
Citation: Papastergiou, G.; Xenakis,

A.; Chaikalis, C.; Kosmanos, D.;

Chatzimisios, P.; Samaras, N.S.

Sensor Topology Optimization in

Dense IoT Environments by

Applying Neural Network

Configuration. Sensors 2023, 23, 5422.

https://doi.org/10.3390/s23125422

Academic Editor: Kang Hao Cheong

Received: 15 April 2023

Revised: 26 May 2023

Accepted: 1 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensor Topology Optimization in Dense IoT Environments by
Applying Neural Network Configuration
George Papastergiou 1,*, Apostolos Xenakis 1,* , Costas Chaikalis 1 , Dimitrios Kosmanos 1,2 ,
Periklis Chatzimisios 3 and Nicholas S. Samaras 1

1 Department of Digital Systems, University of Thessaly, 41500 Larissa, Greece; kchaikalis@uth.gr (C.C.);
dikosman@uth.gr (D.K.); nsamaras@uth.gr (N.S.S.)

2 Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece
3 Department of Information and Electronic Systems Engineering, International Hellenic University,

57001 Thessaloniki, Greece; pchatzimisios@ihu.gr
* Correspondence: gpapastergiou@uth.gr (G.P.); axenakis@uth.gr (A.X.)

Abstract: In dense IoT deployments of wireless sensor networks (WSNs), sensor placement, coverage,
connectivity, and energy constraints determine the overall network lifetime. In large-size WSNs, it is
difficult to maintain a trade-off among these conflicting constraints and, thus, scaling is difficult. In
the related research literature, various solutions are proposed that attempt to address near-optimal
behavior in polynomial time, the majority of which relies on heuristics. In this paper, we formulate a
topology control and lifetime extension problem regarding sensor placement, under coverage and
energy constraints, and solve it by applying and testing several neural network configurations. To
do so, the neural network dynamically proposes and handles sensor placement coordinates in a 2D
plane, having the ultimate goal to extend network lifetime. Simulation results show that our proposed
algorithm improves network lifetime, while maintaining communication and energy constraints, for
medium- and large-scale deployments.

Keywords: sensor placement; topology; WSNs; network lifetime; neural networks

1. Introduction

Sensor node deployment is a key design issue related to planning a wireless sensor
network (WSN) and is closely related to the domain application requirements and the total
energy consumption and robustness of the network. An optimal deployment may reduce
communication costs and extend the total network lifetime, under certain constraints
imposed by the networking elements and the application. In this way, a WSN can better
fulfil its operational tasks, such as sensing and evaluating physical phenomena, data
transmission, and inference [1].

Sensor deployment methods are closely related to specific applications [2] and can
be of two types: deterministic and random. In the first type, the nodes’ coordinates are
determined a priori by the network design team; this type is preferred in cases where the
environment is not harsh. For example, in a precision agriculture application, the sensors’
locations may coincide with trees’ locations [3]. On the other hand, in cases where the
physical phenomenon is mobile, the environment is harsh, or there are quick alterations in
the sensing values, a random deployment is proposed [1,2]. To achieve the desired coverage
ratio, redundant nodes are present, which means that the design is resistant to several
node failures. For example, a random deployment is better in cases of measuring chemical
gases inside a volcano, when estimating sudden weather changes, or when a cultivation is
thick [3,4]. In the case of random deployments, the coverage constraint requirements may
be not so strict. Comparing the two deployment types, one can say that the deterministic
case needs careful planning, time, and resources. Moreover, the size of the set holding
all possible network topologies is an exponential function of the size of the used sensor
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nodes. Therefore, deterministic planning is not always cost-effective. On the other hand, in
random deployments, there is a high risk of network outage or partition in cases of total ad
hoc deployments [5].

In this work, we apply the Voronoi diagram partitioning theory, as in [4], which is a
deterministic approach and is geometrically designed to cover a certain terrain. Following
this, we compare it via simulations and propose use case scenarios with random topologies
(i.e., via Gaussian coordinate distribution), as in [6], and we give our results in terms of
the overall network lifetime, communication, and coverage constraints. Our proposed
optimization solver consists of several neural network configurations, with which we
experiment so as to reach a near-optimal solution in polynomial time.

For our WSN communication model, we apply a realistic power consumption model of
a wireless communication subsystem, which has been proposed in many related works [7–9].
The model introduces the energy consumption for sending and receiving a P-bit packet
over a distance d. The energy required in wireless communication is related to the path
loss model and is proportional to a loss factor of d2 for free space and da for multipath
fading and obstacles [7]. According to the use case scenario, the terrain space, and the
node volume, there are two dominant communication patterns: in the first one, all nodes
communicate directly with the gateway in an one-hop fashion, and in the second one,
a multihop scenario is applied, especially to keep the communication range low and,
thus, the energy consumption low. However, in this case, we need many relay nodes
and this may lead to a lower total network lifetime [8]. Thus, the network lifetime is
closely related to communication energy consumption, as in the majority of WSN de-
ployment cases, nodes have limited energy resources. Following on from this, radio
communication to guarantee a connected network data flow graph is mainly affected by the
transmission distance and the transmission power. Thus, sensor topology optimization is
closely related to the optimization of both the sensor deployment strategy and the applied
communication range [9].

