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Abstract

Active information fusion is to selectively choose the
sensors so that the information gain can compensate
the cost spent in information gathering. However, de-
termining the most informative and cost-effective sen-
sors requires an evaluation of all possible sensor com-
binations, which is computationally intractable, par-
ticularly, when information-theoretic criterion is used.
This paper presents a methodology to actively select
a sensor subset with the best tradeoff between infor-
mation gain and sensor cost by exploiting the synergy
among sensors. Our approach includes two aspects: a
method for efficient mutual information computation

and a graph-theoretic approach to reduce search space.

The approach can reduce the time complexity signifi-
cantly in searching for a near optimal sensor subset.

Introduction

tion among all possible sensor combinations. Kalandros
et al. (Kalandros, Pao, & Ho 1999) proposed a super-
heuristics method, which begins with a base sensor com-
bination and then generates alternative solution via random
perturbations to the initial combinations. Fassinut-Mombot
et al. (Fassinut-Mombot & Choquel 2004) proposed an en-
tropy adaptive aggregation approach. After heuristically ob-
taining the initial subset, they iteratively aggregate and dis-
aggregate the current subset until it converges. However, the
search-based approach is computationally expensive due to
the combinatorial search space. The decision-theoretic ap-
proach regards sensor selection as a decision-making prob-
lem. Kristensen (Kristensen 1997) treats the problem of
choosing proper sensing actions as decision-making, and a
decision tree is used to find the best sensor action at each
step. Castanon (Castanon 1997) formulates the problem of
dynamical scheduling of sensor for multiple object classi-
fication as a partially observed Markov decision process.

There has been a great deal of interest in the development of However, it suffers from combinatorial explosion for a prob-
systems capable of using many different sources of sensory lem even in moderate size. Krishnamurthy (Krishnamurthy
information (Waltz & Llinas 1990). In many applications, 2002) used dynamic programming to find an optimal sensor
e.g., battlefield situation assessment, a number of informa- in a Hidden Markov model; while the approach is feasible
tion sources can be generated, but they are often constrainedonly for the problems with a small number of sensors.

by limited time and resources. The more sensors we use, the This paper focuses on the sensor selection problem with

m(zref !n}‘orma:!on Wethcaﬂ ol_ataln. (t)hn the :)tr](lert_lrjand,tre]zvery information theoretic approach, where the selection criterion
act ot information gathering Incurs the cost otutiizing those ¢ qafined as a mixture of both expected information gain

sensors, e.g., computational cost, operation Cost, etc. In or- 4 oot However, there are two difficulties to use this crite-
Qe_r to efficiently prpwde information to a deC|S|9n-maker, " rion. First, the computation of higher order mutual informa-
IS important to avoid unnecessary or unproductive sensor ac- tion (information gain) generally requires time exponential
tions. Thus, we must actively select a subset of sensors thatin the number of sensors to compute information gain ex-
are the most informative yet cost-effective. An important is- actly. Second, selecting sensors out o, sensors is also a
sue1s how to determlne' a subset of SEnsors that is worth NP-hard problem. These difficulties are the impediments for
to be instantiated at partlcula_r stage of information gff‘the.f' real time application. For a fusion system containing many
w;g(.j;here r?]re ?urn:/?r?)uns apppillf[:tatlgn;igfzsggggr Eelﬁgf'orngin' sensors, it is practically infeasible to evaluate all sensor sub-
CL;,U 92%%2 pute i TO t( ale I\e/ll'll &R ’Id'e 1397_ sets. To avoid the computational intractability of exact com-
rown 2u ), control systems (Miller unggaidier ' putation of information gain, myopic approaches are often
Logothetls.& Isaksson .1999) and sensor networks (Zhao, used (Oliver & Horvitz 2003). The myopic procedure as-
Shin, & Reich 2002; Ertin, Fisher, & Potter 2003), efc. o e that the decision maker will act after observing only
The strategies of sensor selection can be broadly classified one sensor. However. we should consider the fact that at
Into two categories: search-based approach and dec'S'On'each time the decision maker may observe multiple sensors
theoretic approach. The search-based approach regards SeNgofore acting. So, Hecherman et al. (Heckerman, Horvitz,

