process at a time instant
t, I(Θ;S) for a subset of sensorsS = {S1, · · · , Sn} may be
written as (tis dropped for notational clarity)

I(Θ;S) = H(Θ) − H(Θ|S)

=
∑

Θ,S1,···,Sn

{

P (θ, s1, · · · , sn) log
P (θ|s1, · · · , sn)

P (θ)

}

,

(2)

where the joint probabilityP (θ, s1, · · · , sn) and conditional
probability P (θ|s1, · · · , sn) at time t can be directly ob-
tained through DBN inference by considering the state of
temporal variables at timet − 1 and current observations at
time t; H(Θ) andH(Θ|S) are the expected entropy before
and after instantiating sensorsS.

Sensor Selection
Eq. (2) provides a selection criterion in identifying the un-
certainty reduction capability given a sensor setS. Just con-
sidering one time slice and all binary valued sensors (the
best case), the time complexity to find the best sensor subset
with Eq. (2) is

T (n) =
n

∑

i=1

(

i

n

)

2iiCI , (3)

wheren is the total number of sensors andCI is the BN in-
ference time by instantiating one sensor. We can see from
Eq. (3) that, it is impractical to simply implement this cri-
terion even for the best case because it generally requires
time exponential in the number of summations to compute
mutual information exactly. In the following subsections, we
develop a methodology to address this computational diffi-
culty.

Sensor Synergy in Information Gain
Throughout this section, we assume that we have obtained
I(Θ;Si, Sj) andI(Θ;Si) for all i andj, the mutual infor-
mation of pairwise and singleton sensors, respectively. An
efficient way to obtain those values can be found in (Liao,
Zhang, & Ji 2004). We first define the synergy coefficient
to characterize the synergy between two sensors, and then
extend it to multiple sensors.

Definition 1 (Synergy Coefficient) A measure of expected
synergetic potential between two sensorsSi and Sj in re-
ducing uncertainty of hypothesisΘ is defined as

rij =
I(Θ;Si, Sj) − max(I(Θ;Si), I(Θ;Sj))

H(Θ)
. (4)

It can be easily proved thatrij ≥ 0; this follows thatSi and
Sj taken together are more informative than they are when
taken alone. The largerrij is, the more synergeticSi and
Sj are. Obviously,r(·, ·) is symmetrical inSi andSj and
rij = 0 if i = j.
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Definition 2 (Synergy Matrix) Let a sensor set beS =
{S1, · · · , Sn}, the sensor synergy coefficient matrix is an
n × n matrix defined as

R =







0 r12 · · · r1n

r21 0 · · · r2n

. . . . . . . . . . . . . . . . . .
rn1 rn2 · · · 0






, (5)

R is indeed an information measure of synergy among sen-
sors. With a synergy matrix, naturally we can have its graph-
ical representation.

Definition 3 (Synergy Graph) Given a sensor synergy ma-
trix, a graphG = (S,E), whereS are nodes, representing
the set of available sensors, andE are edges, representing
the set of pairwise synergetic links weighted by synergy co-
efficientsrij , is a sensor synergy graph.

Fig. 2(a) shows an example of such a synergy graph. We
use the synergy graph to infer the synergy among multiple
sensors. To further discuss theoretical properties ofI(Θ;S)
for multiple sensors, we give the following definition.

Definition 4 (Synergy Chain) Given a synergy graphG, if
all sensors in a subset onG are serially linked, this subset
of sensors is referred to as a sensor synergy chain.

Definition 5 (Markov Synergy Chain) Given a synergy
chain withn sensors andn > 2. For all i = 1, · · · , n − 1,
if rij > 0 for j = i + 1 and rij = 0 for j 6= i + 1, then
the chain that describes the synergetic relationship among
{S1, · · · , Sn} is a Markov synergy chain.

Fig. 2(b) shows the above definition. The Markov synergy
chain represents an ideal synergy relation and does not exist
in practice. But this does not prevent us from using it as
a basis for estimating joint mutual information and for the
graph-theoretic analysis of the synergy among sensors. With
the above definitions, we give the following theorems.
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Figure 2:(a) A synergy chain{S1, S2, S3, S4} (highlighted) on a
synergy graph; (b) the corresponding Markov synergy chain

Theorem 1 (Markov Synergy Chain Rule) Given
a Markov synergy chain with a set of sensors
S = {S1, ..., Sn}. For any n, the mutual information
for a Markov synergy chain is

IM (Θ;S1, · · · , Sn)

= I(Θ;S1) +

n−1
∑

i=1

(I(Θ;Si, Si+1) − I(Θ;Si)). (6)

Proof. See Appendix A.1 for the proof.
The significance of Theorem 1 is that it allows to effi-

ciently compute joint mutual information as a sum of mutual
information of pairwise sensors and singleton sensors.