The research community shows a strong interest in applying AI tools and neural
network (NN) methods to ensure energy efficient WSN deployments [10]. In essence, NNs
can play a dominant role in this direction due to their quite simple and parallel-distributed
computation design, robustness, and autoclassification methods in the case of sensor data
collection. Dimensionality reduction, sensor data classification, and behavior prediction
may lead to lower communication costs and overall energy conservation. In this paper, we
define a joint sensor network energy and coverage constraint lifetime optimization problem
and approximate its near-optimal solution in polynomial time, applying NN configurations
as a solver. To this end, we consider and compare several topologies, in conjunction with
NN configurations, by relocating certain sensor nodes to new coordinates, thus satisfying
the communication and coverage constraints. We evaluate our solution by testing several
use case scenarios, highlighting the impact of WSN escalation (i.e., small, medium, and
large network deployments) and communication patterns on the overall network lifetime.
The simulation results show that our proposed algorithm improves the network lifetime
while maintaining communication and energy constraints for small-, medium-, and large-
scale deployments. Finally, our solver proposes a final topology deployment in each
use case.

The structure of the paper is as follows: In Section 1, we give an Introduction related
to the problem under investigation. In Section 2, we discuss related research works and
motivation. In Section 3, we discuss the details about the system model formulation, the
neural network configuration, and the optimization framework. In Section 4, we give
details about the proposed use cases and we present simulation parameters and results.
Finally, in Section 5, we conclude this work and provide insights about future extensions.

2. Related Works and Motivation

A WSN designer places sensor nodes inside a field of interest (FoI) according to
the application coverage requirements. These nodes, due to their transceivers, have
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the ability to cover either small or medium areas by sending data to a gateway node.
The energy required for data communication is usually greater than the circuitry
energy consumption [11]. In the majority of WSN and IoT applications, nodes are battery-
equipped [6]. However, in cases where there is great difficulty in replacing batteries
(i.e., harsh terrain, a large volume of nodes, etc.), researchers’ interest focuses on mecha-
nisms to extend the network’s lifetime under communication and coverage constraints.
Topology control plays a dominant role in achieving this target. Thus, optimal sensor node
placement within the FoI is needed for cost-effective deployment.

The authors in [12] propose a sensor placement algorithm, which utilizes a biolog-
ically inspired optimization technique to imitate the behavior of territorial predators in
marking their territories with their odors, known as the territorial predator scent marking
algorithm (TPSMA). The TPSMA technique is based on maximizing a coverage objective
optimization function. The problem of determining the location of sensor nodes, such that
the terrain target points are covered and the network lifetime is maximized, is called the
sensor deployment problem (SDP). Various heuristics and approximation algorithms have
been proposed to solve the SDP in WSNs. Two improved versions of the particle swarm
optimization (PSO) algorithm are presented in [13]. The first one is a cooperative PSO and
the second is its improved version, applying fuzzy logic. These approaches do not deal
with maximizing the coverage area or prolonging the network lifetime.

A properly designed and applied sensor deployment strategy improves WSN per-
formance and resource management [9]. The coverage ratio is directly influenced by the
deployment strategy. In principle, there is no positive correlation between energy consump-
tion minimization and coverage maximization. Thus, to maximize the coverage area, sensor
nodes should be placed far away from the sink node (SN) or the gateway node, which
takes higher transmission power to reach the SN and raises the total energy consumption.
This problem is partially solved if an energy-efficient and multihop routing algorithm is
applied [7] instead of a one-hop communication pattern. However, in several precision
agriculture applications [3], the terrain’s structure may block multihop communication
patterns (i.e., tall trees) and, thus, the one-hop pattern along with an energy- efficient
topology design may solve the energy problem. In essence, in this work, we follow this
design pattern.

Following on from this, nature-inspired optimization algorithms are adopted by many
researchers in WSN applications [14]. While genetics, ants, and particle swarm algorithms
are the dominant examples, many others emerge regularly such as the flower pollination
algorithm (FPA), which is a novel global optimization algorithm inspired by the pollination
process of flowers [14]. Based on the multiobjective version of the FPA (i.e., MOFPA)
for WSNs, a new approach is proposed in [15]. This approach aims to find the optimal
topology deployment, taking into consideration conflicting objectives, such as total energy
minimization and total coverage maximization, while maintaining connectivity constraints.

The network’s lifetime primarily depends on the total energy consumption, which is
mainly related to the nodes’ radio electronics energy consumption. An energy-efficient
coverage optimization technique, the Voronoi–glowworm smarm optimization–K-means
algorithm, is presented in [16]. In this approach, the Voronoi cell structure enhances the
area coverage, applying the minimum required number of active nodes. The Voronoi
diagram is one of the most famous computational geometrical structures applied in sensor
topology design problems to ensure coverage extension [17]. Following on from this, a
sensor node deployment technique is proposed in [18] as a constrained multiobjective
optimization (MOO) problem. The proposed algorithm is a multiobjective evolutionary
algorithm (MOEA), known as MOEA/D-DE, that uses a decomposition approach and
employs differential evolution (DE). The aim is to find a sensor node deployment to
maximize the coverage rate, minimize the network energy consumption, maximize the
network lifetime, and minimize the number of deployed sensor nodes, while ensuring
connectivity between each sensor node and the sink node for proper data transmission.
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A tree structure between the deployed nodes and the sink node for data transmission is
assumed in this approach.

Heuristic approaches are appropriate for near-optimal solutions, especially in NP-
complete problems. To this end, a metaheuristic algorithm is proposed in [19], which
determines the sensors’ positions for area coverage maximization. As a part of the solution,
the authors utilized the immune plasma algorithm (IPA), a unique metaheuristic algorithm
that is based on the immune plasma therapy concept and the transfer of an antibody-rich
fraction of blood from previously recovered patients to others who are considered critically
ill. This optimization algorithm is used to determine the optimal solution to the maximum
coverage problem, but does not deal with the minimum number of nodes, network lifetime
extension, or connectivity assurance.