sor selection as a search problem to find the best solu- & Middleton 1993) presented an approximate nonmyopic
computation for value of information by exploiting the sta-
tistical properties of large samples; while the approach is
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limited to binary hypothesis. From the viewpoint of information theory (Cover &
In this paper, we present a practical solution to circum- Thomas 1991), the mutual informatidO; S) between hy-

vent computational difficulties in sensor selection when the pothesis variablé® and sensor$ measures the expected

information-theoretic criterion is used. Towards the first dif- information gain. Considering the process at a time instant

ficulty, we utilize the sensor pairwise information to infer ¢, I(9;S) for a subset of senso= {5y, -, S,} may be

the synergy among multiple sensors through exploiting the written as (tis dropped for notational clarity)

properties of mutual information. We circumvent the com-

putational difficulty in computing higher order mutual in- 1(©;8) = H(©) - H(O]S)

formation by efficiently computing their least upper bound P(0|s1,---,5,)
instead. Towards the second difficulty, we prune the sensor = Y. (PO.siois)log P(0) }’
synergy graph so that many weak sensor combinations are ©,51,+,5n

eliminated while preserving the most promising ones, and (2)

therefore the search space can be significantly reduced. where the joint probability?(, s1, - - -, s,,) and conditional

: : . probability P(0|sy,---,s,) at timet can be directly ob-
Active Informgtlon FUSIOH ) _ tained through DBN inference by considering the state of
We assume that the underlying fusion process is a dynamic temporal variables at time— 1 and current observations at

Bayesian network (DBN) to account for temporal changes of time ¢; H(©) and H(©|S) are the expected entropy before
the real-world as well as the sensor reliability, as shown in and after instantiating sensds

Fig. 1. The root node of such a network contain the hypothe-

sis variable whose states correspond to multiple hypotheses Sensor Selection

about the state of the environment. Sensors occupy the low- _ i L .

est level nodes without any children. Evidences are gathered Ed- (2) provides a selection criterion in identifying the un-
through sensors. Conditional probabilities between informa- Certainty reduction capability given a sensorSedust con-

tion variables and sensors quantify the reliability of sensor Sidering one time slice and all binary valued sensors (the
measurements, and the sensor reliability may change over best case), the time complexity to find the best sensor subset

time. In general, a network will have a number of interme- with Eq. (2) is

diate nodes that are interrelated by cause and effect. N
T(n) = ( )2%‘0;, 3)
: IFS | » ; n
H . IFS IES L — Temporal . . .
ypothesis © | —° Links wheren is the total number of sensors a@4 is the BN in-
—° ference time by instantiating one sensor. We can see from
Intermediate ) Eqg. (3) that, it is impractical to simply implement this cri-
Variables ! X terion even for the best case because it generally requires
Informat \@ time exponential in the number of summations to compute
R I, Jooo( Im mutual information exactly. In the following subsections, we
# develop a methodology to address this computational diffi-
N m culty.

T T
Sensors m ’Tz‘ ooo’s—m‘

t=1

t+1

Sensor Synergy in Information Gain

_ Throughout this section, we assume that we have obtained
Figure 1:An information fusion system with dynamic Bayesian  [(©; S;, S;) and1(©;.S;) for all  andj, the mutual infor-
networks, wheré®, X, I andS denote hypothesis variable, inter-  mation of pairwise and singleton sensors, respectively. An
mediate variables, information variables and sensors, respectively. efficient way to obtain those values can be found in (Liao

Zhang, & Ji 2004). We first define the synergy coefficient

sors so that the information gain can compensate the cost extend it to multiple sensors.

spent in information gathering. A utility function used as o o

a selection criterion consists of two components: expected Definition 1 (Synergy Coefficient) A measure of expected
information gain and sensor activation cost, and these two Synergetic potential between two sensfgsand .S; in re-
components are mutually utility independent (Keeney & ducing uncertainty of hypothesisis defined as

