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Abstract

The invariant image [1, 2] formed from an RGB im-
age taken under light that can be approximated as Planck-
ian solves the colour constancy problem at a single pixel.
The invariant is a very useful tool for possible use in a
large number of computer vision problems, such as re-
moval of shadows from images [3]. This image is formed
by projecting log-log chromaticity coordinates into a 1D
direction determined by a calibration of the imaging cam-
era. The invariant can be formed whether or not gamma-
correction is applied to images and thus can work for ordi-
nary webcam images, for example, once a self-calibration
is carried out [3]. As such, the invariant image is an impor-
tant new mechanism for image understanding. Since the
resulting greyscale image is approximately independent of
illumination, it is impervious to lighting change and hence
to the presence of shadows. However, in forming the in-
variant image, it can sometimes happen that shadows are
not completely removed. Here, we consider the problem
of simple matrixing of sensor values so that the result-
ing invariant image is improved. To do so, we consider
the calibration images and apply an optimization routine
for establishing a 3 × 3 matrix to apply to the sensors,
prior to forming the invariant, with an eye to improving
lighting invariance. We find that an optimization does in-
deed improve the invariant. The resulting image generally
has smaller entropy value because the invariant value is
smoothed out across former shadow boundaries; thus the
new invariant more smoothly captures the underlying in-
trinsic reflectance properties in the scene.

1. Introduction
The invariant image is formed from a colour RGB im-
age in a very simple fashion, First, one forms ratios R/G
and B/G (or a variant which uses division by the geometric
mean of R,G,B [4]). If lighting is approximately Planck-
ian, then in Wien’s approximation the simple exponential
form of the illuminant SPD leads to the conclusion that as
temperature T changes, characterizing illuminant colour,
a log–log plot of the 2-dimensional {log(R/G), log(B/G)}
values for any single surface forms a straight line. Thus
lighting change reduces to a linear transformation along
an almost straight line, even for real data with only ap-
proximately Planckian lighting. For many patches, mean-
subtracted log-log plots all cluster around a single line through

the origin that characterizes lighting change. The invari-
ant image is the greyscale image that results from project-
ing log-log pixel values onto the direction orthogonal to
lighting change. Since shadows are approximately derived
from lighting change, within and outside the umbra, the
invariant image greatly attenuates the shadowing.

As well, the second assumption used in justifying such
a line is the assumption that sensors are quite narrowband.
However, even if sensors are indeed not narrowband then
they can be “sharpened” using a 3 × 3 sensor sharpening
matrix [5].

However, here we would wish to carry out a similar
simple matrix transform on camera sensors in order not
to explicitly sharpen sensors, but instead to best improve
the underlying assumption behind the development of the
invariant image. I.e., here we explicitly seek to enhance
the linearity of such log-log plots by means of a simple
matrix transform of RGB values.

Of course, such a transform amounts to a sensor trans-
form for the camera itself. Here we apply a number of
techniques learned from finding the best sharpening trans-
form characteristics for digital cameras [6]. We find that
the most straightforward and fast optimization derives from
straightening the log-log curves themselves, rather than us-
ing an optimization objective based on 1D projected values
of calibration image patches. The minimization is fast, and
results in lighting-change curves clustering much closer to
a single lighting-change direction for all patches.

Once a calibration is carried out, for a single target of
patches such as the Macbeth ColorChecker, then the same
lighting-invariant direction can be applied to any new im-
age, for the camera that was calibrated as above.

2. Invariant Image Formation

Consider image formation for a Lambertian surface. Sup-

pose there are i = 1..L lights, each with SPD Ei(λ) well-
described by Wien’s approximation of a Planckian source
[7], with

Ei(λ) = Iic1λ
−5e−c2/(λT ) (1)

in directions a i with intensity Ii. (The Planckian assump-
tion is in fact not crucial [2, 1].) If the surface projecting to
retinal point x has spectral surface reflectance S(λ) then,
for a 3-channel delta-function narrowband sensor camera
with spike sensor sensitivities qk = qk(λk), k = 1..3, the
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Figure 1: (a): Macbeth ColorChecker, HP912 camera, 14 lights.