The authors in [20] propose an approach which relies on exploiting the building
information modeling (BIM) database to obtain real-time and valid information about a
target area. The majority of the proposed schemes present possible solutions without taking
into account the terrain structure and potential obstacles during the WSN topology design
process. The proposed solution can be integrated as a plugin within BIM tools in order to
optimize sensor deployment in real time, taking into account both nodes and obstacles,
respectively. In order to optimize WSN deployment, after collecting useful data from sensor
nodes and the BIM database, this approach relies on an evolutionary algorithm to solve
the multiobjective problem for coverage, cost, and lifetime. The output is each sensor’s
optimal location in the smart building application.

One of the major challenges in sensor deployment is to find the trade-off between
conflicting network optimization objectives under certain connectivity constraints. As
proposed in [21], an approach to deal with this is a constrained Pareto-based multiobjective
evolutionary approach (CPMEA). It aims to find Pareto-optimal layouts which maximize
the coverage and minimize sensors’ energy consumption to prolong the network lifetime,
while maintaining full connectivity between each sensor node and the gateway. To cover
any type of FoI with a predefined number of sensors, a genetic algorithm is proposed in [22]
with the purpose of finding the best sensor placement while ensuring maximum network
coverage under sensor connectivity constraints. The authors propose the genetic algorithm
for area coverage maximization (GAFACM), which covers all shapes of areas for a given
number of sensors and finds the best positions to maximize coverage within the FoI, while
ensuring connectivity between the sensor nodes.

An additional WSN deployment approach, based on the gradient method and the
simulated annealing (SA) heuristic algorithm, is proposed in [23], using the minimum
number of sensor nodes. However, this work does not deal with maximizing the network
lifetime, whereas in [24], the SA heuristic algorithm is applied along with an energy-efficient
algorithm to arrange the placement of sensors in order to extend the network lifetime. The
main function of WSNs is to gather the required information, process it, and send it to
remote gateways. A large number of sensor nodes need to be deployed within a field
of interest; therefore, finding the best node placement according to several constraints is
a hard problem to solve because it escalates. Recent studies in [25] focus on solving the
deployment problem by applying heuristic and metaheuristic optimization algorithms. In
approximately 35% of these studies, the authors apply an improved version of swarm opti-
mization algorithms to solve the sensor deployment problem under constraints. However,
network scalability and total energy consumption are not always addressed.

The topology optimization problem in large IoT and WSN deployments is a com-
binatorial and NP-hard problem to solve in polynomial time. The majority of existing
algorithms apply heuristic or nature-inspired rules to reduce the search number of poten-
tial problem solutions within a solution space, so as to obtain a suboptimal solution in
polynomial time. Recently, researchers have started investigating the application of neural
network methods to solve the sensor deployment problem (SDP). Therefore, to the best of
our knowledge, these works are mostly a work in progress. In [26], the authors propose a
deep-reinforcement-learning-based topology optimization problem for energy-efficient and
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self-organizing WSNs. According to simulations, they show that the proposed algorithm
achieves better performance as compared to other heuristic solutions. Furthermore, the
energy-efficient topology control problem in large WSNs is investigated in [27], with a non-
cooperative game theoretic approach. The extensive simulation results verify the validity
of a utility function, which effectively balances the transmit power, residual energy, and
network connectivity.

In our work, we follow the direction of investigating and applying several neural net-
work configurations as a solver for our proposed optimization problem under constraints.
The difference from [26] is related to the type of neural network solver and the network
optimization problem with constraints and scalable network deployments. Compared
with [25], this work focuses on solving a certain WSN deployment problem with energy
and communication constraints. The proposed solution is based on several neural network
configurations and not on a heuristic algorithm. In the following section, we provide details
about our system model and optimization framework. We also discuss our neural network
solver parameters, which propose which sensor nodes need to be relocated so that the
objective function stays within acceptable limits.

3. System Model Design and Optimization Framework
3.1. System Model

We consider a field of interest (FoI), which is a 2D terrain, with an area of M × L m2.
Inside the terrain, we place N, N ∈ Z+ in a total wireless sensor network and they form
a connected WSN, with one sink node H. The sink node collects all data and is placed
at the centroid of the terrain. The nodes are considered homogeneous in terms memory,
processing, communicating capabilities, and energy reserves. Their job is to periodically
collect data samples and send them to the sink node (i.e., the base station—BS). Initially,
the WSN is considered static, which means that no mobility is present, nor do the nodes
change their coordinates. Additionally, each node has the same sensing range, Rs, and
communication range, Rc.

In Figure 1, we present an example of two topologies for a small-scale network case,
the size of which is 20 × 20 m2, in which fifteen nodes are distributed. Let us call topology
(a) the deterministic deployment of nodes, as produced by the centroidal Voronoi
tessellation (CVT) [1], and topology (b) the random deployment, in which the nodes’
coordinates are derived by a Gaussian distribution [2]. The position of each node is stored in
a discrete set of (x,y) coordinates. Therefore, the WSN is considered as a graph G(V,E), where
V expresses the number of nodes, N, and E is the total edges that connect the nodes. Our
network system model has the following design features:

1. All sensors are responsible for monitoring an event inside their sensing area, period-
ically taking measurements, and sending them to the BS. When they perform that,
they are considered active.