Raiffa 1993). Therefore, we simply use a general multilinear 1(6:S;,8;) — max(I1(©; 5;),1(©; S;))
utility function as Trij = L 7 e 4)
(©)
Ulw, uz) = (kyun + 1) (kaus + 1), (1) It can be easily proved tha; > 0; this follows thatS; and
wherek, and k, are the preference parameters and+ S; taken together are more informative than they are when

ko = 1; u; is the information gain (to be discussed later), taken alone. The larger;; is, the more synergeti§; and
andus = 1 — C(S) is the cost saving. The activation cost S, are. Obviouslyy(-,-) Is symmetrical inS; and.S; and
for sensorss, denoted a&’(S), needs to be normalized. ri; = 0if ¢ = j.
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Definition 2 (Synergy Matrix) Let a sensor set b8 =
{S1,---,Sn}, the sensor synergy coefficient matrix is an
n x n matrix defined as

0 7o T1n
R= T21 0 T2n , (5)
Tn1 Tn2 0

R is indeed an information measure of synergy among sen-
sors. With a synergy matrix, naturally we can have its graph-
ical representation.

Definition 3 (Synergy Graph) Given a sensor synergy ma-
trix, a graphG = (S, E), whereS are nodes, representing
the set of available sensors, ailitlare edges, representing
the set of pairwise synergetic links weighted by synergy co-
efficientsr;;, is a sensor synergy graph.

Fig. 2(a) shows an example of such a synergy graph. We
use the synergy graph to infer the synergy among multiple
sensors. To further discuss theoretical properties 6f S)

for multiple sensors, we give the following definition.

Definition 4 (Synergy Chain) Given a synergy grapty, if
all sensors in a subset afi are serially linked, this subset
of sensors is referred to as a sensor synergy chain.

Definition 5 (Markov Synergy Chain) Given a synergy
chain withn sensors anch > 2. Foralli =1,---,n — 1,

if r;; >0forj =i+ 1andr;; = 0forj # i+ 1, then
the chain that describes the synergetic relationship among
{S1,--+, S} is a Markov synergy chain.

Fig. 2(b) shows the above definition. The Markov synergy

chain represents an ideal synergy relation and does not exist

in practice. But this does not prevent us from using it as
a basis for estimating joint mutual information and for the

graph-theoretic analysis of the synergy among sensors. With

the above definitions, we give the following theorems.

[§P)

Figure 2:(a) A synergy chaif{ S, S2, Ss, S4} (highlighted) on a
synergy graph; (b) the corresponding Markov synergy chain

Theorem 1 (Markov Synergy Chain Rule) Given

a Markov synergy chain with a set of sensors
{S1,...,S,}. For any n, the mutual information

for a Markov synergy chain is

(©:5,-+,S,)

1(©;51) + Z (0; 8, Siv1) — 1(©;5;)). (6)

Proof. See Appendix A.1 for the prool

The significance of Theorem 1 is that it allows to effi-
ciently compute joint mutual information as a sum of mutual
information of pairwise sensors and singleton sensors.

Theorem 2 (Synergy Upper Bound) For a synergy chain

S = {51, -+, S,} in a synergy graphG, its mutual infor-
mation is upper-bounded by the mutual information of its
corresponding Markov synergy chain, i.e.,

Proof. See Appendix A.2 for the prool

A synergy chain may correspond to multiple Markov syn-
ergy chains in a synergy graph, depending on sensor orders
as can be seen in Eq. (6). Let

M= argn}sin(IM(@;Sl,-~-

mn

:Sn)), (8)

where § denotes all Markov synergy chains of
{S1,--+,S,}, then IM. " is referred to as a least upper
bound (LUB) of1(©; 54,- -, S,). For example, in Fig. 3, a
synergy chainS = {51, 52, S5, S4}, has multiple Markov
synergy chains.

@@":‘9

Figure 3:An illustration of synergy graph with 5 sensors.

Synergy Chain:1 2 3 4
Corresponding Marko\
Synergy Chains:

1342,1234,213¢
2431,3421,312:
4312,4231,421¢

Corollary 1 The mutual information of a synergy chain is
upper bounded the LUB of the chain, i.e.,

1(©;51,- -+, 50) (9)

The proof of Eq. (9) is the same as for Theorem 2. LUB is a
much tighter upper bound as shown in an experimental ex-
ample given in Fig. 4. For clarity, Fig. 4 only presents a part
of sensor subsets from a subset space of 10 sensors. It can be
seen that, the least upper bounds (®; S) closely follow

the trend of their ground truth in the entire space of sensor
subsets. Therefore, the least upper bound (@; S) pro-
vides measures df{©; S) that can be used for evaluating an
optimal sensor subset. Importantly, the least upper bounds of
I1(©;S) can be written simply in terms of the mutual infor-
mation of pairwise and singleton sensors as given in Eq. (6).
Therefore, the computational difficulty in computing higher
order mutual information can be circumvented by replacing
mutual information with their least upper bound.