(b): Mean-subtracted log-ratios, HP912 camera.

RGB-vector response would be

ρk =
∑L

i=1
c1a

i · n S(λk)Iiλ−5e−c2/(λkT ) qk

=
[∑L

i=1
(c1I

ia i)
]
· n S(λk)λ−5e−c2/(λkT ) qk

≡ ã · n S(λk)λ−5

k e−c2/(λkT ) qk . (2)
Now consider band-ratio chromaticities rk defined as

the ratio of the k = 1..2 ≡ {R, B} sensor values ρ1, ρ3

divided by the green sensor value ρ2. Thus our chromatic-
ities are 2-vectors:

rk =
ρk

ρG

, k = 1..2 . (3)

Since we divide, the shading term (ã ·n ) is removed. Tak-
ing logarithms, we can concisely state the result by defin-
ing several terms:

eµ = −c2/λµ , sµ = S(λµ) ,
uµ = λ−5

µ qµ , wµ = log (uµ/up) µ = 1..3 .
(4)Then for k = 1..2 we have

log rk = log (sk/s2) + wk + (ek − e2)
1

T
. (5)

The meaning of the above expression is that, for every sur-
face patch, the 2-vector is formed as a constant vector plus
a vector (ek − e2) times the inverse temperature: as light-
ing changes (i.e., as temperature T changes), pixel values
are constrained to a straight line in 2D log colour space.
For broadband sensors, similar equations hold [4]).

The main issue in finding an invariant to temperature
T , then, becomes finding 2D vector (ek − e2) in eq. (5).
This is a calibration task: for a given camera (and gamma
correction setting) we measure a colour target under many
different lights — it would be sensible to restrict consider-
ations to lights that fall close to Planckian, at least in terms
of lying close to the Planckian locus on the chromaticity
diagram. Here we use outdoor lighting.

Consider the image in Fig. 1(a). Here we have imaged
a Macbeth ColorChecker in 14 different outdoor lighting
conditions: each of the 24 patches is shown as a row, with
each patch having 14 columns corresponding to the lights.
The camera used was an experimental Hewlett-Packard
HP912 digital still camera modified to produce raw out-
put. The figure shows median values over each patch, un-
der each light: since not all 14 images could be taken in
one session, images of the ColorChecker were not regis-
tered. To find vector (ek − e2) we first form ratios and
then logs. For each patch, the mean is subtracted from all
14 data points, so that data is clustered around a single line
through the origin, as in Fig. 1(b).

Then in [2] it is suggested that we find the dominant di-
rection by simply forming the Singular Value Decomposi-
tion (SVD) of the data points shown— the first eigenvector
is the main direction. However, instead of a least-squares
based regression we make use of a robust Least Median of
Squares regression, since such a robust method will find
the best line without regard to outlier values that may arise
during the optimization.

3. Optimizations on Log-Log Plots versus
Optimizations on Invariant Values

In [6] we considered a number of optimizations for spectral
sharpening with positivity, and here we carry over some of
the same techniques.

We wish to find a simple linear transform of camera
sensors such that the invariant image derived from patches
in Fig. 1(a) is essentially constant across each row (i.e.,
across lights). The invariant image that corresponds to the
original collection of patch images can be most easily vi-
sualized as in Fig.2, where invariant values are shown as
a height map. We wish each line across the image, corre-
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Figure 2: Invariant image values, HP912 camera.

sponding to a single patch, to be as constant as possible.
We have found that another visualization scheme works

very well: we map values to a colour map and display
those. Fig. 3 shows such an image for the invariant patches
of the ColorChecker, with the invariant derived as in [2].
We can see from Fig. 3 that the invariant is not truly con-
stant across illuminants.