2. Topologies in which a node has no neighbor are neither considered connected nor
valid. Each sensor i ∈ [1 . . . N] should communicate with at least one neighbor and
send the data to the BS, either directly or via a multihop pattern [5]. In the case of a
multihop pattern, relay nodes send all packets to the BS.

3. The coordinates (x,y) of each sensor may change over time due to the neural network
solver decision to minimize the total energy consumption.

4. The position of the BS is stationary.
5. We call the initial sensor positions theoretical points, which constitute the CVT topol-

ogy, in which the optimal sensor distance is duv ≤
√

3Rs [1]. We also call each sensor’s
coordinate query points (i.e., application reserved coordinates) as the application
domain dictates and as long as there is a WSN-connected graph at all times. For
example, in a smart agriculture application, we may want to mount each sensor at
certain terrain locations, i.e., on a tree.

6. The area to be monitored is a rectangular 2D grid terrain of size M × M,
where M ∈ Z+.
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7. We define a round as a case where all sensor nodes in the WSN send at least
one packet towards the gateway node. Additionally, we define the network life-
time as the total rounds until all nodes reach zero energy reserve (i.e., all the
nodes die).

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

5. We call the initial sensor positions theoretical points, which constitute the CVT topol-
ogy, in which the optimal sensor distance is 𝑑 ≤ √3𝑅  [1]. We also call each sen-
sor’s coordinate query points (i.e., application reserved coordinates) as the applica-
tion domain dictates and as long as there is a WSN-connected graph at all times. For 
example, in a smart agriculture application, we may want to mount each sensor at 
certain terrain locations, i.e., on a tree. 

6. The area to be monitored is a rectangular 2D grid terrain of size 𝑀 × 𝑀, where 𝑀 ∈𝑍 . 
7. We define a round as a case where all sensor nodes in the WSN send at least one 

packet towards the gateway node. Additionally, we define the network lifetime as 
the total rounds until all nodes reach zero energy reserve (i.e., all the nodes die). 

  
(a) (b) 

Figure 1. (a) Initial placement of sensor nodes for a deterministic deployment, sink node at point (0, 
0); (b) Initial placement of sensor nodes for a random deployment, sink node at point (0, 0). 

3.2. Problem Formulation 
In this work, we focus on maximizing the 2D sensing area by activating the minimum 

number of sensors and selecting their optimal coordinates in terms of extending the net-
work lifetime under energy and communication constraints. We, therefore, propose a joint 
optimization problem to minimize the total energy consumption and maximize the cov-
erage area by ensuring a WSN-connected graph at all times. All possible generated topol-
ogies generated randomly are a function of N, as × . Therefore, the number of topol-
ogies scale exponentially as a function of the number of scattered nodes. However, only a 
subset of the produced topologies are valid ones, thus satisfying the network constraints. 
To do so, the overall network energy consumption must be minimized and, thus, the total 
residual energy is maximized and the WSN’s lifetime is extended. 

In our model, we apply the first-order radio model [27] in which the energy of the 
radio transmitter and receiver circuitry is equal to 𝑒  = 50 nJ/bit for the electronic sub-
system, and 𝑒 =   m  expresses the energy required to run the transmitter ampli-
fier. The model also assumes a pass loss factor ≈ , where d is the Euclidean distance 
between two nodes and l is the path loss exponent as 2 ≤ 𝑙 ≤ 5, according to the applica-
tion’s requirements. The energy consumed to transmit a packet is given as: 𝐸 =  𝑒  ×  𝑘 + 𝑒  ×  𝑘 × 𝑑   (1)

where k is the packet size in bits. Following this, the energy consumed to receive a packet 
of k bits from a node is given as: 𝐸 =  𝑒  ×  𝑘  (2)

Figure 1. (a) Initial placement of sensor nodes for a deterministic deployment, sink node at point (0, 0);
(b) Initial placement of sensor nodes for a random deployment, sink node at point (0, 0).

3.2. Problem Formulation

In this work, we focus on maximizing the 2D sensing area by activating the minimum
number of sensors and selecting their optimal coordinates in terms of extending the network
lifetime under energy and communication constraints. We, therefore, propose a joint
optimization problem to minimize the total energy consumption and maximize the coverage
area by ensuring a WSN-connected graph at all times. All possible generated topologies

generated randomly are a function of N, as
(

M×M
N

)
. Therefore, the number of topologies

scale exponentially as a function of the number of scattered nodes. However, only a subset
of the produced topologies are valid ones, thus satisfying the network constraints. To do so,
the overall network energy consumption must be minimized and, thus, the total residual
energy is maximized and the WSN’s lifetime is extended.

In our model, we apply the first-order radio model [27] in which the energy of the radio
transmitter and receiver circuitry is equal to eelect = 50 nJ/bit for the electronic subsystem,
and eamp =

100pJ
bit m2 expresses the energy required to run the transmitter amplifier. The

model also assumes a pass loss factor ≈ 1
dl , where d is the Euclidean distance between

two nodes and l is the path loss exponent as 2 ≤ l ≤ 5, according to the application’s
requirements. The energy consumed to transmit a packet is given as:

Etx = eelect × k + eamp × k× dl (1)

where k is the packet size in bits. Following this, the energy consumed to receive a packet
of k bits from a node is given as:

Erx = eelect × k (2)

According to Equations (1) and (2), the total energy consumption per node is defined
as: Etotal = pk ∗ (Etx + Erx), where pk stands for the total number of packets sent or
relayed by a sensor node. Additionally, we assume that the radio channel is symmetric,
which means that the energy cost of transmitting and receiving a packet is the same. As
far as the path loss channel model is concerned, we assume the log-normal shadowing
model, as in [28]. Empirical studies [28] have shown that the log-normal shadowing model
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provides a more accurate multipath channel model as compared to Nakagami and Rayleigh,
appropriate for a cellular deployment. Therefore, the path loss is given as:

PL
(
dij
)
= PL(do) + 10β log10

(dij

do

)
+ Xσ (3)

where do is a reference distance, β is the path loss exponent, and Xσ is a zero-mean Gaussian
random variable in dB, with a standard deviation, σ, to simulate the shadowing effects.
Following this, for each node given a transmitting power, Pt, in dBm, the received power in
dBm is given as follows:

Pr = Pt − PL
(
dij
)

(4)

We formulate a joint energy and coverage optimization problem, with connectivity
constraints, in which the objective function, f1, relates to the total average WSN energy
consumption for the data collection and transfer to the BS and f2 relates to the total sensing
coverage inside the given terrain. The definition of f1 is:

f1 =
1
N ∑i∈SEtotal (5)

where the set S defines the set of all active nodes. The sensor connectivity constraint is
fulfilled, as long as Pri ≥ Prthres ∀i ∈ [1 . . . N] and Prthres gives the minimum required power
for the packet reception. Furthermore, the second objective relates to the maximization of
the coverage area, in essence the maximization of the total sensing coverage points within
the terrain. To do so, we apply the binary sensing model [29–31] and consider the following
function to measure the overall overage:

NCovp =

{
1, d

(
Si, mp

)
> Rs

0, otherwise
(6)

where Rs is the sensing range and d(si,mp) is the Euclidean distance between the mon-
itoring point (xmp, ymp) and the sensor node i’s coordinates (xsi, ysi). The coverage
constraint is fullfilled as long as, for each produced topology j, we minimize the
Euclidean distance between the monitoring point and the sensor’s coordinates, i.e.,

mind
(
si, mp

)
=
√(

xsi − xmp
)2

+
(
ysi − ymp

)2. We define the objective function, f2,
as follows:

f2 = ∑p∈M NCovp (7)

where M is the total number of monitoring points. Moreover, there is a constraint within
our optimization problem. It relates to the fact that the distance between any two sensor
nodes should not exceed their communication range, RC. Additionally, only one sensor
node is placed in each monitoring location. We name each monitoring location x(p) to
indicate whether the location is equipped with a sensor or not, as in [7]. Following a binary
representation, x(p) is defined as:

x(p) =
{

1, if location p has a sensor node
0, otherwise

(8)

In the case of deterministic deployment, applying the centroidal Voronoi tessella-
tion (CVT), nodes are scattered and form an optimal geometry deployment, as near as
possible to the gateway, which subsequently means fewer transmission costs for the en-
tire network [8]. To ensure the proper functionality of the deployed WSN, we make the
following assumptions:

1. To ensure connectivity, the communication radius, Rc, is at least two times the sens-
ing radius, Rs, which is Rc ≥ 2 × Rs. In this condition, we only need to consider
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the coverage problem in the sensor network; if the network is covered, then it is
connected [9].

2. Given that the nodes with a sensing radius, Rs, are deployed in the triangular mesh
configuration in the sensing field, A, the coverage fraction, k, of the sensing field varies
nonlinearly with the spacing between two adjacent nodes, in the range

√
3RS≤ d≤ 2RS,

where d is the internode distance [10].
3. For a given coverage fraction, k ∈ (0.906, 1), we will have Rmin

c ∈ (
√

3Rs, 2Rs). Having
Rc ≥ Rmin

c is both a necessary and sufficient condition to ensure that k-coverage implies
connectivity, according to [10]. From [12], the optimal tessellation, using regular
triangles with a side length equal to

√
3Rs, ensures complete area coverage.

In the case of a random deployment strategy (i.e., nodes’ coordinates stem from
a Gaussian distribution), the initial AoI coverage is relatively low. In that case, node
relocation is imperative to extend the network lifetime and maximize coverage. There is a
trade-off between the lifetime extension rate and the coverage rate. The more we respect
joint coverage and communication constraints, the better the lifetime we achieve. Since
we also want to examine how the network lifetime is affected by a network-scaling factor
in the case of large networks, we applied a multihop communication pattern. Under this
assumption, the Dijkstra algorithm is used, with the edge weights calculated according to
the energy consumption Equations (1) and (2). Overall, we define the following objective
function, F, which we wish to minimize, as follows:

minF = f1 +
1
f2

s.t. : Pri ≥ Prthres ∀i ∈ [1 . . . N] (9)

3.3. Neural Network Framework

We solved our combinatorial optimization problem, as defined in (9), by building a
neural network framework in Python, which utilizes well-known libraries such as Numpy,
TensorFlow, and Keras. In Figure 2, we give a flowchart diagram of the proposed neural
network solver. For the initialization phase, we use csv files as input datasets to express
the sensors’ initial coordinates. These coordinates, which form the initial topology, are the
theoretical topology points and are given as an input to the solver in the first execution
step of the algorithm. The algorithm reads a digital map of the FoI and extracts the sensor
node coordinates to a csv file. This map also provides the coordinates of the query or
reserved points.

The algorithm’s basic operation is to propose the nearest-neighbor theoretical points
for every query point. This is achieved with a single-layer perceptron, i.e., a feed forward
neural network (FFNN) with many inputs and outputs for each query point. In the case
of a deterministic topology, the inputs to the FFNN are the coordinates of query points
and the coordinates of theoretical points, i.e., the ones resulting from the CVT. The FFNN’s
outputs are the sensor coordinates of the theoretical points which are as close as possible
to each query point, with respect to the communication and coverage constraints defined
in the previous section. Therefore, the algorithm selects its nearest (i.e., energy-efficient)
neighbor for each node.