<M

man:®

Pruning Synergy Graph

The synergy graph is a completely-connected network since
r;; > 0. Some sensors are highly synergetic and some not.
Intuitively, sensors that cause a very small reduction in un-

certainty of hypotheses are those that give us the least ad-
ditional information beyond what we would obtain from the
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1 ‘ SENSOR SELECTION(n)

e ™ 1 for eachi, j, computel/(©; S;) andI(©; S;, S;)
0.9F | o~ Ground Truth i 2 Construct a synergy gragh and prune it
os | 3 ChooseS;+, S;- such that/ (1(0;.S;,S;), C(S;,S;))
' is maximized for alk and;
07 E 4 S —{S;-,5;-}
8 5 while S| <n
Eo06 1 6 for eachS’, where|S’| = |S| + 1, andS' is
2 a synergy chain ot andS c S’
OS5 7 7 Find all Markov synergy chains &
El 9 lub(©;S’) — argmin(I(©,S’)), where
04 ] 1(©,8’) is computed by Eq. (6), andin
03 | takes over all Markov synergy chains®f
10 S «— argmax(U(lub(©;S"),C(S))), where
0.2 1 max takes over alb’
11 if U(lub(©;8™),C(S™)) > U(lub(©;S), C(S))
01 10 20 30 20 50 60 70 12 S — 8™
Sensor Subset 13 elsebreak
14 return S

Figure 4:The least upper bound, greatest upper bound and ground

1-18: 5-sensor subsets; 19-34: 6-sensor subsets; 35-51: 7-sensor

subsets; 52-66: 8-sensor subsets
Experiments

LI'he ground truth of optimal sensor subset is obtained by a
brute-force approach. We limit BN test model in 5 layers
and up to 10 sensors (assuming binary valued) due to the ex-
ponential computation time behind the brute-force approach
to get the ground truth. We construct 10 different BN mod-
o { L, T(Siasj) >T (10) els with 10 sensors, parameterized with 10 different condi-
" 0 , otherwise, tional probability tables, yielding a total of 100 test models.
wherer is a pruning threshold. Fig. 5 illustrates an example. The BN models with 7, 8 and 9 sensors are directly gener-
ated from the above models, e.g., 7-sensor model§ st
from 10-sensor models.
If we only consider the information gain without the sen-
sor cost, the algorithm can achieve almt@% correctness
in searching for optimak out of n sensors from the test
models. Our goal is to find the best subset of sensors among
n sensors with a maximal utility. We assigned a cost for each
individual sensor. The result averaged among 100 trials is
given in Table 2, where the closeness is defined as a ratio of
our solution to the ground truth. The result shows that the
our solution is very close to the ground truth.

other sensors. We prune the sensor synergy graph so tha
many weak sensor combinations are eliminated while pre-
serving the most promising ones (the proof of this is be-
yond this paper), and the search space can be reduced sig
nificantly. We prune the synergy matrix of Eg. (5) by using

Figure 5:(a) A completely-connected synergy graph; (b) a pruned

synergy graph using the meaniof as a threshold. Table 2: The closeness of our solution to the ground truth

No. of Sensors 7 8 9 10
Closeness To
An Approximate Algorithm Ground Truth | 98.44% | 98.23% | 97.25% | 98.11%

Let S denote the current set of selected sensorsSirt a

subset that forms a synergy chain in the synergy graph. Let We evaluate the run time using a 2.0GHZ Pentium com-
lub(©; S) be the least upper bound 6f0; S) andU (-, -) be puter. For the convenience of comparison, the run time is
a utility function as given in Eq. (1) is the total number of measured on BN models with only two hidden layers in-

available sensors. Our sensor selection algorithm based oncluding 7 hidden nodes. The models differ in the number of
the least upper bound of information gain is given in Table 1. sensors from 7 to 10. The run time averaged among 10 tri-
Although the algorithm is greedy-like, the searching process als is summarized in Table 3. The result shows that our ap-
in our approach is guided by a synergy graph so that the high proach can reduce the computation time significantly com-
guality of solution can be achieved. pared with the brute-force approach.
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Hypotheses 000 Actions