Now we wish to determine a simple 3 × 3 matrix
M such that, after matrixing, the new sensors produce
a more constant invariant. I.e., phrasing the problem in
terms of sensors for the moment, rather than RGB values,
if we measure sensor sensitivities using 31 samples from
400nm to 700nm at 10 nm intervals, then we arrive at a
3 × 31 matrix Q . A matrixing scheme would be given

in terms of 3 × 3 matrix M as forming new sensors Q̃ as
combinations of the old sensors:

Q̃ = Q M . (6)

This can immediately be translated into how RGB values
change by transformation to the new space. Suppose we
have a set of N × 3 colours ρ . Then in the new colour
space, these values are transformed to values

ρ̃ = ρ M . (7)

To form the invariant image for the new colours, we
again take ratios and logs, find the direction of lighting
change, and project orthogonal to that direction.

The main issue in forming an optimization scheme to
improve the invariant is in determining what to optimize,
and where to initialize. We can start by trying to optimize
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Figure 3: HP912 Invariant image as values in a color map.
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the invariant image itself; i.e., we could try to force Fig. 2
to have straighter row plotlines, using an error measure
such as

invt image error =

N∑

i=1

L∑

j=1

(xij − x̄i)
2/x̄i (8)

where, for invariant values xij , x̄i is the mean over all il-
luminants j = 1..L for patch i, over i = 1..N patches
(here, N = 24 and L = 14). Here we wish to minimize
invt image error over a range of possible matrices M .

The issue of initialization is important since generally
such an optimization will find only a local minimum. The
first point to note is that since eq. (5) depends on the nar-
rowband sensor assumption for accuracy, the idea of spec-
tral sharpening is pertinent [5]. An important consider-
ation is that any RGB values created in the new colour
space should be nonnegative [6] — we can carry out a con-
strained optimization either in a sensor space, if we know
the sensors, or using a data-driven spectral sharpening ap-
proach [5].

We can expect that sharpening should help our error in-
variant and indeed this may be the case. On the other hand,
this is not guaranteed. To examine sharpening, consider
what happens when we simply raise the colour-matching
functions x̄(λ), ȳ(λ), z̄(λ) [7], to some power. Certainly,
for positive powers we see considerably narrower sensors,
as in Fig. 4(a) (each sensor is normalized in the L1 norm).
Fig. 4(b) shows the error values for these curves. We note
that for negative powers, when the curves become flatter,
the error in the invariant image also drops. This should
not really be surprising, since in the process of finding the
invariant we form colour ratios. Certainly, if we allow un-
constrained mixing, the “best” invariant would be formed
by sensors that all have the same mix of the original RGB
sensors. That way, every invariant value would be zero.

Thus we see that we must constrain an optimization
from deriving sensors that are too rank-reduced. The ma-
trix rank (integer) of the new set of RGB values ρ̃ is a prod-
uct of the rank of the original RGBs ρ and the rank of the
transform matrix M . Therefore our restriction amounts
to encouraging the rank of M to remain near the rank of
an initializing full-rank matrix M 0.

Hence an optimization can be stated as
min
M

∑N

i=1

∑L

j=1
(xij − x̄i)

2/x̄i − α · rank(M )

with constraints{ ∑3

j=1
Mij = 1, i = 1..3, L1 normalization

ρ M ≥ 0 , non-negative colours
(9)
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Figure 4: Powers of colour-matching functions. (a): Curves

(sum==1); (b): Errors for powers of curves from power=0.1 to

2.0: vertical line is power=1.0 .

The objective of the first constraint is to limit the linear
combinations of sensors allowed: only sensors that form
a convex sum are allowed. The second constraint states
the reasonable property that transformed colours are pos-
itive. The second term in the objective function is meant
to encourage a non-rank-reducing matrix M . To define a
non-integer rank function, we take

rank = λ3/λ1 , (10)

where λi, i = 1..3 are the singular values in an SVD de-
composition of matrix M , and use a constant α to control
the optimization (here we set α=0.1).