In our work, two NN configurations were built to propose the new and energy-
efficient coordinates for each reserved sensor terrain point. The structure of the first NN
configuration consists of (2) layers, and the second NN of (3) layers. We built a deep
learning NN model with different parameters in Python using Keras [32]. Keras is a
powerful, easy-to-use, free, and open source Python library for developing and evalu-
ating deep learning models. It is part of the TensorFlow library and allows us to de-
fine and train NN models. We used the classes Sequential and Dense from Keras in
our model. Models in Keras are defined as a sequence of layers. We created a sequen-
tial model and added layers. The best network structure is found through a process of
trial-and-error experimentation [13].
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Compiling a NN model uses the efficient numerical libraries of TensorFlow. The
backend automatically chooses the best way to represent the network for training and
making predictions. During compilation, we specified some additional properties required
for the network training. Training a network means finding the best set of weights to
map inputs to outputs for our dataset. We trained or fitted our model on our loaded data
by calling the fit() function on the model. After training the model, we used it to make
predictions on new data using the method model.predict(). Theoretical points will be
repositioned in the new coordinates proposed by the NN.

The criterion for a valid geometric topology is that the proposed relocation of each
node should be at a distance of L ≤ (2 −

√
3) × Rs from its original positions and towards

the orientation direction of the sink node. The neural network solver proposed a network
topology with the minimum energy consumption, according to the objective function in
Equation (9). We then extracted the nodes’ coordinates to a csv file and we could draw the
new topology. As soon as the solver reached an energy-efficient (i.e., final) topology, we
proceeded with the calculation of the total network lifetime, according to the final topology
design. Based on the trained NN model, the new nodes’ coordinates indicate points as
close as possible to the sink nodes, regarding the communication and coverage constraints.
This means that we may relocate some nodes apart from their initial points, as suggested
by the CVT. With the proposed algorithm, we managed to increase the network lifetime in
all the proposed use cases at a factor of 3% to 5%, ensuring a connectivity rate of over 90%
in all topologies. Clearly, there is a trade-off between the lifetime extension and coverage
percentage as soon as constraints are fulfilled, and the objective function gets lower for
each topology. Therefore, node relocation is a function of that trade-off.
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On the contrary, the situation is different for an initial random topology deployment.
In that case, nodes’ coordinates are derived, for example, from a Gaussian distribution,
and are initially scattered around near the sink node. To this end, the coverage rate
is low. The NN solver needs to stretch the initial topology to the extent where the fi-
nal sensor coordinates fulfil both coverage and connectivity constraints and extend the
network lifetime.

In Figure 3, we depict a snapshot topology example of (a) a deterministic topology
and (b) a random topology, in both of which the sink node is placed at (0, 0) in the middle
of the FoI. In case (a), we depict the initial node positions after the relocation proposed by
the solver, in respect of the constraints, as red dots and the final ones as green dots. We
clearly observed that, in this case, the solver needs to evaluate the trade-off between energy
consumption and coverage rate, and it turns out that the relocation is close to the initial
points, which are the ones proposed by the CVT topology, which is the best one in terms
of geometry; in contrast, in case (b), the solver starts from a random topology and has
more degrees of freedom to relocate nodes according to the constraints and to extend the
network lifetime.
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4. Use Case Scenarios and Simulations

In this section, we will provide all necessary details and simulation results related
to various topologies’ use case scenarios. In particular, we will focus on three distinct
cases: (1) a small-size network with size of 20 m × 20 m and consisting of 15 nodes;
(2) a medium-size network with a size of 110 m × 110 m and consisting of 428 nodes; and
(3) a large-size network with a size of 150 m × 150 m and consisting of 800 nodes. For each
use case, the solver estimates the total number of nodes to relocate so that the network
lifetime is extended and the rate of that increases. In this work, all use cases and network
types focus on application in smart vineyard precision agriculture. This means that the FoI
relates to crop arrays in which we need to measure several environmental values, which
may affect grape diseases. Moreover, node locations highly depend on these crop arrays, as
in [28]. We also give this estimate for a solver consisting of two and three hidden layers,
respectively. Furthermore, in Table 1, we give all the necessary simulation parameters,
definitions, and values, as used by the NN solver.

4.1. Use Case 1: Small-Size Network

A small-size network of 20 × 20 m2, with 15 nodes and 1 sink node, was fed to the
NN solver, which consisted of two hidden layers (use case 1a). We used a deterministic
topology, as proposed by a CVT (i.e., Voronoi) graph. This means that according to the
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Voronoi graph theory, we placed 15 nodes at the vertexes of hexagons in order to cover an
area of 20 × 20 m2.

Table 1. Objective functions and solver’s simulation parameters.

Parameters Definitions Values

Sensing radius Sensing radius of sensor nodes 3 m
pk Packet size (in bits) 1500

initial_energy Initial energy at every node’s battery 2
dataset Data file with coordinates of theoretical points coordinates.csv

query_points Data file with coordinates of query points query_points.csv
e_elec = es = et = er Energy dissipated at the electronic transceiver (/bit) 50 nJ/bit

β Transmission quality estimation 0.1 nJ/bit/m2

α Signal degrading factor 2 ≤ α ≤ 5 3

According to Table 2, which gives parameters and values for the simulation, the sink
node was placed at (0, 0); for case 1a, we used two hidden layers, and for case 1b, we used
three hidden layers. Since we had eight reserved points, the solver relocated 8 nodes out
of 15 nodes, which means that almost 53.34% of the topology nodes changed positions,
lowering the objective function value. According to the simulation:

1. The initial topology leads to a network lifetime of 8678 rounds.
2. The final topology, as proposed by the solver with (2) hidden layers, leads to a network

lifetime of 9039 rounds, which is an increase of 4.16%.
3. The final topology, as proposed by the solver with (3) hidden layers, leads to a network

lifetime of 9094 rounds, which is an increase of 4.8%.