Enemy Intention

Table 3: The comparison of run time (seconds)
No. of Sensor§ 7 8 9 10 e

00°

Brute-Force | 63.87 | 355.05| 2967.36| 13560.54 el »
Our Approach| 1.020| 1.099 | 1.209 1.430 Atack Air

Attack Surface|

Unknown Anti-Target Artillery
Vessel Type Comm Activity Route Defence Surface—toAlr Missle
FFG N

Comm Ship

Routine Action
Interception

Minor Offensive
Major Offensive

Defensive

Offensive

Radio Slilence Attack Mobility
Inactive

Surface—~to—Surface Missile
Comm w/ Base Immobile
FCPB Jamming Slow Parallel

others

Table 4: A case study of active sensor selection

Assessment| Probability of Blue Force Sensors Tanker Voo B Slow Foerrd
— - Rapid Paralle icle T
Stage Hypothesis Action Taken Selected Sensor Comm Outside Zone Ragid Forward | 8| A Zone | | Vehicle Type
P(Pas)=03333 52, S5, Se Vesel Type oSl ALy czome || Mose
1 P(Def)=0.3333 Observe S7,So l(:ZI:)S\m Ship Jamming Well Forward_J ['sensor Mobility | [ Reconn Mobility] SEMI07
P(Off)=0.3333 FCPB S3 Immobile ISx;\moll:ile e S9
Tanker Slow Parallel low Parallel
P(Pas)=0.5170 Further Ve:el Type Sensor Position | | Reconn Position IS{I’np\{vdl-l‘:rwi\lrd ;l‘olwngrw?lrd
2 P(Def)=0.3787 Observe Ss, So Comm Ship 23;;?:"§§3° 2?;3;5:’[‘? Rapid Forward | | Rapid Forward
P(Off)=0.1043 FPB N Sumpty || Near Supply o -
/ell Forware Well Forward
P(Pas)=0.2590 Further S5, S ) T Sensors (S1-59)
3 P(Def)=0.5518 Observe S7,So
P(Of)=0.1892 Figure 6:A dynamic Bayesian network model for the battlefield
P(Pas)=0.2164 Further 95, 57 scenario. The BN structure remains unchange over time, only one
4 P(Def)=0.6877 Observe S8, 59 slice si shownS;-Sy are information sources (sensors). The part
P(Off)=0.0959 of structure adopted from (Das 1999).
P(Pas)=0.0213| Minor Offensive
5 P(Def)=0.8381| (Red Force May
P(Off)=0.1406 | Change Intention) CO”C'USIOn

It is computationally difficult to identify an optimal sensor

. A subset with information-theoretic criterion in active infor-
An lllustrative Application mation fusion. We presented a solution of finding a near op-

We illustrate an application of multistage battlefield situ- timal sensor subset by utilizing the sensor pairwise informa-

ation assessment to determine if the information gain can tion to infer the synergy among sensors. The central thrust of

compensate the cost spent in information gathering. The sce- this approach is to circumvent the computational difficulty

nario develops during a period of growing hostility between in computing higher order mutual information by efficiently

the Blue force and the Red force who poses a threat. A computing their least upper bound. Our approximate algo-

detail scenario can be seen in (Das 1999). The Blue force rithm is greedy-like, but the searching process is guided by

surveillance facilities include a number of offshore sensors, a synergy graph to achieve a near optimal solution, and to

unmanned aerial vehicles (UAVs), surveillance helicopters reduce the time complexity.

(RAH66 Commanche), etc.. The Blue forces who are on

duty in the restricted zone consists of 1) a Fremantle Class Acknowledgment

Patrol Boat (FCPB); 2) a Maritime Patrol Aircraft (MPA); 3)  This material is based upon work supported by a grant from

an Night Hawk Helicopter; 4) one F111 (Marritime Strike  the US Army Research Office under Grant No. DAAD19-
Aircraft). The Red forces include: 1) a major fleet unit; a (1-1-0402.