Theorem 2 (Synergy Upper Bound)For a synergy chain
S = {S1, · · · , Sn} in a synergy graphG, its mutual infor-
mation is upper-bounded by the mutual information of its
corresponding Markov synergy chain, i.e.,

I(Θ;S1, · · · , Sn) ≤ IM (Θ;S1, · · · , Sn). (7)

Proof. See Appendix A.2 for the proof.
A synergy chain may correspond to multiple Markov syn-

ergy chains in a synergy graph, depending on sensor orders
as can be seen in Eq. (6). Let

IM
min = arg min

S

(IM (Θ;S1, · · · , Sn)), (8)

where S denotes all Markov synergy chains of
{S1, · · · , Sn}, then IM

min is referred to as a least upper
bound (LUB) ofI(Θ;S1, · · · , Sn). For example, in Fig. 3, a
synergy chain,S = {S1, S2, S3, S4}, has multiple Markov
synergy chains.

S1 S3

S2

S5

S4 4 3 1 2, 4 2 3 1, 4 2 1 3

2 4 3 1, 3 4 2 1, 3 1 2 4

1 3 4 2, 1 2 3 4, 2 1 3 4

Synergy Chains:
Corresponding Markov

Synergy Chain:1 2 3 4

Figure 3:An illustration of synergy graph with 5 sensors.

Corollary 1 The mutual information of a synergy chain is
upper bounded the LUB of the chain, i.e.,

I(Θ;S1, · · · , Sn) ≤ IM
min. (9)

The proof of Eq. (9) is the same as for Theorem 2. LUB is a
much tighter upper bound as shown in an experimental ex-
ample given in Fig. 4. For clarity, Fig. 4 only presents a part
of sensor subsets from a subset space of 10 sensors. It can be
seen that, the least upper bounds ofI(Θ;S) closely follow
the trend of their ground truth in the entire space of sensor
subsets. Therefore, the least upper bound ofI(Θ;S) pro-
vides measures ofI(Θ;S) that can be used for evaluating an
optimal sensor subset. Importantly, the least upper bounds of
I(Θ;S) can be written simply in terms of the mutual infor-
mation of pairwise and singleton sensors as given in Eq. (6).
Therefore, the computational difficulty in computing higher
order mutual information can be circumvented by replacing
mutual information with their least upper bound.

Pruning Synergy Graph
The synergy graph is a completely-connected network since
rij ≥ 0. Some sensors are highly synergetic and some not.
Intuitively, sensors that cause a very small reduction in un-
certainty of hypotheses are those that give us the least ad-
ditional information beyond what we would obtain from the
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other sensors. We prune the sensor synergy graph so that
many weak sensor combinations are eliminated while pre-
serving the most promising ones (the proof of this is be-
yond this paper), and the search space can be reduced sig-
nificantly. We prune the synergy matrix of Eq. (5) by using

rij =

{

1 , r(Si, Sj) > τ
0 , otherwise,

(10)

whereτ is a pruning threshold. Fig. 5 illustrates an example.
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Figure 5:(a) A completely-connected synergy graph; (b) a pruned
synergy graph using the mean ofrij as a threshold.

An Approximate Algorithm
Let S denote the current set of selected sensors andS

′ be a
subset that forms a synergy chain in the synergy graph. Let
lub(Θ;S) be the least upper bound ofI(Θ;S) andU(·, ·) be
a utility function as given in Eq. (1).n is the total number of
available sensors. Our sensor selection algorithm based on
the least upper bound of information gain is given in Table 1.
Although the algorithm is greedy-like, the searching process
in our approach is guided by a synergy graph so that the high
quality of solution can be achieved.