An alternative optimization is to recognize that the orig-
inal problem, that of reducing as much as possible the lines
in Fig. 1(b) to a single straight line, amounts to the same
objective. That is, we could instead use an optimizer

log rk → mean-subtracted log rk ;
min
M R2(log rk) − α · rank(M )

with constraints{ ∑3

j=1
Mij = 1, i = 1..3, L1 normalization

ρ M ≥ 0 , non-negative colours
(11)

where R2 is the coefficient of determination of the second
dimension in the log-log plot versus the first dimension —
how well is the data explained by a single line through the
origin: R2 = sum of squares of the data minus that of
the residuals.

In practice, we found that the second optimizer, eq. (11),
converged much more rapidly than did the first, eq. (9), and
hence that is the optimizer used here. Optimization was by
gradient-descent.

For colour patches created synthetically, for XYZ sen-
sors imaging the Macbeth chart under illuminants A, C,
and the Judd daylights, the optimization yields sensors as
in Fig. 5. The effect seems rather minor, but the straighten-
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Figure 5: Transformed XYZ curves.

ing of curves in log-log space is dramatic: the coefficient
of determination R2 (square of the correlation coefficient)
without a sensor transform is only 0.4449 because lighting
changes log-log values quite nonlinearly, whereas after a
transform it is increased to 0.9661 . This large change is

apparent in the log-log plots in Fig. 6. 1 Generally, we
found that the best optimization, for both the XYZ curves

1Note that we do not need to know the sensors to do the optimiza-
tion. We show them here because the curves help us see the balancing of
sharpening versus equal-mixing.
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and sensors for the Kodak DCS420 digital camera that we
also tested, was given by the optimization (11) with initial-
ization at spectrally sharpened sensors.
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Figure 6: Log-log plots for XYZ sensors: (a): No� transform.

(b): With transform.

We also carried out data-driven sharpening on RGB
values for the Kodak DCS420 digital camera, and then op-
timization. The camera sensors change as in Fig. 7, and
straightening is as in Fig. 8. For this camera, R2 goes from
0.4343 to 0.9368.
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Figure 7: Transformed Kodak DCS420 sensors.
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Figure 8: Log-log plots for Kodak DCS420 camera: (a): No

� transform. (b): With transform.

4. Results

4.1. Transformed Macbeth Patches
Getting back to our experimental data for the HP912
camera, the optimization using eq. (11) leads to a
matrix M that substantially straightens the collection
of lines in log-log space. Fig. 9(a) shows the set
of colour patches transformed by matrix M . For
the HP912 camera, we found that an initial matrix
given by data-based sharpening was did not give as
tight a set of log-log lines as did an initializer using
diag(1, 1, 1), so we simply used the unit matrix to begin
the search. Interestingly, an SVD decomposition of the
original set of RGB patches yields singular values in the
ratio 1.0, 0.182, 0.071, so the patches themselves are quite
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Figure 9: (a): Macbeth ColorChecker under transformed HP912

camera. (b): Transformed log-log plot for HP912 camera.

rank-reduced. The matrix M has singular values in the ra-
tios 1.0, 0.807, 0.579, and the resulting set of RGBs gives
ratios 1.0, 0.155 0.043 . Thus some rank-reduction is in-
deed taking place.

Nevertheless we do achieve the goal of a substantial in-
crease in the constancy of invariant values for each patch:
Fig. 9(b) shows that indeed the lines in a log-log diagram
do become tighter around the new illumination-change di-
rection. (The new direction also has a slope 7◦ greater
than the original direction.) The coefficient of determina-
tion without a sensor transform is 0.8647, whereas after a
transform it is increased to 0.9254 . As well, Fig. 10 shows
that in either visualization, the invariant patch values (1D,
greyscale) are more constant compared to Figs. 2, 3.

Since the rows in Fig. 10 are smoothed out, there are
fewer values in the invariant image. Hence the histogram
for the invariant image is more concentrated. Fig. 11 shows
the histograms for the original and the improved invariant
image: the entropy in the original is 5.856 whereas this
value is decreased to 5.590 in the new invariant. This re-
flects the fact that the latter is smoother. Generally, the
entropy measure for the invariant image provides a sim-
ple indicator of how well we have done in smoothing out
changes over illumination change boundaries.
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Figure 10: HP912 camera: (a): Invariant colour patch values for

transformed sensors. (b): Invariant from colour patches values in

a color map.
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Figure 11: HP912 camera: (a): Histogram of original invariant

values from colour patches. (b): Histogram of invariant values

for transformed sensors.