Guided Missile Frigate (FFG); 2) one FCPB; 3) a communi-

cation ship. The Red force has two surface units armed with Appendix A: Proof of Theorems

M386 and 110 SF Rocket Launcher that are ready to move to

the locations where the Blue force is under their fire range. Al. Proof of Theorem 1 .
A dynamic Bayesian network as shown in Fig. 6 is con- Leémma 1 (Chain Rule of Mutual Information) Lef,

structed to assess the situations for a battlefield scenario. TheY1; - - -, ¥in are random variables, then

hypothesis node between two consecutive slices has tem- I(X;Y1, -, Y,)

poral causality link and it is parameterized with a transi- m

tion probability. There are 9 information sources available to = I(X;Y1) + Z I(X;Yi|Yy, -+, Y1), (11)

supply information. The conditional probabilities and sensor
costs are given subjectively. A Blue force commander has to
select the sensors with the highest utility over time and take
an appropriate action (Routine Action, Minor Offensive or I(X;2|Y)=1(X;Y,Z) - [(X;Y) (12)

Major Offensive), given a state of uncertainty about the hy-  The proof of Lemma 1 and Corollary 2 is straightfor-

pothesis of the Red force intention (Passive, Defensive or ward (Cover & Thomas 1991). We now prove Theorem 1.
Offensive). Table 4 presents a case study that sensors are proof. Based on Lemma 1, we have

actively selected over time based on the current state of hy-
pothesis. P(Pas), P(Def) and P(Off) in the table denote the (€51, 5m) = 1(0;51) + 1(©; 5|51)+
probability of Passive, Defensive and Offensive. 1(©;53]51,52) + -+ 1(0; S;n|S1, - -+, Sm—1) (13)

=2
Corollary 2 Let X, Y, Z are random variables, then
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From Definition 5 we havel (©;51|S;) = 0. Based on
Venn diagram in Fig. 7, only the shaded region identi-
fies 1(0; 55|51, 52) while satisfying 1(0;5,|S3) = 0.
While that region is also identified by(O; S5|52), i.e.,
1(©; 53|51, 52) = 1(©; S3]S2). Similarly, we have

1(©; 54|82, 53) = 1(0; S4]53)

......... (14)
I(@a Sm|Sla ) Sm—l) - I(@, S’rn|S’m—1)
Then, we immediately have
1(©; 51+, Sm)

m—1
=1(0;51) + Z (1(©; Si, Siy1) — 1(©;S:)) (15)
i=1

The theorem is proveds

Figure 7:A Venn diagram represents the mutual information for 4
random variables.

A2. Proof of Theorem 2

Proof. Let us definea = 1(0;5|52), b = I(S3;0|51),

¢ = I(51;50), d = I(0;51;52), 1(0;55|52) = e.
With the symmetrical property of conditional mutual infor-
mation, we have thaf(S;;0|52) = a, 1(0;53]S1) = b,
1(S2;51|0) = c¢. We also have that, b, c,d,e > 0. It can
be easily verified that

1(©; 1) = 1(0;51]S2) + 1(©; 51;52) =a+d, (16)
I(@, 51752, 53) = I(@, Sl) + I(@, SQ‘Sl)
+1(0;5;3]S2) =a+d+b+e 7

Figure 8:(a) A Venn diagram for a 3-sensor Markov syn-
ergy chain; (b) the shaded region identifiéé0; .51, -, Sy)

of a Markov synergy chain; (c) the shaded region identifies
1(©; 541, ---,S,) of asynergy chain

Therefore, for a Markov synergy chaifiSi, Sa, Ss},
1(0; 51, 52,53) can be identified by a Venn diagram as
shown in Fig. 8(a). Continuing along the same thought
above, ther/ (©; 51, - -+, S,,) can be represented by a Venn
diagram of regions as shown in Fig. 8(b) for a Markov syn-
ergy chain{S, - --, S, }. We assume a synergy chain has

sensors, and a sens8f,, m ¢ {1,---,n}, interacts with
this n-sensor synergy chain. The shaded Venn diagram of
region identifiesI(©; Sy, --,S,) as shown in Fig. 8(c).
We can see that the shaded region of the Venn diagram in
Fig. 8(c) is always less than or equal to that of its Markov
synergy chain in Fig. 8(b). Thus, the theorem is provmd.
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