SENSOR-SELECTION(n)
1 for eachi, j, computeI(Θ;Si) andI(Θ;Si, Sj)
2 Construct a synergy graphG and prune it
3 ChooseSi∗ , Sj∗ such thatU(I(Θ;Si, Sj), C(Si, Sj))

is maximized for alli andj
4 S ← {Si∗ , Sj∗}
5 while |S| < n
6 for eachS′, where|S′| = |S| + 1, andS

′ is
a synergy chain onG andS ⊂ S

′

7 Find all Markov synergy chains ofS′

9 lub(Θ;S′) ← arg min(I(Θ,S′)), where
I(Θ,S′) is computed by Eq. (6), andmin
takes over all Markov synergy chains ofS

′

10 S
′∗ ← arg max(U(lub(Θ;S′), C(S′))), where

max takes over allS′

11 if U(lub(Θ;S′∗), C(S′∗)) > U(lub(Θ;S), C(S))
12 S ← S

′∗

13 elsebreak
14 return S

Table 1: An approximate algorithm for sensor selection

Experiments
The ground truth of optimal sensor subset is obtained by a
brute-force approach. We limit BN test model in 5 layers
and up to 10 sensors (assuming binary valued) due to the ex-
ponential computation time behind the brute-force approach
to get the ground truth. We construct 10 different BN mod-
els with 10 sensors, parameterized with 10 different condi-
tional probability tables, yielding a total of 100 test models.
The BN models with 7, 8 and 9 sensors are directly gener-
ated from the above models, e.g., 7-sensor models useS1-S7

from 10-sensor models.
If we only consider the information gain without the sen-

sor cost, the algorithm can achieve almost100% correctness
in searching for optimalk out of n sensors from the test
models. Our goal is to find the best subset of sensors among
n sensors with a maximal utility. We assigned a cost for each
individual sensor. The result averaged among 100 trials is
given in Table 2, where the closeness is defined as a ratio of
our solution to the ground truth. The result shows that the
our solution is very close to the ground truth.

Table 2: The closeness of our solution to the ground truth
No. of Sensors 7 8 9 10
Closeness To
Ground Truth 98.44% 98.23% 97.25% 98.11%

We evaluate the run time using a 2.0GHZ Pentium com-
puter. For the convenience of comparison, the run time is
measured on BN models with only two hidden layers in-
cluding 7 hidden nodes. The models differ in the number of
sensors from 7 to 10. The run time averaged among 10 tri-
als is summarized in Table 3. The result shows that our ap-
proach can reduce the computation time significantly com-
pared with the brute-force approach.
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Table 3: The comparison of run time (seconds)
No. of Sensors 7 8 9 10
Brute-Force 63.87 355.05 2967.36 13560.54

Our Approach 1.020 1.099 1.209 1.430

Table 4: A case study of active sensor selection
Assessment Probability of Blue Force Sensors

Stage Hypothesis Action Taken Selected

P(Pas)=0.3333 S2, S5, S6

1 P(Def)=0.3333 Observe S7, S9

P(Off)=0.3333

P(Pas)=0.5170 Further

2 P(Def)=0.3787 Observe S8, S9

P(Off)=0.1043

P(Pas)=0.2590 Further S5, S6

3 P(Def)=0.5518 Observe S7, S9

P(Off)=0.1892

P(Pas)=0.2164 Further S5, S7

4 P(Def)=0.6877 Observe S8, S9

P(Off)=0.0959

P(Pas)=0.0213 Minor Offensive

5 P(Def)=0.8381 (Red Force May

P(Off)=0.1406 Change Intention)

An Illustrative Application
We illustrate an application of multistage battlefield situ-
ation assessment to determine if the information gain can
compensate the cost spent in information gathering. The sce-
nario develops during a period of growing hostility between
the Blue force and the Red force who poses a threat. A
detail scenario can be seen in (Das 1999). The Blue force
surveillance facilities include a number of offshore sensors,
unmanned aerial vehicles (UAVs), surveillance helicopters
(RAH66 Commanche), etc.. The Blue forces who are on
duty in the restricted zone consists of 1) a Fremantle Class
Patrol Boat (FCPB); 2) a Maritime Patrol Aircraft (MPA); 3)
an Night Hawk Helicopter; 4) one F111 (Marritime Strike
Aircraft). The Red forces include: 1) a major fleet unit; a
Guided Missile Frigate (FFG); 2) one FCPB; 3) a communi-
cation ship. The Red force has two surface units armed with
M386 and 110 SF Rocket Launcher that are ready to move to
the locations where the Blue force is under their fire range.

A dynamic Bayesian network as shown in Fig. 6 is con-
structed to assess the situations for a battlefield scenario. The
hypothesis node between two consecutive slices has tem-
poral causality link and it is parameterized with a transi-
tion probability. There are 9 information sources available to
supply information. The conditional probabilities and sensor
costs are given subjectively. A Blue force commander has to
select the sensors with the highest utility over time and take
an appropriate action (Routine Action, Minor Offensive or
Major Offensive), given a state of uncertainty about the hy-
pothesis of the Red force intention (Passive, Defensive or
Offensive). Table 4 presents a case study that sensors are
actively selected over time based on the current state of hy-
pothesis. P(Pas), P(Def) and P(Off) in the table denote the
probability of Passive, Defensive and Offensive.
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Figure 6:A dynamic Bayesian network model for the battlefield
scenario. The BN structure remains unchange over time, only one
slice si shown.S1-S9 are information sources (sensors). The part
of structure adopted from (Das 1999).