Table 2. Simulation parameters for use case 1: small-size network.

Parameters Values

Type of topology Deterministic
Deployment area 20 m × 20 m

Sensing area width 20
Sensing area length 20

Topology type CVT
Number of initial nodes 15

Number of relocated nodes 8
Sink node coordinates (0, 0)
Solver’s hidden layers 2 (case 1a) and 3 (case 1b)

In Figure 4, we depict a snapshot of the topology for the example of use case 1a. The
red dots represent the nodes at their initial positions and the green dots represent the
(8) relocated nodes, according to the solver’s decision based on the three hidden layers.
The snapshot of the (b) topology leads to a total network lifetime of 9094 rounds and an
increase of 4.8%.

4.2. Use Case 2: Medium-Size Network

A medium-size network of 110 × 110 m2, with 428 nodes and 1 sink node, was fed to
the NN solver, which consisted of two hidden layers (use case 1a). We used a deterministic
topology, as proposed by a CVT (i.e., Voronoi) graph. This means that according to the
Voronoi graph theory, we placed 428 nodes at the vertexes of hexagons in order to cover an
area of 110 × 110 m2.

According to Table 3, which gives parameters and values for the simulation, the sink
node was placed at (0, 0); for case 2a, we used two hidden layers, and for case 2b, we
used three hidden layers. Since we had 150 reserved points, the solver relocated 150 nodes
out of 428 nodes, which means that almost 35% of the topology nodes changed positions,
lowering the objective function value. According to the simulation:
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1. The initial topology leads to a network lifetime of 1646 rounds.
2. The final topology, as proposed by the solver with (2) hidden layers, leads to a network

lifetime of 1710 rounds, which is an increase of 3.89%.
3. The final topology, as proposed by the solver with (3) hidden layers, leads to a network

lifetime of 1716 rounds, which is an increase of 4.25%.
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Table 3. Simulation parameters for use case 2: medium-size network.

Parameters Values

Type of topology Deterministic
Deployment area 110 m × 110 m

Sensing area width 110
Sensing area length 110

Topology type CVT
Number of initial nodes 428

Number of relocated nodes 150
Sink node coordinates (0, 0)
Solver’s hidden layers 2 (case 2a) and 3 (case 2b)

4.3. Use Case 3: Large-Size Network

A large-size network of 150 × 150 m2, with 800 nodes and 1 sink node, was fed to the
NN solver, which consisted of two hidden layers (use case 1a). We used a deterministic
topology, as proposed by a CVT (i.e., Voronoi) graph. This means that according to the
Voronoi graph theory, we placed 800 nodes at the vertexes of hexagons in order to cover an
area of 150 × 150 m2.

According to Table 4, which gives parameters and values for the simulation, the sink
node was placed at (0, 0); for case 3a, we used two hidden layers, and for case 3b, we used
three hidden layers. Since we had 406 reserved points, the solver relocated 406 nodes out
of 800 nodes, which means that almost 50.75% of the topology nodes changed positions,
lowering the objective function value. According to the simulation:

1. The initial topology leads to a network lifetime of 1181 rounds.
2. The final topology, as proposed by the solver with (2) hidden layers, leads to a network

lifetime of 1224 rounds, which is an increase of 3.64%.
3. The final topology, as proposed by the solver with (3) hidden layers, leads to a network

lifetime of 1227 rounds, which is an increase of 3.9%.
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Table 4. Simulation parameters for use case 3: large-size network.

Parameters Values

Type of topology Deterministic
Deployment area 150 m × 150 m

Sensing area width 150
Sensing area length 150

Topology type CVT
Number of initial nodes 800

Number of relocated nodes 406
Sink node coordinates (0, 0)
Solver’s hidden layers 2 (case 3a) and 3 (case 3b)

4.4. Use Case 4: Small-Size Network—Random Deployment

A small-size network of 20 × 20 m2, with 15 nodes and 1 sink node, was fed to the
NN solver, which consisted of two hidden layers (use case 1a). We used a random topology,
which means that we placed 15 nodes inside the area of 20 × 20 m2, the coordinates of
which derive from the Gaussian distribution.

According to Table 5, which gives parameters and values for the simulation, the sink
node was placed at (0, 0); for case 4a, we used two hidden layers, and for case 4b, we used
three hidden layers. The solver relocated 8 nodes out of 15 nodes, which means that almost
53.34% of the topology nodes changed positions, lowering the objective function value.
According to the simulation:

1. The initial topology leads to a network lifetime of 11,896 rounds.
2. The final topology, as proposed by the solver with (2) hidden layers, leads to a network

lifetime of 12,443 rounds, which is an increase of 4.6%.
3. The final topology, as proposed by the solver with (3) hidden layers, leads to a network

lifetime of 12,505 rounds, which is an increase of 5.2%.

Table 5. Simulation parameters for use case 4: small-size network—random deployment.