4.2. Transformed Images

Consider the image in Fig. 13(a). The second figure, (b),
shows the invariant image, found using the method in [2].
The image is histogram-equalized for display. Fig. 13(c)
shows the invariant derived from the image transformed
by matrix M . Note that once a set of patch images has
been calibrated, as in §4.1 above, we need not re-compute
M again.

To compare the two invariant images, we can plot the
mean over columns of a horizontal scan from the sunny
part of the grass in the image to the shady side. The stan-
dard deviation (dividing by the mean of the subimage) goes
from 0.0208 with no transform to 0.0121, so the new in-
variant does about twice as well. We can understand this
result by considering the edge maps produced by a Canny
edge-finder (with high threshold .08 and standard devi-
ation of the Gaussian filter 1.0, applied to both old and
new invariant images), in Figs. 13(d,e). The edge map is
smoother across the shadow edge, for the new invariant:
the change in texture now occurs not at the shadow bound-
ary but instead at places where the grass in shade changes
because it is more trampled down (see Fig. 13(f)).

The entropy in the original invariant image is 5.295,
and is reduced to 4.939 in the new invariant; this is clear
from a histogram of pixels values, in Fig. 12. Thus the new
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Figure 12: HP912 camera: Histograms for real image; original

(blue) and new (red– the rightmost plot) invariant images.

invariant is essentially a smoother version of the underly-
ing intrinsic reflectance properties in the scene.

The properties in this typical image are carried over to
the other images shown below.

5. Linearized Images

Since users will generally not have available linear data,
we considered linearizing output JPEG images from the
HP 912 camera, and then forming an invariant. To do so,
we created two 24 × 14 images of the ColorChecker, one
linear and one typical output JPEG. We then “linearized”

the set of patch RGBs via a function fit of the form

F (x) = −C1 · log

(
C2

fC3(x) + C4

− 1

)
,

x = R or G or B, f(x) = C5 ∗ R + C6 ∗ G + C7 ∗ B

and applied the same linearization to JPEG camera images.

Finding a matrix M ′ for the linearized ColorChecker,
we applied it to real image RGBs. Fig. 15(a) shows lin-
earized versus correct linear Blue channel pixel values, for
the image Fig. 13(a). Fig. 15(b) shows the output image
using a matrix M derived from the original JPEG Col-
orChecker patches, and Fig. 15(c) shows the invariant for a

linearized image with application of a matrix M ′ derived
from the linearized ColorChecker. Clearly, linearization of
JPEG images results in a better invariant.

6. Conclusions
In this paper we have outlined an optimization method that
promotes creation of a more shadow-invariant image. In
Fig. 14 we show a few more input and output images (for
purposes of display, the raw input camera RGB values have
been converted to the standard sRGB[8] colour space). For
these images again, the entropy is decreased, and shadow
boundaries are attenuated. In future, we wish to explore
more fully the space of possible optimizations, with a view
to developing techniques that can be applied to unsourced
imagery from the web, rather than controlled imagery from
a single camera.
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(a) (b) (c)

(d) (e) (f)

Figure 13: (a): Original image. (b): Invariant image with no transform. (c): Invariant image using a transform. image, and red solid

is the new invariant. (d): Edge map, original invariant. (e): Edge map, new invariant. (f): Detail of sun-shade boundary (histogram

equalized).
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Figure 14: Input and output images.

(a) (b) (c)

Figure 15: LNonlinear and linearized image invariants. (a): Blue channel for Fig. 13(a): abscissa is nonlinear value, blue dots

are correct linear values, and red dots are best-fit linearized values. (b): Invariant from nonlinear JPEG image. (c): Invariant from

linearized image.
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