Conclusion
It is computationally difficult to identify an optimal sensor
subset with information-theoretic criterion in active infor-
mation fusion. We presented a solution of finding a near op-
timal sensor subset by utilizing the sensor pairwise informa-
tion to infer the synergy among sensors. The central thrust of
this approach is to circumvent the computational difficulty
in computing higher order mutual information by efficiently
computing their least upper bound. Our approximate algo-
rithm is greedy-like, but the searching process is guided by
a synergy graph to achieve a near optimal solution, and to
reduce the time complexity.
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Appendix A: Proof of Theorems
A1. Proof of Theorem 1
Lemma 1 (Chain Rule of Mutual Information) LetX,
Y1, · · · , Ym are random variables, then

I(X;Y1, · · · , Ym)

= I(X;Y1) +
m

∑

i=2

I(X;Yi|Y1, · · · , Yi−1). (11)

Corollary 2 LetX, Y , Z are random variables, then

I(X;Z|Y ) = I(X;Y,Z) − I(X;Y ) (12)

The proof of Lemma 1 and Corollary 2 is straightfor-
ward (Cover & Thomas 1991). We now prove Theorem 1.

Proof. Based on Lemma 1, we have

I(Θ;S1, · · · , Sm) = I(Θ;S1) + I(Θ;S2|S1)+

I(Θ;S3|S1, S2) + · · · + I(Θ;Sm|S1, · · · , Sm−1)(13)
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From Definition 5 we haveI(Θ;S1|S3) = 0. Based on
Venn diagram in Fig. 7, only the shaded region identi-
fies I(Θ;S3|S1, S2) while satisfying I(Θ;S1|S3) = 0.
While that region is also identified byI(Θ;S3|S2), i.e.,
I(Θ;S3|S1, S2) = I(Θ;S3|S2). Similarly, we have

I(Θ;S4|S2, S3) = I(Θ;S4|S3)
· · · · · · · · ·
I(Θ;Sm|S1, · · · , Sm−1) = I(Θ;Sm|Sm−1)

(14)

Then, we immediately have

I(Θ;S1, · · · , Sm)

= I(Θ;S1) +

m−1
∑

i=1

(I(Θ;Si, Si+1) − I(Θ;Si)) (15)

The theorem is proved.

Figure 7:A Venn diagram represents the mutual information for 4
random variables.

A2. Proof of Theorem 2
Proof. Let us definea = I(Θ;S1|S2), b = I(S2; Θ|S1),
c = I(S1;S2|Θ), d = I(Θ;S1;S2), I(Θ;S3|S2) = e.
With the symmetrical property of conditional mutual infor-
mation, we have thatI(S1; Θ|S2) = a, I(Θ;S2|S1) = b,
I(S2;S1|Θ) = c. We also have thata, b, c, d, e ≥ 0. It can
be easily verified that

I(Θ;S1) = I(Θ;S1|S2) + I(Θ;S1;S2) = a + d, (16)

I(Θ;S1, S2, S3) = I(Θ;S1) + I(Θ;S2|S1)

+I(Θ;S3|S2) = a + d + b + e (17)

(a) (b) (c)

Figure 8: (a) A Venn diagram for a 3-sensor Markov syn-
ergy chain; (b) the shaded region identifiesI(Θ; S1, · · · , Sn)
of a Markov synergy chain; (c) the shaded region identifies
I(Θ; S1, · · · , Sn) of a synergy chain

Therefore, for a Markov synergy chain{S1, S2, S3},
I(Θ;S1, S2, S3) can be identified by a Venn diagram as
shown in Fig. 8(a). Continuing along the same thought
above, thenI(Θ;S1, · · · , Sn) can be represented by a Venn
diagram of regions as shown in Fig. 8(b) for a Markov syn-
ergy chain{S1, · · · , Sn}. We assume a synergy chain hasn

sensors, and a sensorSm, m /∈ {1, · · · , n}, interacts with
this n-sensor synergy chain. The shaded Venn diagram of
region identifiesI(Θ;S1, · · · , Sn) as shown in Fig. 8(c).
We can see that the shaded region of the Venn diagram in
Fig. 8(c) is always less than or equal to that of its Markov
synergy chain in Fig. 8(b). Thus, the theorem is proved.
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