Parameters Values

Type of topology Random
Deployment area 20 m × 20 m

Sensing area width 20
Sensing area length 20

Number of initial nodes 15
Number of relocated nodes 8

Sink node coordinates (0, 0)
Solver’s hidden layers 2 (case 4a) and 3 (case 4b)

4.5. Aggregating the Results

Aggregating the previous simulation results related to the total network lifetime ex-
tension, we plot the extension per network size type for each use case and the solver’s
number of hidden layers in Figure 5a. The lifetime extension depicts the comparison,
in terms of total energy consumption, of the initial and final topologies per use case.
All the initial topologies are based on the deterministic case, i.e., the CVT (Voronoi)
graph topology.

According to Figure 5a, the solver managed to extend the network lifetime in all use
cases and for all network size types, which means that the algorithm scales polynomially.
Moreover, we observed that the choice of three instead of two solver hidden layers led to a
better network lifetime extension in all cases. In that sense, for the deterministic network
types (i.e., the Voronoi graphs), the addition of one more hidden layer in the solver, in
conjunction with the corresponding tuning of the model’s training parameters, led to a
longer network lifetime. In Figure 5b, we plot the percentage (%) of the relocated nodes, in
each of the network type use cases, as compared to the total nodes of the initial topologies.
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For the cases of deterministic CVT initial topologies, no matter how much we tried to
increase the number of relocating nodes, we did not actually succeed in further extending
the network lifetime. This is due to the fact that the solver also tried to extend the area
coverage; therefore, it did not have many degrees of freedom to move nodes to new
locations. To this end, we obtained a final topology in polynomial time, but the relocation
rate stayed low. Additionally, in dense sensor areas of interest, by relocating 46.38% of the
total nodes on average, we extended the network lifetime by an average of 4.5%.

In Figure 6a, we plot the network lifetime extension rate, comparing 2-layer and
3-layer solvers, for the deterministic and random use case network topologies. Firstly, we
can observe that the 3-layer NN configuration led to a greater lifetime extension in both
cases. Secondly, for the random topology deployment (i.e., Gaussian), we obtained a better
lifetime extension rate in both NN configurations. This is because in random topologies, the
solver has more degrees of freedom to relocate nodes than in the deterministic case. This
means that the solver outputs a better topology deployment, in terms of objective function,
under the constraints. In Figure 6b, we plot the actual lifetime values, in rounds, for
these cases. Again, we can observe that for random initial topologies, the solver achieved
12,443 and 12,505 rounds for the 2-layer and 3-layer NN configuration, respectively.

Table 6 presents the values of total energy consumption per round and the network
lifetime for the initial and final topologies, respectively, for each use case. We can observe
that the solver managed to reduce the total consumed energy; additionally, the choice of
three instead of two solver hidden layers led to a greater reduction in all cases. This means
that more total residual energy per round was ensured and the network could remain
functional for more rounds until all the nodes died.

Table 6. Total energy consumption and network lifetime values for every use case.

Use Case Initial Energy at Every
Node’s Battery (J)

Number of
Initial Nodes

Network Lifetime
(Rounds)

Total Energy
Consumption (mJ/Round)

Use case 1 2 15 8678 3457
Use case 1a (two hidden layers) 2 15 9039 3319

Use case 1b (three hidden layers) 2 15 9094 3299

Use case 2 2 428 1646 520
Use case 2a (two hidden layers) 2 428 1710 500

Use case 2b (three hidden layers) 2 428 1716 498

Use case 3 2 800 1181 1354
Use case 3a (two hidden layers) 2 800 1224 1307

Use case 3b (three hidden layers) 2 800 1227 1304

Use case 4 2 15 11,896 2522
Use case 4a (two hidden layers) 2 15 12,443 2411

Use case 4b (three hidden layers) 2 15 12,505 2399
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5. Conclusions

In the published literature, there are techniques in WSNs for joint coverage and energy
optimization after the initial sensor deployment [33–37]. Having these techniques in mind,
in this paper, we proposed a near-optimal solution in polynomial time applying NN
configurations for the problem of joint sensor network energy and coverage constraint
lifetime optimization. Therefore, we considered and compared several WSN topologies, in
conjunction with several NN parameter configurations, and tested them in terms of the total
network lifetime extension rate. This means that our solver tried to relocate a percentage
of sensor nodes in order to minimize an objective function under certain coverage and
connectivity constraints.

Our simulations focused on three distinct and representative use cases, related to small-,
medium-, and large-size network deployments, for precision agriculture applications. The
simulation results show that our proposed solver achieved a network lifetime extension in
all use cases while maintaining the constraints. The network lifetime extension factor was
around 5% in all cases, ensuring a coverage percentage of 90% in all topologies. Moreover,
in all network cases, the connectivity among the communicating node pairs was ensured.
Our simulations show a trade-off between lifetime extension and coverage in terms of
optimization constraints. This trade-off is a system parameter, which the network designer
needs to fine-tune. A greater extension was achieved in the cases where the solver applied
more hidden layers. In future work, we will consider experimenting with more NN
configurations and parameter settings and enhance our communication model with power
control optimization in some of the cases. A limitation of our proposed solution is that we
tested it in a simulation environment. However, the solver was responsive to large WSN
deployments. In essence, our work proposes a tool for a potential network designer to
predefine and, afterwards, deploy the final topology.

In future work, we plan to test our solution in real field conditions and discuss
the potential limitations associated with the utilization of moving sensors for the final
placement, under hybrid topologies with static nodes and moving ones. Moreover, we
plan to test the solver’s robustness, as far as several neural network configurations are
concerned, and highlight which is the best for each network scenario.
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